Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-04-29T09:14:04.591Z Has data issue: false hasContentIssue false

A molecular dynamics simulation study of paraquat intercalated montmorillonite

Published online by Cambridge University Press:  06 December 2024

Haotian Su
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, China
Yingchun Zhang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, China
Xiandong Liu*
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, China
Qingfeng Hou
Affiliation:
State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation (CNPC), Beijing, China
Xiancai Lu
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, China
*
Corresponding author: Xiandong Liu; Email: [email protected]

Abstract

Paraquat, one of the most widely utilized herbicides globally, causes a significant environmental challenge due to its poor degradation rate and tendency to adsorb into clay interlayers. Several remediation methods have been proposed but their effectiveness remains suboptimal. The primary reason for this is the lack of microscopic understanding of paraquat–montmorillonite interactions. In this work molecular dynamics simulations were applied to study the interlayer structures and mobility of paraquat intercalated montmorillonite. Two stable hydration states were identified from the calculated immersion energy curve, which corresponded to a water content of 185 mgwater/gclay and 278 mgwater/gclay (the most stable). Paraquats remained in direct contact with the clay surface in both the anhydrous and hydrated states. At the water content of 185 mgwater/gclay, paraquats formed π-π stacking while at 278 mgwater/gclay, they were separated by a layer of water. Paraquat showed very small self-diffusion coefficients in the interlayer space of montmorillonite, indicating rather limited motions. The results in this work provide a basis for a better understanding of the interaction of paraquat with clay minerals.

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allen, M.P. & Tildesley, D. J. (1987). Computer Simulation of Liquids. Clarendon Press: Oxford, UK.Google Scholar
Amondham, W., Parkpian, P., Polprasert, C., DeLaune, D.R., & Jugsujinda, A. (2006). Paraquat adsorption, degradation, and remobilization in tropical soils of Thailand. Journal of Environmental Science and Health Part B, 41, 485507.CrossRefGoogle ScholarPubMed
Austen, K.F., White, T.O.H., Marmier, A., Parker, S., Artacho, E., & Dove, M.T. (2007). Electrostatic versus polarization effects in the adsorption of aromatic molecules of varied polarity on an insulating hydrophobic surface. Journal of Physics: Condensed Matter, 20, 035215.Google Scholar
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In Pullman, B. (ed), Intermolecular Forces (pp. 331342). Riedel: Dordrecht, Netherlands.CrossRefGoogle Scholar
Boek, E.S., Coveney, P. V., & Skipper, N. T. (1995). Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor. Journal of the American Chemical Society, 117, 1260812617.CrossRefGoogle Scholar
Bromilow, R.H. (2004). Paraquat and sustainable agriculture. Pest Management Science, 60, 340349.CrossRefGoogle ScholarPubMed
Brooks, B.R., Brooks, C.L. III, MacKerell, A.D. Jr, Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., & Karplus, M. (2009). CHARMM: the biomolecular simulation program. Journal of Computational Chemistry, 30, 15451614.CrossRefGoogle ScholarPubMed
Burns, I.G., Hayes, M.H.B., & Stacey, M. (1973). Some physico-chemical interactions of paraquat with soil organic materials and model compounds. Weed Research, 13, 7990.CrossRefGoogle Scholar
Chang, F.-R.C., Skipper, N.T., & Sposito, G. (1997). Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates. Langmuir, 13, 20742082.CrossRefGoogle Scholar
Chen, Z., & Hu, L. (2022). Adsorption of naphthalene on clay minerals: a molecular dynamics simulation study. Materials, 15, 5120.CrossRefGoogle ScholarPubMed
Cosoli, P., Fermeglia, M., & Ferrone, M. (2010). Molecular simulation of atrazine adhesion and diffusion in a saturated sand model. Soil and Sediment Contamination, 19, 7287.CrossRefGoogle Scholar
Cygan, R.T., Guggenheim, S., & van Groos, A.F.K. (2004a). Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay. Journal of Physical Chemistry B, 108, 1514115149.CrossRefGoogle Scholar
Cygan, R.T., Liang, J.J., & Kalinichev, A.G. (2004b). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 12551266.CrossRefGoogle Scholar
Cygan, R.T., Greathouse, J.A., Heinz, H., & Kalinichev, A.G. (2009). Molecular models and simulations of layered materials. Journal of Materials Chemistry, 19, 24702481.CrossRefGoogle Scholar
Cygan, R.T., Greathouse, J.A., & Kalinichev, A.G. (2021). Advances in ClayFF molecular simulation of layered and nanoporous materials and their aqueous interfaces. Journal of Physical Chemistry C, 125, 1757317589.CrossRefGoogle Scholar
Dauber-Osguthor, P., Roberts, A.V., Osguthorpe, J.D., Wolff, J., Genest, M. & Hagler, T.A. (1988) Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Structure, Function and Genetics, 4, 3147.CrossRefGoogle Scholar
Frenkel, D., & Smit, B. (2002) Understanding Molecular Simulation (2nd edn). Academic Press: New York, USA.Google Scholar
Frimpong, J.O., Ofori, E.S.K., Yeboah, S., Marria, D., Offeia, B.K., Apaataha, F., Sintima, J.O., Ofori-Ayeh, E., & Osae, M. (2018). Evaluating the impact of synthetic herbicides on soil dwelling macrobes and the physical state of soil in an agro-ecosystem. Ecotoxicology and Environmental Safety, 156, 205215.CrossRefGoogle Scholar
Gondar, D., López, R., Antelo, J., Fiol, S., & Arce, F. (2012). Adsorption of paraquat on soil organic matter: effect of exchangeable cations and dissolved organic carbon. Journal of Hazardous Materials, 235–236, 218223.CrossRefGoogle ScholarPubMed
Greathouse, J.A., Hart, D.B., Bowers, G.M., Kirkpatrick, R.J., & Cygan, R.T. (2015). Molecular simulation of structure and diffusion at smectite–water interfaces: using expanded clay interlayers as model nanopores. Journal of Physical Chemistry C, 119, 1712617136.CrossRefGoogle Scholar
Greenwell, H.C., Jones, W., Coveney, P.V, & Stackhouse, S. (2005). On the application of computer simulation techniques to anionic and cationic clays: a materials chemistry perspective. Journal of Materials Chemistry, 16, 708723.CrossRefGoogle Scholar
Heinz, H., Lin, T.J., Mishra, R.K., & Emami, F.S. (2013). Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir, 29, 17541765.CrossRefGoogle ScholarPubMed
Helmke, M.F., Simpkins, W.W., & Horton, R. (2005). Fracture-controlled nitrate and atrazine transport in four Iowa till units. Journal of Environmental Quality, 34, 227236.CrossRefGoogle ScholarPubMed
Ho, T.A., Wang, Y., Jové Colón, C.F., & Coker, E.N. (2020) Fast advective water flow through nanochannels in clay interlayers: implications for moisture transport in soils and unconventional oil/gas production. ACS Applied Nano Materials, 3, 1189711905.CrossRefGoogle Scholar
Hou, H., & Wang, B. (2021). Solvent-dependent mechanistic aspects for the redox reaction of paraquat in basic solution. International Journal of Quantum Chemistry, 121, e26757.CrossRefGoogle Scholar
Ilari, R., Etcheverry, M., Waiman, V.C., & Zanini, G. (2021). A simple cation exchange model to assess the competitive adsorption between the herbicide paraquat and the biocide benzalkonium chloride on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125797.CrossRefGoogle Scholar
Khan, S.U. (1974). Determination of diquat and paraquat residues in soil by gas Chromatography. Journal of Agricultural and Food Chemistry, 22, 863867.CrossRefGoogle ScholarPubMed
Knight, B.A.G., & Tomlinson, T.E. (1967). The interaction of paraquat (1:1 0-dimethyl 4:4 0-dipyridylium dichloride) with mineral soils. Journal of Soil Science, 18, 233243.CrossRefGoogle Scholar
Knight, B.A.G., & Denny, P.J. (1970). The interaction of paraquat with soil: adsorption by an expanding lattice clay mineral. Weed Research, 10, 4048.CrossRefGoogle Scholar
Leonard, R.A., Langdale, G.W., & Fleming, W.G. (1979). Herbicide runoff from upland Piedmont watersheds – data and implications for modeling pesticide transport. Journal of Environmental Quality, 8, 223229.CrossRefGoogle Scholar
Liu, X.D., Lu, X.C., Wang, R.C., Zhou, J.H., & Xu, X.S. (2007). Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water: a molecular dynamics study. Clays and Clay Minerals, 55, 554564.CrossRefGoogle Scholar
Liu, X.D., Lu, X.C., Wang, R.C., Zhou, H.Q., & Xu, S.J. (2009). Molecular dynamics in-sight into the cointercalation of hexadecyltrimethyl-ammonium and acetate ions into smectites. American Mineralogist, 94, 143150.CrossRefGoogle Scholar
Loewenstein, W. (1954). The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 9296.Google Scholar
Macii, F., Detti, R., Bloise, F.R., Giannarelli, S., & Biver, T. (2021). Spectroscopic analysis of the binding of paraquat and diquat herbicides to biosubstrates. International Journal of Environmental Research and Public Health, 18, 2412.CrossRefGoogle ScholarPubMed
Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298K. Journal of Physical Chemistry A, 105, 99549960.CrossRefGoogle Scholar
Mendes, R.A., de Freitas, R.G., Brown, A., & de Souza, G.L.C. (2020). Exploring ground and low-lying excited states for diquat, paraquat, and dipyridyl isomers. Journal of Photochemistry & Photobiology A: Chemistry, 402, 112817.CrossRefGoogle Scholar
Muhamad, H., Ismail, B.S., Sameni, M., & Mat, N. (2011). Adsorption study of 14C-paraquat in two Malaysian agricultural soils. Environmental Monitoring and Assessment, 176, 4350.CrossRefGoogle ScholarPubMed
Ngouana, W, B.F., & Kalinichev, A.G. (2014). Structural arrangements of isomorphic substitutions in smectites: molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs–montmorillonite revisited with new clay models. Journal of Physical Chemistry C, 118, 1275812773.CrossRefGoogle Scholar
Ouyang, Y., Mansell, R.S., & Nkedi-Kizza, P. (2004). Displacement of paraquat solution through a saturated soil column with contrasting organic matter content. Bulletin of Environmental Contamination & Toxicology, 73, 725731.CrossRefGoogle ScholarPubMed
Pateiro-Moure, M., Nóvoa-Munoz, J.C., Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., & Simal-Gándara, J. (2009). Quaternary herbicides retention by the amendment of acid soils with a bentonite-based waste from wineries. Journal of Hazardous Materials, 164, 769775.CrossRefGoogle ScholarPubMed
Plimpton, S.J. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 119.CrossRefGoogle Scholar
Rappe, K.A., & Goddard, W.A. III (1991). Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 95, 33583363.CrossRefGoogle Scholar
Rashidipour, M., Maleki, A., Kordi, S., Birjandi, M., Pajouhi, N., Mohammadi, E., Heydari, R., Rezaee, R., Rasoulian, B., & Davari, B. (2019). Pectin/chitosan/tripolyphosphate nanoparticles: efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity. Journal of Agricultural and Food Chemistry, 67, 57365745.CrossRefGoogle ScholarPubMed
Raupach, M., Emerson, W.W., & Slade, P.G. (1979). The arrangement of paraquat bound by vermiculite and montmorillonite. Journal of Colloid and Interface Science, 69, 398408.CrossRefGoogle Scholar
Roberts, T.R., Dyson, J.S., & Lane, M.C.G. (2002). Deactivation of the biological activity of paraquat in the soil environment: a review of long-term environmental fate. Journal of Agricultural and Food Chemistry, 50, 36233631.CrossRefGoogle ScholarPubMed
Santos, M.S.F., Schaule, G., Alves, A., & Madeira, L.M. (2013). Adsorption of paraquat herbicide on deposits from drinking water networks. Chemical Engineering Journal, 229, 324333.CrossRefGoogle Scholar
Scholtzová, E., Madejovaá, J., Jankovič, L., & Tunega, D. (2016). Structural and spectroscopic characterization of montmorillonite intercalated with N-butylammonium cations (N = 1-4) – modeling and experimental study. Clays and Clay Minerals, 64, 401412.CrossRefGoogle Scholar
Scholtzová, E., 2020. Computational modeling of nanoclays. In Cavallaro, G., Fakhrullin, R. & Pasbakhsh, P. (eds), Micro and Nano Technologies Series, Clay Nanoparticles Properties and Applications (pp. 139166). Elsevier: Netherlands.Google Scholar
Senesi, N., D’Orazio, V., & Miano, T.M. (1995). Adsorption mechanisms of s-triazine and bipyridylium herbicides on humic acids from hop field soils. Geoderma, 66, 273283.CrossRefGoogle Scholar
Smith, D.E. (1998). Molecular computer simulations of the swelling properties and inter-layer structure of cesium montmorillonite. Langmuir, 14, 59595967.CrossRefGoogle Scholar
Simonnin, P., Noetinger, B., Nieto-Draghi, C., Marry, V., & Rotenberg, B. (2017). Diffusion under confinement: hydrodynamic finite-size effects in simulation. Journal of Chemical Theory and Computation, 13, 28812889.CrossRefGoogle ScholarPubMed
Smith, E.A., & Mayfield, C.I. (1978). Paraquat: determination, degradation, and mobility in soil. Water, Air, and Soil Pollution, 9, 439452.CrossRefGoogle Scholar
Teich-McGoldrick, S.L., Greathouse, J.A., Jové-Colón, C.F., Cygan, R.T. (2015). Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: comparison of temperature, interlayer cation, and charge location effects. Journal of Physical Chemistry B, 119, 2088020891.Google Scholar
Teleman, O., Jönsson, B., & Engström, S. (1987). A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Molecular Physics, 60, 193203.CrossRefGoogle Scholar
Tsai, W.T., Lai, C.W., & Hsien, K.J. (2003). The effects of pH and salinity on kinetics of paraquat sorption onto activated clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 224, 99105.CrossRefGoogle Scholar
Tsai, W.T., Lai, C.W., & Hsien, K.J. (2004). Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth. Chemosphere, 55, 829837.CrossRefGoogle ScholarPubMed
Wang, M., Orr, A.A., He, S., Dalaijamts, C., Chiu, W.A, Tamamis, P., & Phillips, T.D. (2019). Montmorillonites can tightly bind glyphosate and paraquat reducing toxin exposures and toxicity. ACS Omega, 4, 1770217713.CrossRefGoogle ScholarPubMed
Weber, J.B., Perry, P.W., & Upchurch, R.P. (1965). The influence of temperature and time on the adsorption of paraquat, diquat, 2, 4-D and prometone by clays, charcoal, and an anion-exchange resin. Soil Science Society of America Journal, 29, 678688.CrossRefGoogle Scholar
Weber, J. B., & Weed, S.B. (1968). Adsorption and desorption of diquat, paraquat, and prometone by montmorillonitic and kaolinitic clay minerals. Soil Science Society of America Journal, 32, 485487.CrossRefGoogle Scholar
Zhao, N., Tan, Y., Zhang, X., Zhen, Z., Song, Q., Ju, F., & Ling, H. (2023). Molecular insights on the adsorption of polycyclic aromatic hydrocarbons on soil clay minerals. Environmental Engineering Science, 40, 105113.CrossRefGoogle Scholar
Zhu, J., Shen, W., Ma, Y., Ma, L., Zhou, Q., Yuan, P., Liu, D., & He, H. (2012a). The influence of alkyl chain length on surfactant distribution within organo-montmorillonites and their thermal stability. Journal of Thermal Analysis and Calorimetry, 109, 301309.CrossRefGoogle Scholar
Zhang, L., Lu, X., Liu, X., Zhou, J., & Zhou, H. (2014) Hydration and mobility of interlayer ions of (nax, cay)-montmorillonite: a molecular dynamics study. Journal of Physical Chemistry C, 118, 2981129821.CrossRefGoogle Scholar
Supplementary material: File

Su et al. supplementary material

Su et al. supplementary material
Download Su et al. supplementary material(File)
File 1.2 MB