Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-30T07:46:06.274Z Has data issue: false hasContentIssue false

Application of an improved TEM-EDS protocol based on charge balance for accurate chemical analysis of sub-micrometric phyllosilicates in low-grade metamorphic rocks

Published online by Cambridge University Press:  06 December 2024

Edoardo Sanità*
Affiliation:
Università di Pisa, Dipartimento di Scienze della Terra, Via Santa Maria, 53, Pisa, Italy
Roberto Conconi
Affiliation:
Università degli Studi di Milano-Bicocca, Dipartimento di Scienze dell’Ambiente e della Terra, Piazza della Scienza 4, Milano, Italy
Sofia Lorenzon
Affiliation:
Università di Pisa, Dipartimento di Scienze della Terra, Via Santa Maria, 53, Pisa, Italy
Maria Di Rosa
Affiliation:
Università di Pisa, Dipartimento di Scienze della Terra, Via Santa Maria, 53, Pisa, Italy
Giancarlo Capitani
Affiliation:
Università degli Studi di Milano-Bicocca, Dipartimento di Scienze dell’Ambiente e della Terra, Piazza della Scienza 4, Milano, Italy
Enrico Mugnaioli
Affiliation:
Università di Pisa, Dipartimento di Scienze della Terra, Via Santa Maria, 53, Pisa, Italy
*
Corresponding author: Edoardo Sanità; Email: [email protected]

Abstract

Determining the chemical composition of sub-micrometer rock-forming minerals is still a challenging task. The electron probe micro-analyzer (EPMA) is considered the most accurate analytical way to obtain chemical data on amorphous and crystalline materials. However, performing EPMA analyses on sub-micrometer-sized grains is uncertain not recommended as the risk of obtaining analyses contaminated from the surrounding phases. A transmission electron microscope (TEM) equipped with an energy dispersive X-ray spectrometer (EDS) provides a greater spatial resolution, making it possible to obtain trustworthy chemical information on sub-micrometer-sized material. In this work, we present a fast and cheap data-reduction protocol for TEM-EDS chemical analysis, where k-factors derived experimentally for each element of interest and absorption correction are implemented. The results are compared with those determined using standardless and non-corrected TEM-EDS protocols. The k-factor for oxygen plays a fundamental role and its value should be calculated from compounds similar to the phase of interest. For absorption correction, the contribution of hydrogen during structural formula recalculation is taken into account, like a lower net valence of oxygen. The robustness of this protocol was tested by performing TEM-EDS analyses on white mica grains from metapelites, belonging to the Internal Ligurian Units exposed in the Northern Apennines, the chemical composition of which is well constrained. Such a protocol has proven to provide high-quality results from both statistical and crystallo-chemical perspectives. Remarkably, the tested data-reduction protocol for TEM-EDS analysis provided chemical compositions consistent with the EPMA results previously obtained from the same samples.

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abad, I., Nieto, F., Gutiérrez-Alonso, G., Campo, M.D., López-Munguira, A., & Velilla, N. (2006). Illitic substitution in micas of very low-grade metamorphic clastic rocksEuropean Journal of Mineralogy18, 5969.Google Scholar
Battaglia, S. (2004). Variations in the chemical composition of illite from five geothermal fields: a possible geothermometer. Clay Minerals, 39, 501510.CrossRefGoogle Scholar
Benzerara, K., Menguy, N., Guyot, F., Vanni, C., & Gillet, P. (2005). TEM study of a silicate– carbonate–microbe interface prepared by focused ion beam milling. Geochimica et Cosmochimica Acta, 69, 14131422.CrossRefGoogle Scholar
Bourdelle, F., Parra, T., Beyssac, O., Chopin, C., & Moreau, F. (2012). Ultrathin section preparation of phyllosilicates by focused ion beam milling for quantitative analysis by TEM-EDXApplied Clay Science59, 121130.CrossRefGoogle Scholar
Cliff, G., & Lorimer, W. (1975). The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203207, https://doi.org/10.1111/j.1365-2818.1975.tb03895.x.CrossRefGoogle Scholar
Conconi, R., Ventruti, G., Nieto, F., & Capitani, G. (2023). TEM-EDS microanalysis: comparison among the standardless, Cliff & Lorimer and absorption correction quantification methodsUltramicroscopy254, 113845.CrossRefGoogle ScholarPubMed
Dubacq, B., Vidal, O., & De Andrade, V. (2010). Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimatesContribution to Mineralogy and Petrology159, 159174.CrossRefGoogle Scholar
Guidotti, C.V., & Sassi, F.P. (1998). Petrogenetic significance of Na-K white mica mineralogy: recent advances for metamorphic rocks. European Journal of Mineralogy, 10, 815854.CrossRefGoogle Scholar
Kamzolkin, V.A., Ivanov, S.D., & Konilov, A.N. (2016). Empirical phengite geobarometer: Background, calibration, and applicationGeology of Ore Deposits58, 613622.CrossRefGoogle Scholar
Kübler, B. (1967). La cristallinité de l’illite et les zones tout á fair supérieures du métamorphisme. In Etages Tectoniques, Colloque de Neuchâtel 1966, pp. 105121. Université Neuchâtel, á la Baconnière, Suisse.Google Scholar
Lezzerini, M., Sartori, F., & Tamponi, M. (1995). Effect of amount of material used on sedimentation slides in the control of illite ‘crystallinity’ measurementsEuropean Journal of Mineralogy7, 819823.CrossRefGoogle Scholar
Leoni, L., Marroni, M., Sartori, F., & Tamponi, M. (1996). Metamorphic grade in metapelites of the internal liguride units (Northern Apennines, Italy)European Journal of Mineralogy, 8, 3550.CrossRefGoogle Scholar
Marroni, M., & Pandolfi, L. (1996). The deformation history of an accreted ophiolite sequence: the Internal Liguride units (Northern Apennines, Italy). Geodinamica Acta, 9(1), 1329.CrossRefGoogle Scholar
Marroni, M., Meneghini, F., & Pandolfi, L. (2010). Anatomy of the Ligure-Piemontese subduction system: evidence from Late Cretaceous–middle Eocene convergent margin deposits in the Northern Apennines, ItalyInternational Geology Review52, 11601192.CrossRefGoogle Scholar
Marroni, M., Meneghini, F., & Pandolfi, L. (2017). A revised subduction inception model to explain the Late Cretaceous, double‐vergent orogen in the pre-collisional western Tethys: evidence from the Northern ApenninesTectonics36, 22272249.CrossRefGoogle Scholar
Massone, H.J., & Schreyer, W. (1987). Phengite barometry based on the limiting assemblage with K-feldspar, phlogopite and quartz. Contributions to Mineralogy and Petrology, 96, 212224.CrossRefGoogle Scholar
Meneghini, F., Di Rosa, M., Marroni, M., Raimbourg, H., & Pandolfi, L. (2023). Subduction signature in the Internal Ligurian units (Northern Apennine, Italy): evidence from P–T metamorphic peak estimate. Terra Nova, 36, 182190.CrossRefGoogle Scholar
Newbury, D.E., Swyt, C.R., & Myklebust, R.L. (1995). Standardless quantitative electron probe microanalysis with energy-dispersive X-ray spectrometry: is it worth the risk? Analytical Chemistry, 67, 18661871.CrossRefGoogle ScholarPubMed
Newbury, D.E. (1998). Standardless quantitative electron-excited X-ray microanalysis by energy-dispersive spectrometry: what is its proper role? Microscopy and Microanalysis, 4, 585597. https://doi.org/10.1017/S1431927698980564CrossRefGoogle ScholarPubMed
Obst, M., Gasser, P., Mavrocordatos, D., & Dittrich, M. (2005). TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling. American Mineralogist, 90, 12701277.Google Scholar
Penniston-Dorland, S. C., Bebout, G. E., von Strandmann, P. A. P., Elliott, T., & Sorensen, S. S. (2012). Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA. Geochimica et Cosmochimica Acta, 77, 530545.CrossRefGoogle Scholar
Sanità, E., Di Rosa, M., Marroni, M., Meneghini, F., & Pandolfi, L. (2024). Insights into the Subduction of the Ligure-Piemontese Oceanic Basin: new constraints from the metamorphism in the Internal Ligurian Units (Northern Apennines, Italy)Minerals14, 64.CrossRefGoogle Scholar
Stadelmann, P., Leifer, K., & Verdon, C. (1995). EDS and EELS using a TEM-FEG microscopeUltramicroscopy58, 3541.Google Scholar
Tarantola, A., Mullis, J., Guillaume, D., Dubessy, J., de Capitani, C., & Abdelmoula, M. (2009). Oxidation of CH4 to CO2 and H2O by chloritization of detrital biotite at 270±5°C in the external part of the Central Alps, SwitzerlandLithos112, 497510.CrossRefGoogle Scholar
van Cappellen, E., & Doukhan, J.C. (1994). Quantitative transmission X-ray microanalysis of ionic compounds, Ultramicroscopy, 53, 343349.CrossRefGoogle Scholar
Vidal, O., & Parra, T. (2000). Exhumation paths of high‐pressure metapelites obtained from local equilibria for chlorite–phengite assemblagesGeological Journal35, 139161.CrossRefGoogle Scholar
Watanabe, M., Horita, Z., & Nemoto, M. (1996). Absorption correction and thickness determination using ζ-factor in quantitative X-ray microanalysis. Ultramicroscopy, 65, 187198, https://doi.org/10.1016/S0304-3991(96)00070-8CrossRefGoogle Scholar
Watanabe, M., & Williams, D.B. (2006). The quantitative analysis of thin specimens: a review of progress from the Cliff-Lorimer to the new zeta-factor methods. Journal of Microscopy, 211, 89109. https://doi.org/10.1111/j.1365-2818.2006.01549.xCrossRefGoogle Scholar
Williams, D.B., & Carter, C.B. (1996). Transmission Electron Microscopy: A Textbook for Materials Science. Springer US, Boston, MA, USA.CrossRefGoogle Scholar
Warr, L.N. (2021). IMA–CNMNC approved mineral symbolsMineralogical Magazine85, 291320.CrossRefGoogle Scholar
Wirth, R. (2004). Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy, 16, 863876.CrossRefGoogle Scholar
Wunderlich, W., Foitzik, A.H., & Heuer, A.H. (1993). On the quantitative EDS analysis of low carbon concentrations in analytical TEMUltramicroscopy49, 220224.CrossRefGoogle Scholar
Supplementary material: File

Sanità et al. supplementary material

Sanità et al. supplementary material
Download Sanità et al. supplementary material(File)
File 127.4 KB