Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-28T17:45:43.409Z Has data issue: false hasContentIssue false

On the gluing of germs of complex analytic spaces, Betti numbers, and their structure

Published online by Cambridge University Press:  20 December 2024

Thiago Henrique Freitas
Affiliation:
Department of Mathematics, Universidade Tecnológica Federal do Paraná, 85053-525, Guarapuava-PR, Brazil e-mail: [email protected]
Johnny Albert Lima*
Affiliation:
Department of Mathematics, Universidade Tecnológica Federal do Paraná, 85053-525, Guarapuava-PR, Brazil e-mail: [email protected]

Abstract

In this paper, we introduce new classes of gluing of complex analytic space germs, called weakly large, large, and strongly large. We describe their Poincaré series and, as applications, we give numerical criteria to determine when these classes of gluing of germs of complex analytic spaces are smooth, singular, complete intersections and Gorenstein, in terms of their Betti numbers. In particular, we show that the gluing of the same germ of complex analytic space along any subspace is always a singular germ.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avramov, L. L., Infinite free resolutions . In: Elias, J., et al. (eds.), Six lectures on commutative algebra (Bellaterra, 1996), Progress in Mathematics, 166, Birkhauser, 1998, 1118.Google Scholar
Ananthnarayan, H., Avramov, L. L., and Moore, W. F., Connected sums of Gorenstein local rings . J. Reine Angew. Math. 667(2012), 149176.Google Scholar
Celikbas, E., Prime ideals in two-dimensional Noetherian domains and fiber products and connected sums, Ph.D. dissertation, University of Nebraska, Lincoln, NE, Publication No. AAI3523374ETD, 2012.Google Scholar
Dress, A. and Krämer, H., Bettireihen von Fasenprodukten lokaler Ring . Math. Ann. 215(1975), 7982.CrossRefGoogle Scholar
Endo, N., Goto, S., and Isobe, R., Almost Gorenstein rings arising from fiber products . Canad. Math. Bull. 64(2021), no. 2 383400.CrossRefGoogle Scholar
Freitas, T. H., Jorge Perez, V. H., and Miranda, A. J., Gluing of Analytic Space Germs, Invariants and Watanabe’s Conjecture . Israel J. Math. 246(2021), 211237.CrossRefGoogle Scholar
Freitas, T. H., Jorge Pérez, V. H., and Miranda, A. J., Betti number of gluing of formal complex spaces . Math. Nachr. 296(2023), 267285.CrossRefGoogle Scholar
Gaffney, T., Multiplicities and equisingularity of ICIS germs . Invent. Math. 123(1996), 209220.CrossRefGoogle Scholar
Giménez Conejero, R. and Nuño-Ballesteros, J. J., Singularities of mappings on ICIS and applications to Whitney equisingularity . Adv. Math. 408(2022), 108660.CrossRefGoogle Scholar
Gimenez, P. and Srinivasan, H., Gluing semigroups: when and how . Semigroup Forum 101(2020), 603618.CrossRefGoogle Scholar
Hashimoto, M., Auslander-Buchweitz approximations of equivariant modules. LMS, Lecture Notes Series, 282. Cambridge University Press, Cambridge, MA, 2000.CrossRefGoogle Scholar
Ishii, S., Introduction to singularities. Springer-Verlag, Tokyo, 2014.CrossRefGoogle Scholar
de Jong, T. and Pfister, G., Local analytic geometry: Basic theory and applications. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 2000.CrossRefGoogle Scholar
Lescot, J., La série de Bass d’un produit fibré d’anneaux locaux . C. R. Acad. Sci. Paris 293(1981), 569571.Google Scholar
Levin, G., Large homomorphisms of local rings . Math. Scand. 46(1980), 209215.CrossRefGoogle Scholar
Mond, D. and van Straten, D., Milnor number equals Tjurina number for functions on space curves . J. London Math. Soc. (2) 63(2001), 177187.CrossRefGoogle Scholar
Nuño-Ballesteros, J. J., Oréfice-Okamoto, B., and Tomazella, J. N., Equisingularity of families of isolated determinantal singularities . Math. Z. 289(2018), no. 3–4, 14091425.CrossRefGoogle Scholar
Rahmati, H., Striuli, J., and Yang, Z., Poincaré series of fiber products and weak complete intersection ideals . J. Algebra 498(2018), 129152.CrossRefGoogle Scholar
Ruas, M. A. S. and Silva, O. N., Whitney equisingularity of families of surfaces in ${\mathbb{C}}^3$ . Math. Proc. Camb. Philos. Soc. 166(2019), no. 2, 353369.CrossRefGoogle Scholar
Schwede, K., Gluing schemes and a scheme without closed points . In: Recent progress arithmetic and algebraic geometry. Contemporary Mathematics, 386, American Mathematical Society, Providence, RI, 2005, 157172.CrossRefGoogle Scholar