No CrossRef data available.
Published online by Cambridge University Press: 13 September 2023
In this paper, we present the results related to a problem posed by Andrzej Schinzel. Does the number $N_1(n)$ of integer solutions of the equation
$$ \begin{align*}x_1+x_2+\cdots+x_n=x_1x_2\cdot\ldots\cdot x_n,\,\,x_1\ge x_2\ge\cdots\ge x_n\ge 1\end{align*} $$
$N_a(n)$, to the equation
$$ \begin{align*}x_1+x_2+\cdots+x_n=ax_1x_2\cdot\ldots\cdot x_n,\,\, x_1\ge x_2\ge\cdots\ge x_n\ge 1.\end{align*} $$
$N_2(n)=1$, then the number
$2n-3$ is prime. The average behavior of
$N_2(n)$ is studied. We prove that the set
$\{n:N_2(n)\le k,\,n\ge 2\}$ has zero natural density.