No CrossRef data available.
Published online by Cambridge University Press: 18 March 2025
Let $\varphi : B_d\to \mathbb {D}$,
$d\ge 1$, be a holomorphic function, where
$B_d$ denotes the open unit ball of
$\mathbb {C}^d$ and
$\mathbb {D}= B_1$. Let
$\Theta : \mathbb {D} \to \mathbb {D}$ be an inner function, and let
$K^p_\Theta $ denote the corresponding model space. For
$p>1$, we characterize the compact composition operators
$C_\varphi : K^p_\Theta \to H^p(B_d)$, where
$H^p(B_d)$ denotes the Hardy space.
This research was supported by the Russian Science Foundation (Grant No. 23-11-00171), https://rscf.ru/project/23-11-00171/.