Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-05-02T15:29:52.864Z Has data issue: false hasContentIssue false

A Cesàro-like operator from a class of analytic function spaces to analytic Besov spaces

Published online by Cambridge University Press:  07 April 2025

Pengcheng Tang*
Affiliation:
School of Mathematics and Statistics, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

Abstract

Let $\mu $ be a finite positive Borel measure on $[0,1)$ and $f(z)=\sum _{n=0}^{\infty }a_{n}z^{n} \in H(\mathbb {D})$. For $0<\alpha <\infty $, the generalized Cesàro-like operator $\mathcal {C}_{\mu ,\alpha }$ is defined by

$$ \begin{align*}\mathcal {C}_{\mu,\alpha}(f)(z)=\sum^\infty_{n=0}\left(\mu_n\sum^n_{k=0}\frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!}a_k\right)z^n, \ z\in \mathbb{D}, \end{align*} $$

where, for $n\geq 0$, $\mu _n$ denotes the nth moment of the measure $\mu $, that is, $\mu _n=\int _{0}^{1} t^{n}d\mu (t)$.

For $s>1$, let X be a Banach subspace of $H(\mathbb {D})$ with $\Lambda ^{s}_{\frac {1}{s}}\subset X\subset \mathcal {B}$. In this article, for $1\leq p <\infty $, we characterize the measure $\mu $ for which $\mathcal {C}_{\mu ,\alpha }$ is bounded (resp. compact) from X into the analytic Besov space $B_{p}$.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The author was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 24C0226).

References

Aleman, A. and Cima, J., An integral operator on ${H}^p$ and Hardy’s inequality. J. Anal. Math. 85(2001), 157176.Google Scholar
Aleman, A. and Siskakis, A., Integration operators on Bergman spaces . Indiana Univ. Math. J. 46(1997), no. 2, 337356.Google Scholar
Bao, G., Guo, K., Sun, F., and Wang, Z., Hankel matrices acting on the Dirichlet space . J. Fourier Anal. Appl. 30(2024), 53.Google Scholar
Bao, G., Sun, F., and Wulan, H., Carleson measure and the range of Cesàro-like operator acting on ${H}^{\infty }$ . Anal. Math. Phys. 12(2022), Paper No. 142.Google Scholar
Beltrán-Meneu, M., Bonet, J., and Jordá, E., Cesàro operators associated with Borel measures acting on weighted spaces of holomorphic functions with sup-norms . Anal. Math. Phys. 14(2024), 109.Google Scholar
Blasco, O., Cesàro-type operators on Hardy spaces . J. Math. Anal. Appl. 540(2023), Paper No. 127017.Google Scholar
Blasco, O., Generalized Cesàro operators on weighted Dirichlet spaces . J. Math. Anal. Appl. 540(2024), no. 1, 128627.Google Scholar
Buckley, S., Koskela, P., and Vukotić, D., Fractional integration, differentiation, and weighted Bergman spaces . Math. Proc. Camb. Philos. Soc. 126(1999), no. 2, 369385.Google Scholar
Cowen, C. and MacCluer, B., Composition operators on spaces of analytic functions. CRC Press, Boca Raton, FL, 1995.Google Scholar
Danikas, N. and Siskakis, A., The Cesàro operator on bounded analytic functions . Analysis 13(1993), 295299.Google Scholar
Duren, P., Theory of ${H}^p$ spaces. Academic Press, New York, NY, 1970.Google Scholar
Galanopoulos, P., Girela, D., Mas, A., and Merchán, N., Operators induced by radial measures acting on the Dirichlet space . Results Math. 78(2023), Paper No. 106.Google Scholar
Galanopoulos, P., Girela, D., and Merchán, N., Cesàro-like operators acting on spaces of analytic functions . Anal. Math. Phys. 12(2022), Paper No. 51.Google Scholar
Galanopoulos, P., Girela, D., and Merchán, N., Cesàro-type operators associated with Borel measures on the unit disc acting on some Hilbert spaces of analytic functions . J. Math. Anal. Appl. 526(2023), Paper No. 127287.Google Scholar
Galanopoulos, P., Siskakis, A., and Zhao, R., Weighted Cesàro type operators between weighted Bergman spaces . Bull. Sci. Math. 202(2025), Paper No. 103622.Google Scholar
Girela, D. and Merchán, N., A generalized Hilbert operator acting on conformally invariant spaces . Banach J. Math. Anal. Appl. 12(2018), 374398.Google Scholar
Guo, Y., Tang, P., and Zhang, X., Cesàro-like operators between the Bloch space and Bergman spaces . Ann. Funct. Anal. 15(2024), Paper No. 8.Google Scholar
Jin, J. and Tang, S., Generalized Cesàro operator on Dirichlet-type spaces . Acta Math. Sci 42(2022), no. B, 19.Google Scholar
Miao, J., The Cesàro operator is bounded on ${H}^p$ for $0<p<1$ . Proc. Amer. Math. Soc. 116(1992), 10771079.Google Scholar
Pavlović, M., Analytic functions with decreasing coefficients and Hardy and Bloch spaces . Proc. Edinb. Math. Soc. 56(2013), 623635.Google Scholar
Pavlović, M. and Mateljević, M., ${L}^p$ -behavior of power series with positive coefficients and Hardy spaces . Proc. Amer. Math. Soc. 87(1983), no. 2, 309316.Google Scholar
Ross, W., The Cesàro operator . In: Condori, A. A., Pozzi, E., Ross, W. T., and Sola, A. A. (eds.), Recent progress in function theory and operator theory, Contemporary Mathematics, 799, American Matematical Society, Providence, Rhode Island, 2024, pp. 185215.Google Scholar
Rudin, W., Function theory in the unit ball of ${C}^n$ . Springer, New York, NY, 1980.Google Scholar
Siskakis, A., Composition semigroups and the Cesàro operator on ${H}^p$ . J. London Math. Soc. 36(1987), 153164.Google Scholar
Siskakis, A., The Cesàro operator is bounded on ${H}^1$ . Proc. Amer. Math. Soc. 110(1990), 461462.Google Scholar
Siskakis, A., On the Bergman space norm of the Cesàro operator . Arch. Math. 67(1996), 43124318.Google Scholar
Sun, F., Ye, F., and Zhou, L., A Cesàro-like operator from Besov space to some spaces of analytic functions . Comput. Methods Funct. Theory (2024). https://doi.org/10.1007/s40315-024-00542-7Google Scholar
Tang, P., The Cesàro-like operator on some analytic function spaces . Rocky Mount. J. Math. to appear.Google Scholar
Tang, P., Cesàro-like operators acting on a class of analytic function spaces . Anal. Math. Phys. 13(2023), Paper No. 96.Google Scholar
Xiao, J., Cesàro-type operators on Hardy, BMOA and Bloch spaces . Arch. Math. 68(1997), 398406.Google Scholar
Zhou, Z., Pseudo-Carleson measures and generalized Cesàro-like operators. Preprint. https://doi.org/10.21203/rs.3.rs-2413497/v1.Google Scholar
Zhu, K., Operator theory in function spaces, Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007.Google Scholar
Zygmund, A., Trigonometric series. Vol. 1, 2. Cambridge University Press, London, 1959.Google Scholar