Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-27T13:02:26.125Z Has data issue: false hasContentIssue false

Transcranial Pulsed Current Stimulation (tPCS) in Parkinson’s Disease: A Pilot Trial

Published online by Cambridge University Press:  28 February 2025

Dinkar Kulshreshtha
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
Olivia Samotus
Affiliation:
Movement Disorders Centre, University Hospital, London, ON, Canada
Yokesh Tamilselvam
Affiliation:
Canadian Surgical Technologies and Advanced Robotics (CSTAR), Department of Electrical and Computer Engineering, Western University, London, ON, Canada
Jacky Ganguly
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
Dorian Aur
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
Mandar Jog*
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
*
Corresponding author: Mandar Jog; Email: [email protected]

Abstract

Background:

Noninvasive stimulation techniques are a promising therapy due to the ease of administration and minimal side effects. We investigated the clinical, electrophysiological and side effects of transcranial pulsed current stimulation (tPCS) in patients with Parkinson’s disease (PD).

Materials and Methods:

Ten PD patients were called at monthly intervals in the OFF levodopa state. Patients received active tPCS for 20 minutes in the first visit and sham stimulation for 20 minutes in the second and were assessed for the levodopa response in the third. Clinical and bradykinesia scoring and gait and tremor analysis were done before and after stimulation/sham/levodopa in each visit. Scalp electroencephalography (EEG) was recorded for quantitative analysis during each visit. The interventions were compared between pre- and post-intervention.

Results:

A significant improvement with levodopa as compared to active and sham tPCS was seen in clinical scores. Upper limb postural tremor severity (z-score = −2.410, p = 0.016) and the stride velocity variability during post active stimulation improved by 20.7% compared to post sham stimulation though the difference was statistically non-significant. KINARM testing showed a statistically significant difference in the reaction time (p = 0.036) when comparing pre- and post-tPCS active stimulation. EEG recording showed a transitory increase of electrical activity after tPCS, with the most significant increase seen in alpha bandpower (p = 7.95*10-07; z score: −4.93).

Conclusions:

tPCS was well tolerated in all patients. With minimal side effects, ease of administration and mild improvement in the electrophysiological parameters assessed, tPCS can be an alternative therapeutic option in patients with PD.

Résumé

RÉSUMÉ

La stimulation transcrânienne à courant pulsé dans le traitement de la maladie de Parkinson : un essai pilote.

Contexte :

Les techniques de stimulation non effractives constituent un traitement prometteur, car elles sont faciles à administrer et produisent peu d’effets secondaires. Nous avons évalué les effets cliniques, électrophysiologiques et secondaires de la stimulation transcrânienne à courant pulsé (STCP) chez des patients atteints de la maladie de Parkinson (MP).

Méthode :

Après leur recrutement, 10 patients atteints de la MP devaient se présenter au centre de recherche à des intervalles d’un mois en état « OFF » de lévodopa. Ils ont été soumis à une STCP active pendant 20 minutes au cours de la première visite, à une stimulation fictive pendant 20 minutes au cours de la deuxième et à l’administration de lévodopa pour évaluer la réponse des sujets au médicament au cours de la troisième visite. Une analyse des scores cliniques et de la bradykinésie, de la démarche et des tremblements a été réalisée avant et après chacune de ces interventions. Au cours de chaque visite, une électroencéphalographie de surface (EEG) a été réalisée aux fins d’analyse quantitative. Il y a eu comparaison des résultats avant et après les interventions.

Résultats :

Une amélioration importante des scores cliniques a été constatée en ce qui a trait à la prise de lévodopa par rapport à la STCP active et à la STCP fictive. Une diminution sensible de la gravité des tremblements d’attitude des membres supérieurs (score Z = -2,410; p = 0,016) et une nette amélioration de la variabilité de la vitesse de foulée (amélioration : 20,7 %) ont été observées après la STCP active par rapport à la STCP fictive. Les tests réalisés à l’aide du robot KINARM ont révélé une différence statistiquement significative (p = 0,036) entre les résultats obtenus avant et après la STCP active en ce qui a trait au temps de réaction. L’enregistrement par EEG a montré une augmentation transitoire de l’activité électrique après la STCP, et la hausse la plus importante a été enregistrée dans la bande de fréquence alpha (p = 7,95 x 10-07; valeur de Z : -4,93).

Conclusion :

La STCP a été bien tolérée chez tous les patients. En raison de ses effets secondaires minimes, de sa facilité d’administration et de l’amélioration légère des paramètres électrophysiologiques évalués, la STCP peut constituer une solution de rechange thérapeutique chez les patients atteints de la MP.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Benninger, DH, Hallett, M. Non-invasive brain stimulation for Parkinson’s disease: current concepts and outlook 2015. NeuroRehabilitation. 2015;37:1124. DOI: 10.3233/NRE-151237.Google Scholar
Hariz, M. My 25 Stimulating years with DBS in Parkinson’s disease. J Parkinsons Dis. 2017;7:S33S41. DOI: 10.3233/JPD-179007 PMID: 28282816; PMCID: PMC5345632.Google Scholar
Lozano, AM, Lipsman, N, Bergman, H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15:148160. DOI: 10.1038/s41582-018-0128-2.Google Scholar
Strafella, A, Ko, JH, & Monchi, O. Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. NeuroImage. 2006;31:16661672.Google Scholar
Nitsche, MA, Lampe, C, Antal, A, et al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci. 2006;23:1651–7. DOI: 10.1111/j.1460-9568.2006.04676.x.Google Scholar
Fricke, C, Duesmann, C, Woost, TB, et al. Dual-site transcranial magnetic stimulation for the treatment of Parkinson’s disease. Front Neurol. 2019;10:174. DOI: 10.3389/fneur.2019.00174 PMID: 30899243; PMCID: PMC6417396.Google Scholar
Liu, X, Liu, H, Liu, Z, et al. Transcranial direct current stimulation for Parkinson’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2021;13:746797. DOI: 10.3389/fnagi.2021.746797 PMID: 34776931; PMCID: PMC8584149.Google Scholar
Ganguly, J, Murgai, A, Sharma, S, Aur, D, Jog, M. Non-invasive transcranial electrical stimulation in movement disorders. Front Neurosci. 2020;14:522. DOI: 10.3389/fnins.2020.00522 PMID: 32581682; PMCID: PMC7290124.Google Scholar
Barra, Alice, et al. Transcranial pulsed-current stimulation versus transcranial direct current stimulation in patients with disorders of consciousness: a pilot, sham-controlled cross-over double-blind study. Brain sciences. 2022;12:429. DOI: 10.3390/brainsci12040429.Google Scholar
Alon, G, Yungher, DA, Shulman, LM, Rogers, MW. Safety and immediate effect of noninvasive transcranial pulsed current stimulation on gait and balance in Parkinson disease. Neurorehab Neural Re. 2012;26:1089–95. DOI: 10.1177/1545968312448233.Google Scholar
Jensen, BR, Malling, ASB, Schmidt, SI, Meyer, M, Morberg, BM, Wermuth, L. Long-term treatment with transcranial pulsed electromagnetic fields improves movement speed and elevates cerebrospinal erythropoietin in Parkinson’s disease. PLoS One. 2021;16:e0248800. DOI: 10.1371/journal.pone.0248800 PMID: 33909634; PMCID: PMC8081215.Google Scholar
Postuma, RB, Berg, D, Stern, M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:15911601. DOI: 10.1002/mds.26424.Google Scholar
Gouelle, A, Norman, S, Sharot, B, Salabarria, S, Subramony, S, Corti, M. Gauging gait disorders with a method inspired by motor control theories: a pilot study in Friedreich’s ataxia. Sensors. 2021;21:1144.Google Scholar
Delrobaei, M, Memar, S, Pieterman, M, Stratton, TW, McIsaac, K, Jog, M. Towards remote monitoring of Parkinson’s disease tremor using wearable motion capture systems. J Neurol Sci. 2018;384:3845.Google Scholar
Delrobaei, M, Tran, S, Gilmore, G, McIsaac, K, Jog, M. Characterization of multi-joint upper limb movements in a single task to assess bradykinesia. J Neurol Sci. 2016;368:337342.Google Scholar
Ferreira, JJ, Katzenschlager, R, Bloem, BR, et al. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur J Neurol. 2013;20:515.Google Scholar
Connolly, BS, Lang, AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311:1670–83. DOI: 10.1001/jama.2014.3654 PMID: 24756517.Google Scholar
Benninger, DH, Lomarev, M, Lopez, G, et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81:11051111.Google Scholar
Valentino, F, Cosentino, G, Brighina, F, et al. Transcranial direct current stimulation for treatment of freezing of gait: a cross-over study. Mov Disord. 2014;29:10641069.Google Scholar
Fregni, F, Boggio, PS, Santos, MC, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 2006;21(10):1693–702.Google Scholar
Nitsche, MA, Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol (London). 2000;527:633639.Google Scholar
Alon, G, Roys, SR, Gullapalli, RP, Greenspan, JD. Non-invasive electrical stimulation of the brain (ESB) modifies the resting state network connectivity of the primary motor cortex: a proof of concept fMRI study. Brain Res. 2011;1403:3744.Google Scholar
Polania, R, Nitsche, MA, Paulus, W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum brain mapp 2011, 32:12361249.Google Scholar
Airapetov, LN, Zaichik, AM, Trukhmanov, MS, et al. [Changes in the beta-endorphin levels in the brain and cerebrospinal fluid during transcranial electroanalgesia]. FiziolZh SSSR Im I M Sechenova. 1985;71(1):5664.Google Scholar
Gabis, L, Shklar, B, Geva, D. Immediate influence of transcranial electrostimulation on pain and beta-endorphin blood levels: an active placebo-controlled study. Am J Phys Med Rehabil. 2003;82:8185.Google Scholar
Schoellmann, A, Scholten, M, Wasserka, B, et al. Anodal tDCS modulates cortical activity and synchronization in Parkinson’s disease depending on motor processing. Neuroimage Clin. 2019;22:101689. DOI: 10.1016/j.nicl.2019.101689 PMID: 30708350; PMCID: PMC6354441.Google Scholar
Dubbelink, KTO, Stoffers, D, Deijen, JB, et al. Cognitive decline in Parkinson’s disease is associated with slowing of resting-state brain activity: a longitudinal study. Neurobiol Aging. 2013;34:408418.Google Scholar
Guner, D, Tiftikcioglu, BI, Tuncay, N, et al. Contribution of quantitative EEG to the diagnosis of early cognitive impairment in patients with idiopathic Parkinson’s disease. Clin Eeg Neurosci. 2017;48:348354.Google Scholar
Caviness, JN, Hentz, JG, Evidente, VG, et al. Both early and late cognitive dysfunction affects the electroencephalogram in Parkinson’s disease. Parkinsonism and Related Disorders. 2007;13:348354.Google Scholar
Caviness, JN, Hentz, JG, Belden, CM, et al. Longitudinal EEG changes correlate with cognitive measure deterioration in Parkinson’s disease. J Parkinson’s disease. 2015;5:117–24.Google Scholar
Henderson-Smith, A, Fisch, KM, Hua, J, et al. DNA methylation changes associated with Parkinson’s disease progression: outcomes from the first longitudinal genome-wide methylation analysis in blood. Epigenetics. 2019;14:365–82.Google Scholar