Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-05-03T22:37:08.716Z Has data issue: false hasContentIssue false

Task-State Functional MRI of Brain Regions with Reduced Activation in Aphasia Patients: A Meta-analysis

Published online by Cambridge University Press:  03 October 2024

Xin-ming Yu
Affiliation:
Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, SD, China
Wen-ming Lv
Affiliation:
Department of Neurosurgery, First People’s Hospital of Ningyang County, Tai’an, SD, China
Qiao-wen Yu
Affiliation:
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, SD, China Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
Xi-zhi Kang
Affiliation:
Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, SD, China
Xiao-liang Liu*
Affiliation:
Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China Cancer Institute, Qingdao Cancer Institute, Qingdao University, Qingdao, SD, China
Liang-wen Zhang*
Affiliation:
Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China Shandong Institute of Brain Science and Brain-inspired Research, Jinan, SD, China
*
Corresponding authors: Xiao-liang Liu; Email: [email protected]; Liang-wen Zhang; Email: [email protected]
Corresponding authors: Xiao-liang Liu; Email: [email protected]; Liang-wen Zhang; Email: [email protected]

Abstract

Objective:

Language is one of the most celebrated hallmarks of human cognition. With the continuous improvement of medical technology, functional MRI (fMRI) has been used in aphasia. Although many related studies have been carried out, most studies have not extensively focused on brain regions with reduced activation in aphasic patients. The aim of this study was to identify brain regions normally activated in healthy controls but with reduced activation in aphasic patients during fMRI language tasks.

Methods:

We collected all previous task-state fMRI studies of secondary aphasia. The brain regions showed normal activation in healthy controls and reduced activation in aphasic patients were conducted activation likelihood estimation (ALE) meta-analysis to obtain the brain regions with consistently reduced activation in aphasic patients.

Results:

The ALE meta-analysis revealed that the left inferior frontal gyrus, left middle temporal gyrus, left superior temporal gyrus, left fusiform gyrus, left lentiform nucleus and the culmen of the cerebellum were the brain regions with reduced activation in aphasic patients.

Discussion:

These findings from the ALE meta-analysis have significant implications for understanding the language network and the potential for recovery of language functions in individuals with aphasia.

Résumé

RÉSUMÉ

IRMf en cours de tâche des régions cérébrales à activation réduite chez des patients aphasiques: une méta-analyse

Objectif :

Le langage est l’une des caractéristiques les plus renommées de la cognition humaine. Avec l’amélioration continue de la technologie médicale, l’IRM fonctionnelle (IRMf) est désormais utilisée dans le cas de l’aphasie. Bien que de nombreuses études connexes aient été réalisées, la plupart d’entre elles n’ont pas porté sur les régions du cerveau de patients aphasiques dont l’activation est réduite. L’objectif de cette étude était donc d’identifier, lors de tâches linguistiques analysées par IRMf, les régions cérébrales normalement activées chez des témoins sains et celles dont l’activation était réduite chez des patients aphasiques.

Méthodes :

Nous avons rassemblé toutes les études antérieures d’IRMf de l’aphasie secondaire. Les régions cérébrales présentant une activation normale chez des témoins sains et une activation réduite chez des patients aphasiques ont fait l’objet d’une méta-analyse de l’estimation de la vraisemblance de l’activation (EVA) afin de déterminer les régions cérébrales présentant une activation réduite constante chez des patients aphasiques.

Résultats :

La méta-analyse de l’EVA a révélé que le gyrus frontal inférieur gauche, le gyrus temporal moyen gauche, le gyrus temporal supérieur gauche, le gyrus fusiforme gauche, le noyau lenticulaire gauche et le culmen du cervelet étaient les régions cérébrales présentant une activation réduite chez les patients aphasiques.

Discussion :

En somme, ces résultats de la méta-analyse de l’EVA ont des implications significatives pour la compréhension du réseau du langage et la récupération potentielle des fonctions langagières chez les patients aphasiques.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Jiménez de la Peña, MM, Gómez Vicente, L, García Cobos, R, Martínez de Vega, V. Neuroradiologic correlation with aphasias. Cortico-subcortical map of language. Radiología. 2018;60:250–61. DOI: 10.1016/j.rx.2017.12.008.CrossRefGoogle ScholarPubMed
Mesulam, MM, Thompson, CK, Weintraub, S, Rogalski, EJ. The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain. 2015;138:2423–37. DOI: 10.1093/brain/awv154.CrossRefGoogle ScholarPubMed
Rutten, GJ. Broca-wernicke theories: a historical perspective. Handb Clin Neurol. 2022;185:2534. DOI: 10.1016/B978-0-12-823384-9.00001-3.CrossRefGoogle ScholarPubMed
Hickok, G. The dual stream model of speech and language processing. Handb Clin Neurol. 2022;185:5769. DOI: 10.1016/B978-0-12-823384-9.00003-7.CrossRefGoogle ScholarPubMed
Crosson, B, McGregor, K, Gopinath, KS, et al. Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol Rev. 2007;17:157–77. DOI: 10.1007/s11065-007-9024-z.CrossRefGoogle ScholarPubMed
Crinion, J, Holland, AL, Copland, DA, Thompson, CK, Hillis, AE. Neuroimaging in aphasia treatment research: quantifying brain lesions after stroke. NeuroImage. 2013;73:208–14. DOI: 10.1016/j.neuroimage.2012.07.044.CrossRefGoogle ScholarPubMed
Lorca-Puls, DL, Gajardo-Vidal, A, Team, P, et al. Brain regions that support accurate speech production after damage to broca’s area. Brain Commun. 2021;3:fcab230. DOI: 10.1093/braincomms/fcab230.CrossRefGoogle ScholarPubMed
Qiu, WH, Wu, HX, Yang, QL, et al. Evidence of cortical reorganization of language networks after stroke with subacute broca’s aphasia: a blood oxygenation level dependent-functional magnetic resonance imaging study. Neural Regen Res. 2017;12:109–17. DOI: 10.4103/1673-5374.198996.CrossRefGoogle ScholarPubMed
Szaflarski, JP, Eaton, K, Ball, AL, et al. Poststroke aphasia recovery assessed with functional magnetic resonance imaging and a picture identification task. J Stroke Cerebrovasc Dis. 2011;20:336–45. DOI: 10.1016/j.jstrokecerebrovasdis.2010.02.003.CrossRefGoogle Scholar
Crinion, J, Price, CJ. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke. Brain. 2005;128:2858–71. DOI: 10.1093/brain/awh659.CrossRefGoogle ScholarPubMed
Skipper-Kallal, LM, Lacey, EH, Xing, S, Turkeltaub, PE. Right hemisphere remapping of naming functions depends on lesion size and location in poststroke aphasia. Neural Plast. 2017;2017:8740353–17. DOI: 10.1155/2017/8740353.CrossRefGoogle ScholarPubMed
Fridriksson, J, Hubbard, HI, Hudspeth, SG, et al. Speech entrainment enables patients with Broca’s aphasia to produce fluent speech. Brain. 2012;135:3815–29. DOI: 10.1093/brain/aws301.CrossRefGoogle ScholarPubMed
Saur, D, Lange, R, Baumgaertner, A, et al. Dynamics of language reorganization after stroke. Brain. 2006;129:1371–84. DOI: 10.1093/brain/awl090.CrossRefGoogle ScholarPubMed
Price, CJ, Warburton, EA, Moore, CJ, Frackowiak, RS, Friston, KJ. Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions. J Cogn Neurosci. 2001;13:419–29.CrossRefGoogle ScholarPubMed
Winhuisen, L, Thiel, A, Schumacher, B, et al. The right inferior frontal gyrus and poststroke aphasia. Stroke. 2007;38:1286–92. DOI: 10.1161/01.STR.CrossRefGoogle ScholarPubMed
Rolheiser, T, Stamatakis, EA, Tyler, LK. Dynamic processing in the human language system: synergy between the arcuate fascicle and extreme capsule. J Neurosci. 2011;31:16949–57. DOI: 10.1523/jneurosci.2725-11.2011.CrossRefGoogle ScholarPubMed
Frey, S, Campbell, JS, Pike, GB, Petrides, M. Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci. 2008;28:11435–44. DOI: 10.1523/jneurosci.2388-08.2008.CrossRefGoogle ScholarPubMed
Kuperberg, GR, Sitnikova, T, Lakshmanan, BM. Neuroanatomical distinctions within the semantic system during sentence comprehension: evidence from functional magnetic resonance imaging. NeuroImage. 2008;40:367–88. DOI: 10.1016/j.neuroimage.2007.10.009.CrossRefGoogle ScholarPubMed
Davey, J, Cornelissen, PL, Thompson, HE, et al. Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. J Neurosci. 2015;35:15230–9. DOI: 10.1523/jneurosci.4705-14.2015.CrossRefGoogle ScholarPubMed
Whitney, C, Kirk, M, O’Sullivan, J, Lambon Ralph, MA, Jefferies, E. The neural organization of semantic control: TMS evidence for a distributed network in left inferior frontal and posterior middle temporal gyrus. Cereb Cortex. 2010;21:1066–75. DOI: 10.1093/cercor/bhq180.CrossRefGoogle ScholarPubMed
Schwarz, J, Lizarazu, M, Lallier, M, Klimovich-Gray, A. Phonological deficits in dyslexia impede lexical processing of spoken words: linking behavioural and MEG data. Cortex. 2024;171:204–22. DOI: 10.1016/j.cortex.2023.10.003.CrossRefGoogle ScholarPubMed
Simos, PG, Fletcher, JM, Bergman, E, et al. Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology. 2002;58:1203–13. DOI: 10.1212/wnl.58.8.1203.CrossRefGoogle ScholarPubMed
Binder, JR, Frost, JA, Hammeke, TA, Cox, RW, Rao, SM, Prieto, T. Human brain language areas identified by functional magnetic resonance imaging. J Neurosci. 1997;17:353–62. DOI: 10.1523/JNEUROSCI.17-01-00353.1997.CrossRefGoogle ScholarPubMed
Sharp, DJ, Scott, SK, Wise, RJS. Retrieving meaning after temporal lobe infarction: the role of the basal language area. Ann Neurol. 2004;56:836–46. DOI: 10.1002/ana.20294.CrossRefGoogle ScholarPubMed
Galton, CJ, Patterson, K, Graham, K, et al. Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia. Neurology. 2001;57:216–25. DOI: 10.1212/wnl.57.2.216.CrossRefGoogle ScholarPubMed
Schmolck, H, Kensinger, EA, Corkin, S, Squire, LR. Semantic knowledge in patient H.M. and other patients with bilateral medial and lateral temporal lobe lesions. Hippocampus. 2002;12:520–33. DOI: 10.1002/hipo.10039.CrossRefGoogle ScholarPubMed
Yuan, Q, Li, H, Du, B, et al. The cerebellum and cognition: further evidence for its role in language control. Cereb Cortex. 2023;33:3549. DOI: 10.1093/cercor/bhac051.CrossRefGoogle Scholar
Sihvonen, AJ, Virtala, P, Thiede, A, Laasonen, M, Kujala, T. Structural white matter connectometry of reading and dyslexia. NeuroImage. 2021;241:118411. DOI: 10.1016/j.neuroimage.2021.118411.CrossRefGoogle ScholarPubMed
Peres, JF, Moreira-Almeida, A, Caixeta, L, Leao, F, Newberg, A. Neuroimaging during trance state: a contribution to the study of dissociation. PLoS ONE. 2012;7:e49360. DOI: 10.1371/journal.pone.0049360.CrossRefGoogle Scholar
Shekari, E, Nozari, N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci. 2023;17:1139292. DOI: 10.3389/fnhum.2023.1139292.CrossRefGoogle ScholarPubMed
Yu, Q, Jiang, Y, Sun, Y, et al. Effects of damage to the integrity of the left dual-stream frontotemporal network mediated by the arcuate fasciculus and uncinate fasciculus on acute/Subacute post-stroke aphasia. Brain Sci. 2023;13:1324. DOI: 10.3390/brainsci13091324.CrossRefGoogle Scholar
McKinnon, ET, Fridriksson, J, Basilakos, A, et al. Types of naming errors in chronic post-stroke aphasia are dissociated by dual stream axonal loss. Sci Rep. 2018;8:14352. DOI: 10.1038/s41598-018-32457-4.CrossRefGoogle ScholarPubMed
Zhao, J, Thiebaut de Schotten, M, Altarelli, I, Dubois, J, Ramus, F. Altered hemispheric lateralization of white matter pathways in developmental dyslexia: evidence from spherical deconvolution tractography. Cortex. 2016;76:5162. DOI: 10.1016/j.cortex.2015.12.004.CrossRefGoogle ScholarPubMed
Faulkner, JW, Wilshire, CE. Mapping eloquent cortex: a voxel-based lesion-symptom mapping study of core speech production capacities in brain tumour patients. Brain Lang. 2020;200:104710. DOI: 10.1016/j.bandl.2019.104710.CrossRefGoogle ScholarPubMed
Bouchard, LO, Wilson, MA, Laforce, R Jr, Duchesne, S. White matter damage in the semantic variant of primary progressive aphasia. Can J Neurol Sci. 2019;46:373–82. DOI: 10.1017/cjn.2019.37.CrossRefGoogle ScholarPubMed
Catani, M, Mesulam, MM, Jakobsen, E, et al. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain. 2013;136:2619–28. DOI: 10.1093/brain/awt163.CrossRefGoogle ScholarPubMed
Shah-Basak, PP, Sivaratnam, G, Teti, S, et al. High definition transcranial direct current stimulation modulates abnormal neurophysiological activity in post-stroke aphasia. Sci Rep. 2020;10. DOI: 10.1038/s41598-020-76533-0.CrossRefGoogle ScholarPubMed
de Jongh, A, de Munck, JC, Baayen, JC, Jonkman, EJ, Heethaar, RM, van Dijk, BW. The localization of spontaneous brain activity: first results in patients with cerebral tumors. Clin Neurophysiol. 2001;112:378–85. DOI: 10.1016/s1388-2457(00)00526-5.CrossRefGoogle ScholarPubMed
Griffis, JC, Nenert, R, Allendorfer, JB, Szaflarski, JP. Interhemispheric plasticity following intermittent theta burst stimulation in chronic poststroke aphasia. Neural Plast. 2016;2016:116. DOI: 10.1155/2016/4796906.CrossRefGoogle ScholarPubMed
Fridriksson, J, Rorden, C, Elm, J, Sen, S, George, MS, Bonilha, L. Transcranial direct current stimulation vs sham stimulation to treat aphasia after stroke. JAMA Neurol. 2018;75:1470. DOI: 10.1001/jamaneurol.2018.2287.CrossRefGoogle ScholarPubMed