Hostname: page-component-6bf8c574d5-r8w4l Total loading time: 0 Render date: 2025-03-12T05:47:07.383Z Has data issue: false hasContentIssue false

Choroid Plexus Enlargement in Patients with Chronic Migraine: Implications for Glymphatic System Dysfunction

Published online by Cambridge University Press:  10 February 2025

Ho-Joon Lee
Affiliation:
Departments of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
Dong Ah Lee
Affiliation:
Departments of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
Kang Min Park*
Affiliation:
Departments of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
*
Corresponding author: Kang Min Park; Email: [email protected]

Abstract

Objectives:

The choroid plexus produces cerebrospinal fluid, which is crucial for glymphatic system function. Evidence suggests that changes in the volume of the choroid plexus may be associated with glymphatic system function. Therefore, this study aimed to investigate alterations in choroid plexus volume in patients with migraines compared with healthy controls.

Methods:

We enrolled 59 patients with migraines (39 and 20 with episodic and chronic migraines, respectively) and 61 healthy controls. All participants underwent brain magnetic resonance imaging, including three-dimensional T1-weighted imaging. We analyzed and compared choroid plexus volumes between patients with episodic migraines, those with chronic migraines and healthy controls. Additionally, we evaluated the association between choroid plexus volume and the clinical characteristics of patients with migraine.

Results:

The choroid plexus volume in patients with chronic migraines was higher than that in healthy controls (2.018 vs. 1.698%, p = 0.002) and patients with episodic migraines (2.018 vs. 1.680%, p = 0.010). However, no differences were observed in choroid plexus volumes between patients with episodic migraine and healthy controls. Choroid plexus volume was positively correlated with age in patients with migraines (r = 0.301, p = 0.020) and in healthy controls (r = 0.382, p = 0.002).

Conclusion:

We demonstrated significant enlargement of the choroid plexus in patients with chronic migraine compared with healthy controls and those with episodic migraine. This finding suggests that chronic migraine may be associated with glymphatic system dysfunction.

Résumé

Résumé

L’influence de l’hypertrophie des plexus choroïdes sur le dysfonctionnement du systéme glymphatique chez les patients atteints de migraine chronique.

Objectif :

Les plexus choroïdes produisent le liquide céphalorachidien, formations qui jouent un rôle très important dans le fonctionnement du système glymphatique. D′après des données scientifiques, les changements de volume des plexus choroïdes pourraient être associés au fonctionnement du système glymphatique. Aussi l′étude visait-elle à examiner et à comparer les changements de volume des plexus choroïdes chez les personnes atteintes de migraine et chez des témoins en bonne santé.

Méthode :

Au total, 59 patients atteints de migraine (39 et 20 atteints de migraine épisodique et de migraine chronique, respectivement) et 61 témoins en bonne santé ont participé à l′étude. Tous les sujets ont subi des examens d′imagerie du cerveau par résonance magnétique, dont l′un par imagerie en trois dimensions et pondérée en T1. Ensuite, il y a eu analyse du volume des plexus choroïdes, puis comparaison des données entre les patients atteints de migraine épisodique, ceux atteints de migraine chronique et les témoins en bonne santé. En outre, l′équipe a évalué l′association du volume des plexus choroïdes avec les caractéristiques cliniques des migraines.

Résultats :

Le volume des plexus choroïdes chez les patients atteints de migraine chronique était plus gros que celui observé chez les témoins en bonne santé (2,018 contre [c.] 1,698 %; p = 0,002) et chez les patients atteints de migraine épisodique (2,018 c. 1,680 %; p = 0,010). Par contre, aucune différence n′a été relevée quant au volume des plexus choroïdes entre les patients atteints de migraine épisodique et les témoins en bonne santé. Enfin, une corrélation positive a été établie entre le volume des plexus choroïdes et l′âge chez les patients atteints de migraine (r = 0,301; p = 0,020) et chez les témoins en bonne santé (r = 0,382; p = 0,002).

Conclusion :

Les résultats de l′étude ont permis de démontrer l′existence d′une augmentation importante du volume des plexus choroïdes chez les patients atteints de migraine chronique comparativement aux témoins en bonne santé et aux patients atteints de migraine épisodique. Cette constatation donne à penser que la migraine chronique pourrait être associée au dysfonctionnement du système glymphatique.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders. 3rd edition. Cephalalgia; 2018;38(1):1211.Google Scholar
Dodick, DW, Reed, ML, Lee, L, et al. Impact of headache frequency and preventive treatment failure on quality of life, disability, and direct and indirect costs among individuals with episodic migraine in the United States. Headache. 2024;64(4):361373.Google Scholar
Puledda, F, Silva, EM, Suwanlaong, K, Goadsby, PJ. Migraine: from pathophysiology to treatment. J Neurol. 2023;270(7):36543666.Google Scholar
Gawde, P, Shah, H, Patel, H, et al, Revisiting Migraine: The Evolving Pathophysiology and the Expanding Management Armamentarium.Cureus. 2023;15(2):e34553.Google Scholar
Garate, G, Pascual, J, Pascual-Mato, M, Madera, J, Martin, MM, Gonzalez-Quintanilla, V. Untangling the mess of CGRP levels as a migraine biomarker: an in-depth literature review and analysis of our experimental experience. J Headache Pain. 2024;25(1):69.Google Scholar
Lee, DA, Kim, HC, Lee, HJ, Park, KM. Predicting sumatriptan responsiveness based on structural connectivity in patients newly diagnosed with migraine. J Clin Neurol. 2023;19(6):573580.Google Scholar
Benveniste, H, Liu, X, Koundal, S, Sanggaard, S, Lee, H, Wardlaw, J. The glymphatic system and waste clearance with brain aging. A Review. Gerontology. 2019;65(2):106119.Google Scholar
Kim, J, Lee, DA, Lee, HJ, et al. Glymphatic system dysfunction in patients with cluster headache. Brain Behav. 2022;12(6):e2631.Google Scholar
Kim, ST, Kim, SE, Lee, DA, Lee, HJ, Park, KM. Anti-seizure medication response and the glymphatic system in patients with focal epilepsy. Eur J Neurol. 2024;31(1):e16097.Google Scholar
Lee, HJ, Lee, DA, Shin, KJ, Park, KM. Glymphatic system dysfunction in obstructive sleep apnea evidenced by DTI-ALPS. Sleep Med. 2022;89:176181.Google Scholar
Lee, HJ, Lee, DA, Shin, KJ, Park, KM. Glymphatic system dysfunction in patients with juvenile myoclonic epilepsy. J Neurol. 2022;269(4):21332139.Google Scholar
Park, KM, Kim, KT, Lee, DA, Motamedi, GK, Cho, YW. Glymphatic system dysfunction in restless legs syndrome: evidenced by diffusion tensor imaging along the perivascular space. Sleep. 2023;46(11):zsad239.Google Scholar
Buccellato, FR, D’Anca, M, Serpente, M, Arighi, A, Galimberti, D. The role of glymphatic system in alzheimer’s and parkinson’s disease pathogenesis. Biomedicines. 2022;10(9):2261.Google Scholar
Taoka, T, Naganawa, S. Glymphatic imaging using MRI. J Magn Reson Imaging. 2020;51(1):1124.Google Scholar
Municio, C, Carrero, L, Antequera, D, Carro, E. Choroid plexus aquaporins in CSF homeostasis and the glymphatic system: their relevance for alzheimer’s disease. Int J Mol Sci. 2023;24(1):878.Google Scholar
Xu, Y, Wang, M, Li, X, et al. Glymphatic dysfunction mediates the influence of choroid plexus enlargement on information processing speed in patients with white matter hyperintensities. Cereb Cortex. 2024;34(6):bhae265.Google Scholar
Huang, W, Zhang, Y, Zhou, Y, et al. Glymphatic dysfunction in migraine mice model. Neuroscience. 2023;528:6474.Google Scholar
Lee, DA, Lee, HJ, Park, KM. Normal glymphatic system function in patients with migraine: a pilot study. Headache. 2022;62(6):718725.Google Scholar
Husoy, AK, Indergaard, MK, Honningsvag, LM, et al. Perivascular spaces and headache: a population-based imaging study (HUNT-MRI). Cephalalgia. 2016;36(3):232239.Google Scholar
Tadayon, E, Moret, B, Sprugnoli, G, et al. Improving choroid plexus segmentation in the healthy and diseased brain: relevance for tau-PET imaging in Dementia. J Alzheimers Dis. 2020;74(4):10571068.Google Scholar
Puonti, O, Iglesias, JE, Van Leemput, K. Fast and sequence-adaptive whole-brain segmentation using parametric bayesian modeling. Neuroimage. 2016;143:235249.Google Scholar
Billot, B, Greve, DN, Puonti, O, et al. SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med Image Anal. 2023;86:102789.Google Scholar
Li, Y, Zhou, Y, Zhong, W, et al. Choroid plexus enlargement exacerbates white matter hyperintensity growth through glymphatic impairment. Ann Neurol. 2023;94(1):182195.Google Scholar
Paez-Nova, M, Andaur, K, Campos, G, et al. Bilateral hyperplasia of choroid plexus with severe CSF production: a case report and review of the glymphatic system. Childs Nerv Syst. 2021;37(11):35213529.Google Scholar
Castillo, PR, Patel, V, Mera, RM, Rumbea, DA, Del Brutto, OH. Choroid plexus calcifications are not associated with putative markers of glymphatic dysfunction: a population study in middle-aged and older adults. Neuroradiol J. 2024;37(3):342350.Google Scholar
Johnson, SE, McKnight, CD, Jordan, LC, et al. Choroid plexus perfusion in sickle cell disease and moyamoya vasculopathy: implications for glymphatic flow. J Cereb Blood Flow Metab. 2021;41(10):26992711.Google Scholar
Xie, Y, Zhu, H, Yao, Y, et al. Enlarged choroid plexus in relapsing-remitting multiple sclerosis may lead to brain structural changes through the glymphatic impairment. Mult Scler Relat Disord. 2024;85:105550.Google Scholar
Jeong, SH, Jeong, HJ, Sunwoo, MK, et al. Association between choroid plexus volume and cognition in parkinson disease. Eur J Neurol. 2023;30(10):31143123.Google Scholar
Schain, AJ, Melo-Carrillo, A, Strassman, AM, Burstein, R. Cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache. J Neurosci. 2017;37(11):29042915.Google Scholar
Yuan, Z, Li, W, Tang, H, et al. Enlarged perivascular spaces in patients with migraine: a case-control study based on 3T MRI. Ann Clin Transl Neurol. 2023;10(7):11601169.Google Scholar
Vittorini, MG, Sahin, A, Trojan, A, et al. The glymphatic system in migraine and other headaches. J Headache Pain. 2024;25(1):34.Google Scholar
Thuraiaiyah, J, Erritzoe-Jervild, M, Al-Khazali, HM, Schytz, HW, Younis, S. The role of cytokines in migraine: a systematic review. Cephalalgia. 2022;42(14):15651588.Google Scholar
Iyengar, S, Johnson, KW, Ossipov, MH, Aurora, SK. CGRP and the trigeminal system in migraine. Headache. 2019;59(5):659681.Google Scholar
Yi, T, Gao, P, Zhu, T, Yin, H, Jin, S. Glymphatic system dysfunction: a novel mediator of sleep disorders and headaches. Front Neurol. 2022;13:885020.Google Scholar
Katsarava, Z, Buse, DC, Manack, AN, Lipton, RB. Defining the differences between episodic migraine and chronic migraine. Curr Pain Headache Rep. 2012;16(1):8692.Google Scholar
Lipton, RB, Chu, MK. Conceptualizing the relationship between chronic migraine and episodic migraine. Expert Rev Neurother. 2009;9(10):14511454.Google Scholar
Alisch, JSR, Kiely, M, Triebswetter, C, et al. Characterization of age-related differences in the human choroid plexus volume, microstructural integrity, and blood perfusion using multiparameter magnetic resonance imaging. Front Aging Neurosci. 2021;13:734992.Google Scholar
Muller, J, Sinnecker, T, Wendebourg, MJ, et al. Choroid plexus volume in multiple sclerosis vs neuromyelitis optica spectrum disorder: a retrospective, cross-sectional analysis. Neurol Neuroimmunol Neuroinflamm. 2022;9(3):e1147.Google Scholar
Rau, A, Gonzalez-Escamilla, G, Schroeter, N, et al. Inflammation-triggered enlargement of choroid plexus in subacute COVID-19 patients with neurological symptoms. Ann Neurol. 2024;96:715725.Google Scholar
Hashimoto, H, Takemoto, O, Nishimoto, K, Moriguchi, G, Nakamura, M, Chiba, Y. Normal growth curve of choroid plexus in children: implications for assessing hydrocephalus due to choroid plexus hyperplasia. J Neurosurg Pediatr. 2023;32(6):627637.Google Scholar
Bragg, DC, Hudson, LC, Liang, YH, Tompkins, MB, Fernandes, A, Meeker, RB. Choroid plexus macrophages proliferate and release toxic factors in response to feline immunodeficiency virus. J Neurovirol. 2002;8(3):225239.Google Scholar
Wang, X, Wang, X, Yan, Z, et al. Enhanced choroid plexus segmentation with 3D UX-net and its association with disease progression in multiple sclerosis. Mult Scler Relat Disord. 2024;88:105750.Google Scholar
Li, J, Hu, Y, Xu, Y, et al. Associations between the choroid plexus and tau in alzheimer’s disease using an active learning segmentation pipeline. Fluids Barriers CNS. 2024;21(1):56.Google Scholar
Visani, V, Veronese, M, Pizzini, FB, et al. ASCHOPLEX: a generalizable approach for the automatic segmentation of choroid plexus. Comput Biol Med. 2024;182:109164.Google Scholar