Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-28T23:07:16.221Z Has data issue: false hasContentIssue false

Resolving dualities and applications to homological invariants

Published online by Cambridge University Press:  22 October 2024

Hongxing Chen
Affiliation:
School of Mathematical Sciences & Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, P. R. China e-mail: [email protected]
Jiangsheng Hu*
Affiliation:
School of Mathematics, Hangzhou Normal University, Hangzhou 311121, P. R. China

Abstract

Dualities of resolving subcategories of module categories over rings are introduced and characterized as dualities with respect to Wakamatsu tilting bimodules. By restriction of the dualities to smaller resolving subcategories, sufficient and necessary conditions for these bimodules to be tilting are provided. This leads to the Gorenstein version of both the Miyashita’s duality and Huisgen-Zimmermann’s correspondence. An application of resolving dualities is to show that higher algebraic K-groups and semi-derived Ringel–Hall algebras of finitely generated Gorenstein-projective modules over Artin algebras are preserved under tilting.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This research was supported by the National Natural Science Foundation of China (Grant Nos. 12122112, 12031014, and 12171206). Also, the corresponding author J. S. Hu thanks Jiangsu 333 Project for partial support.

References

Anderson, F. W. and Fuller, K. R., Rings and categories of modules, Springer, New York, 1992.CrossRefGoogle Scholar
Angeleri-Hügel, L., Happel, D., and Krause, H. (eds.), Handbook of tilting theory, London Mathematical Society Lecture Note Series, 332, Cambridge University Press, Cambridge, 2007.CrossRefGoogle Scholar
Auslander, M. and Bridger, M., Stable module category . Mem. Amer. Math. Soc. 94(1969), 1146.Google Scholar
Auslander, M. and Reiten, I., Applications of contravariantly finite subcategories . Adv. Math. 86(1991), 111152.CrossRefGoogle Scholar
Auslander, M., Reiten, I., and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
Avramov, L. L. and Martsinkovsky, A., Absolute, relative and Tate cohomology of modules of finite Gorenstein dimension . Proc. Lond. Math. Soc. (3) 85(2002), 393440.CrossRefGoogle Scholar
Bass, H., Finitistic dimension and a homological generalization of semiprimary rings . Trans. Amer. Math. Soc. 95(1960), 466488.CrossRefGoogle Scholar
Beligiannis, A., Cohen–Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras . J. Algebra 288(2005), 137211.CrossRefGoogle Scholar
Beligiannis, A. and Reiten, I., Homological and homotopical aspects of torsion theories . Mem. Amer. Math. Soc. 188(2007), 1207.Google Scholar
Brenner, S. and Butler, M. C. R., Generalizations of the Bernstein–Gelfand–Ponomarev reflection functors . In: A. Dold and B.Eckmann (ed.), Representation theory II, Lecture Notes in Mathematics, 832, Springer, Berlin, 1980, pp. 103169.CrossRefGoogle Scholar
Bridgeland, T., Quantum groups via Hall algebras of complexes . Ann. of Math. 177(2013) 739759.CrossRefGoogle Scholar
Broué, M., Equivalences of blocks of group algebras . In: V. Dlab and L.L. Scott (ed.), Finite dimensional algebras and related topics, Dordrecht, Kluwer, 1994, pp. 126.Google Scholar
Chen, H. X. and Xi, C. C., Recollements induced from tilting modules over tame hereditary algebras . Forum Math. 27(2015), 18491901.CrossRefGoogle Scholar
Chen, H. X. and Xi, C. C., Symmetric subcategories, tilting modules, and derived recollements . Rev. Mat. Iberoam. 39(2023), 17711812.CrossRefGoogle Scholar
Christensen, L. W., Frankild, A., and Holm, H., On Gorenstein projective, injective and flat dimensions–a functorial description with applications . J. Algebra 302(2006), 231279.CrossRefGoogle Scholar
Daniel, D. and Shipley, B., $K$ -theory and derived equivalences . Duke Math. J. 124(2004), no. 3, 587617.Google Scholar
Enochs, E. E. and Jenda, O. M. G., Gorenstein injective and projective modules . Math. Z. 220(1995), 611633.CrossRefGoogle Scholar
Enochs, E. E. and Jenda, O. M. G., Relative homological algebra, Walter de Gruyter, Berlin and New York, 2000.CrossRefGoogle Scholar
Enomoto, H., Maximal self-orthogonal modules and a new generalization of tilting modules. Preprint, 2023. arXiv:2301.13498.Google Scholar
Gorsky, M., Semi-derived and derived Hall algebras for stable categories . Int. Math. Res. Not. 2018(2018), 138159.CrossRefGoogle Scholar
Green, E. L., Reiten, I., and Solberg, Ø., Dualities on generalized Koszul algebras . Mem. Amer. Math. Soc. 159(2002), 167.Google Scholar
Happel, D., Triangulated categories in representation theory of finite dimensional algebras, London Mathematical Society Lecture Note Series, 119, Cambridge University Press, Cambridge, 1988.CrossRefGoogle Scholar
Happel, D. and Ringel, C. M., Tilted algebras . Trans. Amer. Math. Soc. 274(1982), 399443.CrossRefGoogle Scholar
Huisgen-Zimmermann, B., Dualities from iterated tilting . Isr. J. Math. 243(2021), 315353.CrossRefGoogle Scholar
Huisgen-Zimmermann, B. and Saorín, M., Dualities for modules of finite projective dimension, Contemporary Mathematics, 761, American Mathematical Society, Providence, RI, 2021.CrossRefGoogle Scholar
Keller, B., Derived categories and their uses. In: Hazewinkel, M. (ed.), Handbook of algebra, Amsterdam, vol. 1, 1996, pp. 671701.CrossRefGoogle Scholar
Lam, T. Y., Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, New York, 1999.CrossRefGoogle Scholar
Lu, M. and Peng, L. G., Semi-derived Ringel–Hall algebras and Drinfeld double . Adv. Math. 383(2021), 107668.CrossRefGoogle Scholar
Lu, M. and Wang, W. Q., Hall algebras and quantum symmetric pairs I: Foundations . Proc. Lond. Math. Soc. 124(2022), 182.CrossRefGoogle Scholar
Ma, B. and Sauter, J., On faithfully balanced modules, F-cotilting and F-Auslander algebras . J. Algebra 556(2020), 11151164.CrossRefGoogle Scholar
Mantese, F. and Reiten, I., Wakamatsu tilting modules . J. Algebra 278(2004), 532552.CrossRefGoogle Scholar
McConnell, J. C. and Robson, J. C., Noncommutative Noetherian rings, John Wiley and Sons, Chichester, 1987.Google Scholar
Miyashita, Y., Tilting modules of finite projective dimension . Math. Z. 193(1986), 113146.CrossRefGoogle Scholar
Morita, K., Duality for modules and its applications to the theory of rings with minimum condition . Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6(1958), 85142.Google Scholar
Pan, S. Y. and Xi, C. C., Finiteness of finitistic dimension is invariant under derived equivalences . J. Algebra 322(2009), 2124.CrossRefGoogle Scholar
Positselski, L., Contraherent cosheaves. Preprint, 2024, arXiv:1209.2995v12.Google Scholar
Quillen, D., Higher algebraic $K$ -theory, I. In: A Dold and B. Eckmann (ed.), Algebraic K-theory, I: Higher K-theories (Seattle, 1972), Lecture Notes in Mathematics, 341, Springer, Berlin, 1973, pp. 85147.Google Scholar
Rickard, J., Morita theory for derived categories . J. Lond. Math. Soc. 39(1989), 436456.CrossRefGoogle Scholar
Ringel, C. M., The Gorenstein-projective modules for the Nakayama algebras I . J. Algebra 385(2013), 241261.CrossRefGoogle Scholar
Ringel, C. M. and Zhang, P., Gorenstein-projective and semi-Gorenstein-projective modules . Algebra Number Theory 14(2020), 136.CrossRefGoogle Scholar
Wakamatsu, T., On modules with trivial self-extensions . J. Algebra 114(1988), 106114.CrossRefGoogle Scholar
Wakamatsu, T., Tilting modules and Auslander’s Gorenstein property . J. Algebra 275(2004), 339.CrossRefGoogle Scholar
Xi, C. C., On the finitistic dimension conjecture, III: Related to the pair $eAe$ $A$ . J. Algebra 319(2008), 36663688.CrossRefGoogle Scholar