Published online by Cambridge University Press: 31 August 2017
We show that if $M\,\bar{\rtimes }_{\unicode[STIX]{x1D6FC}}\,\unicode[STIX]{x1D6E4}$ has the weak Haagerup property, then both
$M$ and
$\unicode[STIX]{x1D6E4}$ have the weak Haagerup property, and if
$\unicode[STIX]{x1D6E4}$ is an amenable group, then the weak Haagerup property of
$M$ implies that of
$M\,\bar{\rtimes }_{\unicode[STIX]{x1D6FC}}\,\unicode[STIX]{x1D6E4}$. We also give a condition under which the weak Haagerup property for
$M$ and
$\unicode[STIX]{x1D6E4}$ implies that of
$M\,\bar{\rtimes }_{\unicode[STIX]{x1D6FC}}\,\unicode[STIX]{x1D6E4}$.