Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-05-02T09:22:07.762Z Has data issue: false hasContentIssue false

ON THE DIOPHANTINE EQUATION $(P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m$

Published online by Cambridge University Press:  06 March 2024

ELCHIN HASANALIZADE*
Affiliation:
School of IT and Engineering, ADA University, Ahmadbey Aghaoghlu str. 61, Baku AZ1008, Azerbaijan

Abstract

A generalisation of the well-known Pell sequence $\{P_n\}_{n\ge 0}$ given by $P_0=0$, $P_1=1$ and $P_{n+2}=2P_{n+1}+P_n$ for all $n\ge 0$ is the k-generalised Pell sequence $\{P^{(k)}_n\}_{n\ge -(k-2)}$ whose first k terms are $0,\ldots ,0,1$ and each term afterwards is given by the linear recurrence $P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\cdots +P^{(k)}_{n-k}$. For the Pell sequence, the formula $P^2_n+P^2_{n+1}=P_{2n+1}$ holds for all $n\ge 0$. In this paper, we prove that the Diophantine equation

$$ \begin{align*} (P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m \end{align*} $$

has no solution in positive integers $k, m$ and n with $n>1$ and $k\ge 3$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This research was supported by ADA University Faculty Research and Development Funds.

References

Bravo, J. J., Herrera, J. L. and Luca, F., ‘On a generalization of the Pell sequence’, Math. Bohem. 146(2) (2021), 199213.10.21136/MB.2020.0098-19CrossRefGoogle Scholar
Ddamulira, M. and Luca, F., ‘On the exponential Diophantine equation related to powers of two consecutive terms of Lucas sequences’, Ramanujan J. 56(2) (2021), 651684.10.1007/s11139-020-00278-7CrossRefGoogle ScholarPubMed
Faye, B., Gómez, C. A., Rihane, S. E., Luca, F. and Togbé, A., ‘Complete solution of the exponential Diophantine equation ${P}_n^x+{P}_{n+1}^x={P}_m^y$ ’, Math. Commun. 27(2) (2022), 163185.Google Scholar
Kılıç, E. and Taşci, D., ‘The generalized Binet formula, representation and sums of the generalized order- $k$ Pell numbers’, Taiwanese J. Math. 10(6) (2006), 16611670.10.11650/twjm/1500404581CrossRefGoogle Scholar
Luca, F., Tchammou, E. and Togbé, A., ‘On the exponential Diophantine equation ${P}_n^x+{P}_{n+1}^x+\dots +{P}_{n+k-1}^x={P}_m$ ’, Math. Slovaca 70(6) (2020), 13331348.10.1515/ms-2017-0435CrossRefGoogle Scholar
Rihane, S. E., Luca, F., Faye, B. and Togbe, A., ‘On the exponential Diophantine equation ${P}_n^x+{P}_{n+1}^x={P}_m$ ’, Turkish J. Math. 43(3) (2019), 16401649.10.3906/mat-1810-130CrossRefGoogle Scholar
Şiar, Z., ‘On the exponential Diophantine equation ${F}_n^x\pm {F}_m^x=a$ with $a\in \left\{{F}_r,{L}_r\right\}$ ’, Int. J. Number Theory 19(1) (2023), 4157.10.1142/S1793042123500021CrossRefGoogle Scholar