No CrossRef data available.
Published online by Cambridge University Press: 24 August 2023
Let $\gcd (n_{1},\ldots ,n_{k})$ denote the greatest common divisor of positive integers
$n_{1},\ldots ,n_{k}$ and let
$\phi $ be the Euler totient function. For any real number
$x>3$ and any integer
$k\geq 2$, we investigate the asymptotic behaviour of
$\sum _{n_{1}\ldots n_{k}\leq x}\phi (\gcd (n_{1},\ldots ,n_{k})). $
The first author is supported by JSPS Grant-in-Aid for Scientific Research (C)(21K03205).