Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-05-01T00:21:45.699Z Has data issue: false hasContentIssue false

MULTIPLE SOLUTIONS FOR $p(x)$-LAPLACIAN EQUATIONS WITH NONLINEARITY SUBLINEAR AT ZERO

Published online by Cambridge University Press:  29 January 2024

SHIBO LIU*
Affiliation:
Department of Mathematics and Systems Engineering, Florida Institute of Technology, Melbourne 32901, FL, USA

Abstract

We consider the Dirichlet problem for $p(x)$-Laplacian equations of the form

$$ \begin{align*} -\Delta_{p(x)}u+b(x)\vert u\vert ^{p(x)-2}u=f(x,u),\quad u\in W_{0}^{1,p(x)}(\Omega). \end{align*} $$

The odd nonlinearity $f(x,u)$ is $p(x)$-sublinear at $u=0$ but the related limit need not be uniform for $x\in \Omega $. Except being subcritical, no additional assumption is imposed on $f(x,u)$ for $|u|$ large. By applying Clark’s theorem and a truncation method, we obtain a sequence of solutions with negative energy and approaching the zero function $u=0$.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chinnì, A., Sciammetta, A. and Tornatore, E., ‘Existence of non-zero solutions for a Dirichlet problem driven by $\left(p(x),q(x)\right)$ -Laplacian’, Appl. Anal. 101(15) (2022), 53235333.10.1080/00036811.2021.1889523CrossRefGoogle Scholar
Diening, L., Harjulehto, P., Hästö, P. and Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017 (Springer, Heidelberg, 2011).10.1007/978-3-642-18363-8CrossRefGoogle Scholar
Fan, X. and Zhang, Q., ‘Existence of solutions for $p(x)$ -Laplacian Dirichlet problem’, Nonlinear Anal. 52(8) (2003), 18431852.10.1016/S0362-546X(02)00150-5CrossRefGoogle Scholar
Fan, X. and Zhao, D., ‘On the spaces ${L}^{p(x)}(\Omega)$ and ${W}^{m,p(x)}(\Omega )$ ’, J. Math. Anal. Appl. 263(2) (2001), 424446.10.1006/jmaa.2000.7617CrossRefGoogle Scholar
He, W. and Wu, Q., ‘Multiplicity results for sublinear elliptic equations with sign-changing potential and general nonlinearity’, Bound. Value Probl. 2020 (2020), Article no. 159, 9 pages.10.1186/s13661-020-01456-8CrossRefGoogle Scholar
Jikov, V. V., Kozlov, S. M. and Oleĭnik, O. A., Homogenization of Differential Operators and Integral Functionals (Springer-Verlag, Berlin, 1994). Translated from the Russian by G. A. Yosifian.10.1007/978-3-642-84659-5CrossRefGoogle Scholar
Liang, S. and Zhang, J., ‘Infinitely many small solutions for the $p(x)$ -Laplacian operator with nonlinear boundary conditions’, Ann. Mat. Pura Appl. (4) 192(1) (2013), 116.10.1007/s10231-011-0209-yCrossRefGoogle Scholar
Liu, Z. and Wang, Z.-Q., ‘On Clark’s theorem and its applications to partially sublinear problems’, Ann. Inst. H. Poincaré Anal. Non Linéaire 32(5) (2015), 10151037.10.1016/j.anihpc.2014.05.002CrossRefGoogle Scholar
Růžička, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748 (Springer-Verlag, Berlin, 2000).10.1007/BFb0104029CrossRefGoogle Scholar
Taarabti, S., ‘Positive solutions for the $p(x)$ -Laplacian: application of the Nehari method’, Discrete Contin. Dyn. Syst. Ser. S 15(1) (2022), 229243.10.3934/dcdss.2021029CrossRefGoogle Scholar
Tavares, L. and Sousa, J. V. C., ‘Multiplicity results for a system involving the $p(x)$ -Laplacian operator’, Appl. Anal. 102(5) (2023), 12711280.10.1080/00036811.2021.1979226CrossRefGoogle Scholar