Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-29T06:07:05.006Z Has data issue: false hasContentIssue false

DIVISIBILITY OF SUMS OF PARTITION NUMBERS BY MULTIPLES OF 2 AND 3

Published online by Cambridge University Press:  22 December 2023

NAYANDEEP DEKA BARUAH*
Affiliation:
Department of Mathematical Sciences, Tezpur University, Napaam 784028, Assam, India

Abstract

We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if $p(n)$ denotes the number of unrestricted partitions of a positive integer n (and $p(0)=1$, $p(n)=0$ for $n<0$), then for all nonnegative integers m,

$$ \begin{align*}\sum_{k=0}^\infty p(24m+23-\omega(-2k))+\sum_{k=1}^\infty p(24m+23-\omega(2k))\equiv 0~ (\text{mod}~144),\end{align*} $$

where $\omega (k)=k(3k+1)/2$.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlgren, S., ‘Distribution of the partition function modulo composite integers $M$ ’, Math. Ann. 318 (2000), 795803.10.1007/s002080000142CrossRefGoogle Scholar
Ahmed, Z. and Baruah, N. D., ‘New congruences for Andrews’ singular overpartitions’, Int. J. Number Theory 11 (2015), 22472264.10.1142/S1793042115501018CrossRefGoogle Scholar
Andrews, G. E., The Theory of Partitions (Addison-Wesley, Reading, MA, 1976).Google Scholar
Andrews, G. E., ‘Singular overpartitions’, Int. J. Number Theory 11 (2015), 15231533.10.1142/S1793042115400059CrossRefGoogle Scholar
Ballantine, C. and Merca, M., ‘Parity of sums of partition numbers and squares in arithmetic progressions’, Ramanujan J. 44 (2017), 617630.10.1007/s11139-016-9845-6CrossRefGoogle Scholar
Barman, R. and Ray, C., ‘Congruences for $\ell$ -regular overpartitions and Andrews’ singular overpartitions’, Ramanujan J. 45 (2018), 497515.10.1007/s11139-016-9860-7CrossRefGoogle Scholar
Barman, R. and Ray, C., ‘Divisibility of Andrews’ singular overpartitions by powers of 2 and 3’, Res. Number Theory 5 (2019), Article no. 22.10.1007/s40993-019-0161-2CrossRefGoogle Scholar
Chen, S.-C., Hirschhorn, M. D. and Sellers, J. A., ‘Arithmetic properties of Andrews’ singular overpartitions’, Int. J. Number Theory 11 (2015), 14631476.10.1142/S1793042115400011CrossRefGoogle Scholar
Chern, S., ‘New congruences for $\ell$ -regular overpartitions’, Integers 17 (2017), Article no. A22.Google Scholar
Corteel, S. and Lovejoy, J., ‘Overpartitions’, Trans. Amer. Math. Soc. 356 (2004), 16231635.10.1090/S0002-9947-03-03328-2CrossRefGoogle Scholar
Hao, R. X. J. and Shen, E. Y. Y., ‘On the number of $l$ -regular overpartitions’, Int. J. Number Theory 17 (2021), 21532173.10.1142/S1793042121500810CrossRefGoogle Scholar
Hong, L. and Zhang, S., ‘Proof of the Ballantine–Merca conjecture and theta function identities modulo 2’, Proc. Amer. Math. Soc., to appear.Google Scholar
Hu, W., Yao, O. X. M. and Zhao, T., ‘New parity results of sums of partitions and squares in arithmetic progressions’, Contrib. Discrete Math. 14 (2019), 117129.Google Scholar
Li, X. and Yao, O. X. M., ‘New infinite families of congruences for Andrews’ $\left(k,i\right)$ -singular overpartitions’, Quaest. Math. 41 (2018), 10051019.10.2989/16073606.2017.1419297CrossRefGoogle Scholar
Lovejoy, J., ‘Gordon’s theorem for overpartitions’, J. Combin. Theory Ser. A 103 (2003), 393401.10.1016/S0097-3165(03)00116-XCrossRefGoogle Scholar
Mahadeva Naika, M. S. and Gireesh, D. S., ‘Congruences for Andrews’ singular overpartitions’, J. Number Theory 165 (2016), 109130.10.1016/j.jnt.2016.01.015CrossRefGoogle Scholar
Ono, K., ‘On the parity of the partition function in arithmetic progressions’, J. reine angew. Math. 472 (1996), 115.Google Scholar
Ono, K., ‘Distribution of the partition function modulo $m$ ’, Ann. Math. 151 (2000), 293307.10.2307/121118CrossRefGoogle Scholar
Radu, C.-S., ‘A proof of Subbarao’s conjecture’, J. reine angew. Math. 672 (2012), 161175.Google Scholar
Ramanujan, S., ‘Some properties of $p(n)$ , the number of partitions of $n$ ’, Proc. Cambridge Philos. Soc. 19 (1919), 207210.Google Scholar
Ramanujan, S., Collected Papers of Srinivasa Ramanujan (Cambridge University Press, Cambridge, 1927); reprinted by Chelsea, New York, 1962, and by the American Mathematical Society, Providence, RI, 2000.Google Scholar
Shen, E. Y. Y., ‘Arithmetic properties of $l$ -regular overpartitions’, Int. J. Number Theory 12 (2016), 841852.10.1142/S1793042116500548CrossRefGoogle Scholar
Shen, E. Y. Y., ‘Congruences modulo 9 for singular overpartitions’, Int. J. Number Theory 13 (2017), 717724.10.1142/S1793042117500361CrossRefGoogle Scholar
Subbarao, M. V., ‘Remarks on the partition function’, Amer. Math. Monthly 73 (1966), 851854.10.2307/2314179CrossRefGoogle Scholar
Sumanth Bharadwaj, H. S., Hemanthkumar, B. and Mahadeva Naika, M. S., ‘On 3- and 9-regular overpartitions modulo powers of 3’, Colloq. Math. 154 (2018), 121130.10.4064/cm7317-10-2017CrossRefGoogle Scholar
Yao, O. X. M., ‘Congruences modulo 16, 32, and 64 for Andrews’s singular overpartitions’, Ramanujan J. 43 (2017), 215228.10.1007/s11139-015-9760-2CrossRefGoogle Scholar