Published online by Cambridge University Press: 26 February 2019
Let $u$ and
$\unicode[STIX]{x1D711}$ be two analytic functions on the unit disc
$D$ such that
$\unicode[STIX]{x1D711}(D)\subset D$. A weighted composition operator
$uC_{\unicode[STIX]{x1D711}}$ induced by
$u$ and
$\unicode[STIX]{x1D711}$ is defined by
$uC_{\unicode[STIX]{x1D711}}f:=u\cdot f\circ \unicode[STIX]{x1D711}$ for every
$f$ in
$H^{p}$, the Hardy space of
$D$. We investigate compactness of
$uC_{\unicode[STIX]{x1D711}}$ on
$H^{p}$ in terms of function-theoretic properties of
$u$ and
$\unicode[STIX]{x1D711}$.