Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-28T14:43:36.408Z Has data issue: false hasContentIssue false

THE WEYL TRANSFORM OF A SMOOTH MEASURE ON A REAL-ANALYTIC SUBMANIFOLD

Published online by Cambridge University Press:  11 October 2024

MANSI MISHRA*
Affiliation:
Department of Mathematical Sciences, IIT(BHU), Varanasi, 221005, India
M. K. VEMURI
Affiliation:
Department of Mathematical Sciences, IIT(BHU), Varanasi, 221005, India e-mail: [email protected]

Abstract

If $\mu $ is a smooth measure supported on a real-analytic submanifold of ${\mathbb {R}}^{2n}$ which is not contained in any affine hyperplane, then the Weyl transform of $\mu $ is a compact operator.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chavel, I., Riemannian Geometry, 2nd edn, Cambridge Studies in Advanced Mathematics, 98 (Cambridge University Press, Cambridge, 2006).10.1017/CBO9780511616822CrossRefGoogle Scholar
Edgar, G. A. and Rosenblatt, J. M., ‘Difference equations over locally compact abelian groups’, Trans. Amer. Math. Soc. 253 (1979), 273289.10.1090/S0002-9947-1979-0536947-9CrossRefGoogle Scholar
Folland, G. B., Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122 (Princeton University Press, Princeton, NJ, 1989).10.1515/9781400882427CrossRefGoogle Scholar
Folland, G. B., Real Analysis, 2nd edn, Pure and Applied Mathematics, 40 (John Wiley and Sons, Inc., New York, 1999).Google Scholar
Hörmander, L., The Analysis of Linear Partial Differential Operators. I, 2nd edn, Grundlehren der mathematischen Wissenschaften, 256 (Springer-Verlag, Berlin, 1990).Google Scholar
Kunze, R. A., ‘ ${L}_p$ Fourier transforms on locally compact unimodular groups’, Trans. Amer. Math. Soc. 89 (1958), 519540.Google Scholar
Mishra, M. and Vemuri, M. K., ‘The Weyl transform of a measure’, Proc. Indian Acad. Sci. Math. Sci. 133(2) (2023), Article no. 29, 11 pages.10.1007/s12044-023-00748-0CrossRefGoogle Scholar
Ragozin, D. L., ‘Rotation invariant measure algebras on Euclidean space’, Indiana Univ. Math. J. 23 (1973/74), 11391154.CrossRefGoogle Scholar
Rudin, W., Functional Analysis, 2nd edn, International Series in Pure and Applied Mathematics, 8 (McGraw-Hill, Inc., New York, 1991).Google Scholar
Stein, E. M., Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43 (Princeton University Press, Princeton, NJ, 1993).Google Scholar
Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32 (Princeton University Press, Princeton, NJ, 1971).Google Scholar
Thangavelu, S., ‘Spherical means on the Heisenberg group and a restriction theorem for the symplectic Fourier transform’, Rev. Mat. Iberoam. 7(2) (1991), 135155.CrossRefGoogle Scholar
Thangavelu, S., ‘On Paley–Wiener theorems for the Heisenberg group’, J. Funct. Anal. 115(1) (1993), 2444.CrossRefGoogle Scholar
Thangavelu, S., Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, 159 (Birkhäuser Boston, Inc., Boston, MA, 1998).CrossRefGoogle Scholar
Vemuri, M. K., ‘Realizations of the canonical representation’, Proc. Indian Acad. Sci. Math. Sci. 118(1) (2008), 115131.CrossRefGoogle Scholar
Vemuri, M. K., ‘Benedicks’ theorem for the Weyl transform’, J. Math. Anal. Appl. 452(1) (2017), 209217.CrossRefGoogle Scholar
Werner, R., ‘Quantum harmonic analysis on phase space’, J. Math. Phys. 25(5) (1984), 14041411.CrossRefGoogle Scholar