Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-05-01T22:06:57.623Z Has data issue: false hasContentIssue false

Reproductive response of the predator Tenuisvalvae notata (Mulsant) (Coleoptera: Coccinellidae) to temperatures outside their ideal thermal range

Published online by Cambridge University Press:  18 October 2024

Enggel Beatriz S. Carmo
Affiliation:
Departamento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos 52171-900, Recife, PE, Brazil
Christian S. A. Silva-Torres*
Affiliation:
Departamento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos 52171-900, Recife, PE, Brazil
Jorge Braz Torres
Affiliation:
Departamento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos 52171-900, Recife, PE, Brazil
*
Corresponding author: Christian S. A. Silva-Torres; Email: [email protected]

Abstract

Global warming has driven changes in the biology and fitness of organisms that need to adapt to temperatures outside of their optimal range to survive. This study investigated aspects of reproduction and survival of the lady beetle Tenuisvalvae notata (Mulsant) (Coleoptera: Coccinellidae) subjected to temperatures that varied from its optimal (28°C) to a gradual decrease (12, 14, 16, and 18°C) and increase (32, 34, 35, and 36°C) over time at a rate of 1°C/day. Fertility, fecundity, oviposition period, and survival were determined. There was a significant reduction in fertility and fecundity at temperatures below 18°C and above 34°C, whereas survival was reduced only above 34°C. Additionally, we evaluated that fecundity was the lowest when females were kept at low temperature, and when males were kept under high temperature. Therefore, if the T. notata remained for a long period under exposure to temperatures outside the ideal range, then the species could present different reproductive responses for each sex to high and low temperatures. This factor must be considered when releasing natural enemies into an area to understand the effect of temperature on the decline of a local population a few generations after release.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Angilletta, MJ, Condon, C and Youngblood, JP (2019) Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis. Journal of Thermal Biology 81, 2532. https://doi.org/10.1016/j.jtherbio.2019.02.009CrossRefGoogle ScholarPubMed
Barbosa, PRR, Oliveira, MD, Giorgi, JA, Oliveira, JEM and Torres, JB (2014) Suitability of two prey species for development, reproduction, and survival of Tenuisvalvae notata (Coleoptera: Coccinellidae). Annals of the Entomological Society of America 107, 10261034. https://doi.org/10.1603/AN13175CrossRefGoogle Scholar
Bertin, A, Lerin, S, Botton, M and Parra, JRP (2019) Temperature thresholds and thermal requirements for development and survival of Dysmicoccus brevipes (Hemiptera: Pseudococcidae) on table grapes. Neotropical Entomology 48, 7177. https://doi.org/10.1007/s13744-018-0623-6CrossRefGoogle ScholarPubMed
Blanckenhorn, WU (2018) Behavioral, plastic, and evolutionary responses to a changing world. In Córdoba-Aguilar, A, González-Tokman, D and González-Santoyo, I (eds), Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences. Oxford, UK: Oxford University Press, pp. 292308.Google Scholar
Boggs, CL (2009) Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology 23, 2737. https://doi.org/10.1111/j.1365-2435.2009.01527.xCrossRefGoogle Scholar
Chen, C, Gols, R, Biere, A and Harvey, JA (2019) Differential effects of climate warming on reproduction and functional responses on insects in the fourth trophic level. Functional Ecology 33, 693702. https://doi.org/10.1111/1365-2435.13277CrossRefGoogle Scholar
Chown, SL and Nicolson, SW (2004) Insect Physiological Ecology: Mechanisms and Patterns. New York, USA: Oxford University Press, 254p. https://doi.org/10.1093/acprof:oso/9780198515494.001.0001CrossRefGoogle Scholar
Cossins, AR and Bowler, K (1987) Temperature Biology of Animals. New York, USA: Chapman & Hall, 339p.CrossRefGoogle Scholar
Crawley, MJ (2007) The R Book. New York, NY: J. Wiley.CrossRefGoogle Scholar
David, JR, Araripe, LO, Chakir, M, Legout, H, Lemos, B, Petavy, G, Rohmer, C, Joly, D and Moreteau, B (2005) Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. Journal of Evolutionary Biology 18, 838846. https://doi.org/10.1111/j.1420-9101.2005.00914.xCrossRefGoogle ScholarPubMed
de Oliveira, CM, Torres, CdS, Torres, JB and Silva, GS (2022) Estimation of population growth for two species of lady beetles (Coleoptera: Coccinellidae) under different temperatures. Biocontrol Science and Technology 32, 74–89. https://doi.org/10.1080/09583157.2021.1969337CrossRefGoogle Scholar
Dixon, A (2001) Insect predator-prey dynamics: ladybird beetles and biological control. Ecology 82, 905906. https://doi.org/10.2307/2680210Google Scholar
Dixon, AFG, Honěk, A, Keil, P, Kotela, MAA, Šizling, AL and Jarošík, V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Functional Ecology 23, 257264. https://doi.org/10.1111/j.1365-2435.2008.01489.xCrossRefGoogle Scholar
Dreyer, BS, Neuenschwander, P, Bouyjou, J, Baumgärtner, J and Dorn, S (1997a) The influence of temperature on the life table of Hyperaspis notata. Entomologia Experimentalis et Applicata 84, 8592. https://doi.org/10.1046/j.1570-7458.1997.00201.xCrossRefGoogle Scholar
Dreyer, BS, Neuenschwander, P, Baumgärtner, J and Dorn, S (1997b) Trophic influences on survival, development and reproduction of Hyperaspis notata (Col., Coccinellidae). Journal of Applied Entomology 121, 249256. https://doi.org/10.1111/j.1439-0418.1997.tb01401.xCrossRefGoogle Scholar
Ferreira, LF, Silva-Torres, CSA, Venette, RC and Torres, JB (2020) Temperature and prey assessment on the performance of the mealybug predator Tenuisvalvae notata (Coleoptera: Coccinellidae). Austral Entomology 59, 178188. https://doi.org/10.1111/aen.12438CrossRefGoogle Scholar
Ferreira, LF, Silva-Torres, CSA, Torres, JB and Venette, RC (2021) Potential displacement of the native Tenuisvalvae notata by the invasive Cryptolaemus montrouzieri in South America suggested by differences in climate suitability. Bulletin of Entomological Research 111, 605615. https://doi.org/10.1017/S000748532100033XCrossRefGoogle ScholarPubMed
Ikemoto, T (2005) Intrinsic optimum temperature for development of insects and mites. Environmental Entomology 34, 13771387. https://doi.org/10.1603/0046-225X-34.6.1377CrossRefGoogle Scholar
Jacobs, CGC, Rezende, GL, Lamers, GEM and van der Zee, M (2013) The extraembryonic serosa protects the insect egg against desiccation. Proceedings of the Royal Society B: Biological Sciences 280, 20131082. https://doi.org/10.1098/rspb.2013.1082CrossRefGoogle ScholarPubMed
Jalali, MA, Tirry, L and De Clercq, P (2009) Effects of food and temperature on development, fecundity and life-table parameters of Adalia bipunctata (Coleoptera: Coccinellidae). Journal of Applied Entomology 133, 615625. https://doi.org/10.1111/j.1439-0418.2009.01408.xCrossRefGoogle Scholar
Jalali, MA, Sakaki, S, Ziaaddini, M and Daane, KM (2018) Temperature-dependent development of Oenopia conglobata (Col.: Coccinellidae) fed on Aphis gossypii (Hem.: Aphididae). International Journal of Tropical Insect Science 38, 410417. https://doi.org/10.1017/S1742758418000267CrossRefGoogle Scholar
Janowitz, SA and Fischer, K (2011) Opposing effects of heat stress on male versus female reproductive success in Bicyclus anynana butterflies. Journal of Thermal Biology 36, 283287. https://doi.org/10.1016/j.jtherbio.2011.04.001CrossRefGoogle Scholar
Kim, H and Lee, J-H (2008) Phenology simulation model of Scotinophara lurida (Hemiptera: Pentatomidae). Environmental Entomology 37, 660669. https://doi.org/10.1093/ee/37.3.660CrossRefGoogle ScholarPubMed
Kingsolver, JG and Huey, RB (1998) Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. American Zoologist 38, 545560. https://doi.org/10.1093/icb/38.3.545CrossRefGoogle Scholar
Krebs, RA and Loeschcke, V (1994) Costs and benefits of activation of the heat-shock response in Drosophila melanogaster. Functional Ecology 8, 730737. https://doi.org/10.2307/2390232CrossRefGoogle Scholar
Kristensen, TN, Hoffmann, AA, Overgaard, J, Sørensen, JG, Hallas, R and Loeschcke, V (2008) Costs and benefits of cold acclimation in field-released Drosophila. Proceedings of the National Academy of Science USA 105, 216221. https://doi.org/10.1073/pnas.0708074105CrossRefGoogle ScholarPubMed
Maes, S, Grégoire, J-C and De Clercq, P (2015) Cold tolerance of the predatory ladybird Cryptolaemus montrouzieri. BioControl 60, 199207. https://doi.org/10.1007/s10526-014-9630-7CrossRefGoogle Scholar
Michaud, JP and Qureshi, JA (2013) Induction of reproductive diapause in Hippodamia convergens (Coleoptera: Coccinellidae) hinges on prey quality and availability. European Journal of Entomology 102, 483487. https://doi.org/10.14411/eje.2005.069CrossRefGoogle Scholar
Milosavljević, I, McCalla, KA, Ratkowsky, DA and Hoddle, MS (2019) Effects of constant and fluctuating temperatures on development rates and longevity of Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). Journal of Economic Entomology 112, 10621072. https://doi.org/10.1093/jee/toy429CrossRefGoogle ScholarPubMed
Mirhosseini, MA, Michaud, JP, Jalali, MA and Ziaaddini, M (2014) Paternal effects correlate with female reproductive stimulation in the polyandrous ladybird Cheilomenes sexmaculata. Bulletin of Entomological Research 104, 480485. https://doi.org/10.1017/S0007485314000194CrossRefGoogle ScholarPubMed
Nguyen, D, Rieu, I, Mariani, C and van Dam, NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology 91, 727740. https://doi.org/10.1007/s11103-016-0481-8CrossRefGoogle ScholarPubMed
Obrycki, JJ (2020) Comparative studies of reproductive diapause in North American populations of three Hippodamia species (Coleoptera: Coccinellidae). Environmental Entomology 49, 11641170. https://doi.org/10.1093/ee/nvaa100CrossRefGoogle ScholarPubMed
Obrycki, JJ and Kring, TJ (1998) Predaceous Coccinellidae in biological control. Annual Review of Entomology 43, 295321. https://doi.org/10.1146/annurev.ento.43.1.295CrossRefGoogle ScholarPubMed
Oliveira, MD, Silva-Torres, CSA, Torres, JB and Oliveira, JEM (2014) Population growth and within-plant distribution of the striped mealybug Ferrisia virgata (Cockerell) (Hemiptera, Pseudococcidae) on cotton. Revista Brasileira de Entomologia 58, 7176. https://doi.org/10.1590/S0085-56262014000100012CrossRefGoogle Scholar
Omkar, and Mishra, G (2005) Mating in aphidophagous ladybirds: costs and benefits. Journal of Applied Entomology 129, 4550. https://doi.org/10.1111/j.1439-0418.2005.00996.xCrossRefGoogle Scholar
Ortiz, JA, Torres Ruiz, A, Morales-Ramos, J, Thomas, M, Rojas, MG, Tomberlin, J, Yi, L, Han, R, Giroud, L and Jullien, RL (2016) Insect mass production technologies. In Dossey, AT, Morales-Ramos, JA and Guadalupe Rojas, M (eds), Insects as Sustainable Food Ingredients. London, UK: Elsevier and Academic Press, pp. 153201.CrossRefGoogle Scholar
Peronti, ALBG, Martinelli, NM, Alexandrino, JG, Júnior, ALM, Penteado-Dias, AM and Almeida, LM (2016) Natural enemies associated with Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in the state of São Paulo, Brazil. Florida Entomologist 99, 2125. https://doi.org/10.1653/024.099.0105CrossRefGoogle Scholar
Porcelli, D, Gaston, KJ, Butlin, RK and Snook, RR (2017) Local adaptation of reproductive performance during thermal stress. Journal of Evolutionary Biology 30, 422429. https://doi.org/10.1111/jeb.13018CrossRefGoogle ScholarPubMed
R Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/Google Scholar
Régnière, J, Powell, J, Bentz, B and Nealis, V (2012) Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. Journal of Insect Physiology 58 634647. https://doi.org/10.1016/j.jinsphys.2012.01.010CrossRefGoogle ScholarPubMed
Rinehart, JP, Yocum, GD and Denlinger, DL (2000) Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiological Entomology 25 330336. https://doi.org/10.1111/j.1365-3032.2000.00201.xCrossRefGoogle Scholar
Sakaki, S, Jalali, MA, Kamali, H and Nedvěd, O (2019) Effect of low-temperature storage on the life history parameters and voracity of Hippodamia variegata (Coleoptera: Coccinellidae). European Journal of Entomology 116 1015. https://doi.org/10.14411/eje.2019.002CrossRefGoogle Scholar
Sales, K, Vasudeva, R and Gage, MJG (2021) Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect. Royal Society of Open Science 8, 201717. https://doi.org/10.1098/rsos.201717CrossRefGoogle Scholar
Sanches, NF and Carvalho, RS (2010) Procedimentos para manejo da criação e multiplicação do predador exótico Cryptolaemus montrouzieri. Embrapa Mandioca e Fruticultura Circular técnica 99, 15. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/881032Google Scholar
Sebastião, D, Borges, I and Soares, AO (2015) Effect of temperature and prey in the biology of Scymnus subvillosus. BioControl 60, 241249. https://doi.org/10.1007/s10526-014-9640-5CrossRefGoogle Scholar
Sørensen, CH, Toft, S and Kristensen, TN (2013) Cold-acclimation increases the predatory efficiency of the aphidophagous coccinellid Adalia bipunctata. Biological Control 65, 8794. https://doi.org/10.1016/j.biocontrol.2012.09.016CrossRefGoogle Scholar
Torres, JB and Giorgi, JA (2018) Management of the false carmine cochineal Dactylopius opuntiae (Cockerell): perspective from Pernambuco state, Brazil. Phytoparasitica 46, 331340. https://doi.org/10.1007/s12600-018-0664-8CrossRefGoogle Scholar
Túler, AC, Silva-Torres, CSA, Torres, JB, Moraes, RB and Rodrigues, ARS (2018) Mating system, age, and reproductive performance in Tenuisvalvae notata, a long-lived ladybird beetle. Bulletin of Entomological Research 108, 616624. https://doi.org/10.1017/S0007485317001146CrossRefGoogle ScholarPubMed
Wang, S, Tan, X-L, Guo, X-J and Zhang, F (2013) Effect of temperature and photoperiod on the development, reproduction, and predation of the predatory ladybird Cheilomenes sexmaculata (Coleoptera: Coccinellidae). Journal of Economic Entomology 106, 26212629. https://doi.org/10.1603/EC13095CrossRefGoogle ScholarPubMed
Yang, Q, Liu, J, Wyckhuys, KAG, Yang, Y and Lu, Y (2022) Impact of heat stress on the predatory ladybugs Hippodamia variegata and Propylaea quatuordecimpunctata. Insects 13, 306. https://doi.org/10.3390/insects13030306CrossRefGoogle ScholarPubMed
Zhang, S, Cao, Z, Wang, Q, Zhang, F and Liu, T-X (2014) Exposing eggs to high temperatures affects the development, survival and reproduction of Harmonia axyridis. Journal of Thermal Biology 39, 4044. https://doi.org/10.1016/j.jtherbio.2013.11.007CrossRefGoogle Scholar