Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-30T21:22:20.423Z Has data issue: false hasContentIssue false

Do more food choices lead to bad decisions? A case study in predaceous ladybird beetle, Propylea dissecta

Published online by Cambridge University Press:  02 December 2024

Lata Verma
Affiliation:
Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Uttar Pradesh, Lucknow 226007, India
Geetanjali Mishra
Affiliation:
Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Uttar Pradesh, Lucknow 226007, India
Omkar*
Affiliation:
Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Uttar Pradesh, Lucknow 226007, India
*
Corresponding author: Omkar Email: [email protected]

Abstract

Understanding why animals choose one food over another is one of the key questions underlying the fields of behaviour ecology. This study aims to test if ladybird beetle, Propylea dissecta Mulsant (Coleoptera: Coccinellidae) can forage selectively for nutrients in order to redress specific nutritional imbalances to maximise their fitness. We hypothesised that the presence of more food choices leads to bad decisions in terms of their food selection which ultimately negatively affects the mating and reproductive parameters of P. dissecta. To test this, we first manipulated the predator's nutritional status by rearing them in five separate dietary groups from first instar larvae to newly emerged adult stage. Thereafter, we tested their food choice between five different foods, i.e. Aphis craccivora Koch, Aphis nerii Boyer de Fonsclombe, conspecific eggs, heterospecific eggs and mixed pollen grains, equidistantly placed in a Petri dish. Based on the food choice of the newly emerged adults, they were reared on the chosen diet for 10 days. Thereafter, adults were paired with their opposite sex (collected from stock culture reared on A. craccivora) and mating and reproductive parameters were recorded. Our results suggested that the variety of food did not affect the food choice of ladybird beetle, P. dissecta. They tend to choose their natural diet, i.e. aphid in each dietary regime. We found that previous dietary regime, i.e. larval dietary regime, significantly influences the mating and reproductive parameters of both the male and female except for the time to commence mating by the male. Food choices of adult beetles were found to significantly influence the time to commence mating, average fecundity and per cent egg viability in males and only mating duration in females. Our findings suggest that P. dissecta consistently made optimal decisions when facing various food choices. They consistently preferred their natural and preferred food choice over others, indicating a strong food selection behaviour.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alcaraz, G and García-Cabello, KN (2017) Feeding and metabolic compensations in response to different foraging costs. Hydrobiologia 787, 217227.CrossRefGoogle Scholar
Bauerfeind, SS and Fischer, K (2005) Effects of adult-derived carbohydrates, amino acids and micronutrients on female reproduction in a fruit-feeding butterfly. Journal of Insect Physiology 51, 545554.CrossRefGoogle Scholar
Bell, WJ (2012) Searching Behaviour: The Behavioural Ecology of Finding Resources. Southport: Springer Science & Business Media. https://doi.org/10.1007/978-94-011-3098-1.Google Scholar
Boggs, CL and Freeman, KD (2005) Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144, 353361.CrossRefGoogle ScholarPubMed
Canovai, R, Benelli, G, Ceragioli, T, Lucchi, A and Canale, A (2019) Prey selection behaviour in the multicoloured Asian ladybird, Harmonia axyridis (Coleoptera: Coccinellidae). Applied Entomology and Zoology 54, 213222.CrossRefGoogle Scholar
Chen, PJ and Antonelli, M (2020) Conceptual models of food choice: influential factors related to foods, individual differences, and society. Foods 9, 1898.CrossRefGoogle ScholarPubMed
De Lima, MS, Pontes, WJT and de Lucena Nóbrega, R (2020) Pollen did not provide suitable nutrients for ovary development in a ladybird Brumoides foudrasii (Coleoptera: Coccinellidae). Diversitas Journal 5, 14861494.CrossRefGoogle Scholar
Dmitriew, C and Rowe, L (2011) The effects of larval nutrition on reproductive performance in a food-limited adult environment. PLoS ONE 6, e17399.CrossRefGoogle Scholar
Farag, NA, Abd El-Wahab, TE and Abdel-Moniem, ASH (2011) The influence of some honeybee products as a diet substitute on the different stages of Coccinella undecimpunctata L. in Egypt Arch. Phytopathology Pflanzenschutz 44, 253259.CrossRefGoogle Scholar
Gandolfi, M, Mattiacci, L and Dorn, S (2003) Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp. Proceedings of the Royal Society B: Biological Sciences 270, 26232629.CrossRefGoogle Scholar
Giorgi, JA, Vandenberg, NJ, McHugh, JV, Forrester, JA, Ślipiński, SA, Miller, KB, Shapiro, LR and Whiting, MF (2009) The evolution of food preferences in Coccinellidae. Biological Control 51, 215231.CrossRefGoogle Scholar
Guroo, MA, Pervez, A, Srivastava, K and Gupta, RK (2017) Effect of nutritious and toxic prey on food preference of a predaceous ladybird, Coccinella septempunctata (Coleoptera: Coccinellidae). European Journal of Entomology 114, 400406.CrossRefGoogle Scholar
Hatt, S and Osawa, N (2021) High variability in pre-oviposition time independent of diet available at eclosion: a key reproductive trait in the ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae) in its native range. Insects 12, 382.CrossRefGoogle ScholarPubMed
Hinkelman, TM (2012) Foraging challenges: unsuitable prey and limited information.Google Scholar
Hodek, I, Honěk, A and Hodek, I (1996) Food relationships. Ecology of Coccinellidae 54, 143238. https://doi.org/10.1007/978-94-017-1349-8_6.CrossRefGoogle Scholar
Hodek, I, Honek, A and Van Emden, HF (eds) (2012) Ecology and Behaviour of the Ladybird Beetles (Coccinellidae). Chichester, UK: John Wiley and Sons.CrossRefGoogle Scholar
Hora, KH, Roessingh, P and Menken, SB (2005) Inheritance and plasticity of adult host acceptance in Yponomeuta species: implications for host shifts in specialist herbivores. Entomologia Experimentalis et Applicata 115, 271281.CrossRefGoogle Scholar
Houslay, TM, Hunt, J, Tinsley, MC and Bussiere, LF (2015) Sex differences in the effects of juvenile and adult diet on age-dependent reproductive effort. Journal of Evolutionary Biology 28, 10671079.CrossRefGoogle ScholarPubMed
Iglesias-Carrasco, M, Bilgin, G, Jennions, MD and Head, ML (2018) The fitness cost to females of exposure to males does not depend on water availability in seed beetles. Animal Behaviour 142, 7784.CrossRefGoogle Scholar
Janz, N, Söderlind, L and Nylin, S (2009) No effect of larval experience on adult host preferences in Polygonia calbum (Lepidoptera: Nymphalidae): on the persistence of Hopkins’ host selection principle. Ecological Entomology 34, 5057.CrossRefGoogle Scholar
Jin, ZY and Gong, H (2001) Male accessory gland derived factors can stimulate oogenesis and enhance oviposition in Helicoverpa armigera (Lepidoptera: Noctuidae). Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America 46, 175185.CrossRefGoogle ScholarPubMed
Kajita, Y, Obrycki, JJ, Sloggett, JJ and Haynes, KF (2010) Intraspecific alkaloid variation in ladybird eggs and its effects on con-and hetero-specific intraguild predators. Oecologia 163, 313322.CrossRefGoogle Scholar
Kindsvater, HK, Simpson, SE, Rosenthal, GG and Alonzo, SH (2013) Male diet, female experience, and female size influence maternal investment in swordtails. Behaviour Ecology 24, 691697.CrossRefGoogle Scholar
Kumar, B and Omkar, (2023) Ladybird beetles (Coleoptera: Coccinellidae). In Omkar, (ed.), Insect Predators in Pest Management. Boca Raton: CRC Press, pp. 187227. https://doi.org/10.1201/9781003370864.CrossRefGoogle Scholar
Kumari, M, Saifi, N, Arya, D and Perves, DA (2022) Prey preference of an aphidophagous ladybird, Coccinella transversalis (Coccinellidae: Coleoptera) on two aphid species. Journal of Entomology and Zoology Studies 10, 261265.CrossRefGoogle Scholar
Kundoo, AA and Khan, AA (2017) Coccinellids as biological control agents of soft bodied insects: a review. Journal of Entomology and Zoology Studies 5, 13621373.Google Scholar
MacArthur, RH and Pianka, ER (1966) On optimal use of a patchy environment. The American Naturalist 100, 603609.CrossRefGoogle Scholar
Majerus, ME (2016) A Natural History of Ladybird Beetles. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Maurice, NG, Kumar, A and Ramteke, PW (2012) Development of two species of aphidophagous ladybird beetles (Coleoptera: Coccinellidae) on essential and alternative foods. International Journal of Current Research 4, 7780.Google Scholar
Moreau, J, Rahme, J, Benrey, B and Thiéry, D (2008) Larval host plant origin modifies the adult oviposition preference of the female European grapevine moth Lobesia botrana. The Science of Nature 95, 317324.CrossRefGoogle ScholarPubMed
Müller, T and Müller, C (2016) Adult beetles compensate for poor larval food conditions. Journal of Insect Physiology 88, 2432.CrossRefGoogle ScholarPubMed
Murdie, G (1971) Simulation on the effects of predators/parasite models on prey/host spatial distribution. Statistical Ecology 1, 215223.Google Scholar
Nedved, O and Salvucci, SARA (2008) Ladybird Coccinella septempunctata (Coleoptera: Coccinellidae) prefers toxic prey in laboratory choice experiment. European Journal of Entomology 105, 431.CrossRefGoogle Scholar
Nestel, D, Papadopoulos, NT, Pascacio-Villafán, C, Righini, N, Altuzar-Molina, AR and Aluja, M (2016) Resource allocation and compensation during development in holometabolous insects. Journal of Insect Physiology 95, 7888.CrossRefGoogle ScholarPubMed
Norberg, (2021) To minimize foraging time, use high-efficiency, energy-expensive search and capture methods when food is abundant but low-efficiency, low-cost methods during food shortages. Ecology and Evolution 11, 1653716546.CrossRefGoogle ScholarPubMed
Olsson, POC, Anderbrant, O and Löfstedt, C (2006) Experience influences oviposition behaviour in two pyralid moths, Ephestia cautella and Plodia interpunctella. Animal Behaviour 72, 545551.CrossRefGoogle Scholar
Omkar, and Mishra, G (2005) Preference–performance of a generalist predatory ladybird: a laboratory study. Biological Control 34, 187195.CrossRefGoogle Scholar
Omkar, and Pervez, A (2011) Functional response of two aphidophagous ladybirds searching in tandem. Biocontrol Science and Technology 21, 101111.CrossRefGoogle Scholar
Osawa, N (2002) Sex-dependent effects of sibling cannibalism on life history traits of the ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae). Biological Journal of the Linnean Society 76, 349360.CrossRefGoogle Scholar
Pervez, A and Chandra, S (2018) Host plant-mediated prey preference and consumption by an aphidophagous ladybird, Menochilus sexmaculatus (Fabricius) (Coleoptera: Coccinellidae). Egyptian Journal of Biological Pest Control 28, 54.CrossRefGoogle Scholar
Pervez, A and Kumar, R (2017) Preference of the aphidophagous ladybird Propylea dissecta for two species of aphids reared on toxic host plants: prey preference of P. dissecta on toxic aphids. European Journal of Environmental Sciences 7, 130134.CrossRefGoogle Scholar
Pervez, A and Omkar, (2004) Prey-dependent life attributes of an aphidophagous ladybird beetle, Propylea dissecta (Coleoptera: Coccinellidae). Biocontrol Science and Technology 14, 385396.CrossRefGoogle Scholar
Pervez, A and Omkar, (2006) Ecology and biological control application of multicoloured Asian ladybird, Harmonia axyridis: a review. Biocontrol Science and Technology 16, 111128.CrossRefGoogle Scholar
Pervez, A, Chandra, S and Kumar, R (2021) Effect of dietary history on intraguild predation and cannibalism of ladybirds’ eggs. International Journal of Tropical Insect Science 41, 26372642.CrossRefGoogle Scholar
Pyke, GH and Starr, CK (2021) Optimal foraging theory. In Starr C (ed.), Encyclopedia of Social Insects. Cham: Springer International Publishing, pp. 677685. https://doi.org/10.1007/978-3-030-28102-1_90.CrossRefGoogle Scholar
Ryan, MJ, Page, RA, Hunter, KL and Taylor, RC (2019) ‘Crazy love’: nonlinearity and irrationality in mate choice. Animal Behaviour 147, 189198.CrossRefGoogle Scholar
Salgado, AL and Saastamoinen, M (2019) Developmental stage-dependent response and preference for host plant quality in an insect herbivore. Animal Behaviour 150, 2738.CrossRefGoogle Scholar
Sarwar, M (2016) Food habits or preferences and protecting or encouraging of native ladybugs (Coleoptera: Coccinellidae). International Journal of Zoology Studies 1, 1318.Google Scholar
Schultzhaus, JN and Carney, GE (2017) Dietary protein content alters both male and female contributions to Drosophila melanogaster female post-mating response traits. Journal of Insect Physiology 99, 101106.CrossRefGoogle ScholarPubMed
Šenkeříková, P and Nedvěd, O (2013) Preference among three aphid species by the predatory ladybird beetle Harmonia axyridis in the laboratory. IOBC/WPRC Bulletin 94, 123130.Google Scholar
Singh, N, Mishra, G and Omkar, (2016) Slow and fast development in two aphidophagous ladybirds on scarce and abundant prey supply. Bulletin of Entomological Research 106, 347358.CrossRefGoogle ScholarPubMed
Singh, S, Mishra, G and Omkar, (2020) Ladybird, Menochilus sexmaculatus (Fabricius) can survive on oophagy but with altered fitness than aphidophagy. Current Science 118, 00113891.CrossRefGoogle Scholar
Stephens, DW (2008) Decision ecology: foraging and the ecology of animal decision making. Cognitive, Affective, & Behavioral Neuroscience 8, 475484.CrossRefGoogle ScholarPubMed
Ventura, AK and Worobey, J (2013) Early influences on the development of food preferences. Current Biology 23, R401R408.CrossRefGoogle ScholarPubMed
Verma, L, Mishra, G and Omkar, (2023) Mating alters the food choices of adult ladybird beetle (Propylea dissecta Mulsant). International Journal of Tropical Insect Science 43, 16131622.CrossRefGoogle Scholar
Villalba, JJ and Provenza, FD (2009) Learning and dietary choice in herbivores. Rangeland Ecology and Management 62, 399406.CrossRefGoogle Scholar
Villalba, JJ, Provenza, FD and Han, GD (2004) Experience influences diet mixing by herbivores: implications for plant biochemical diversity. Oikos 107, 100109.CrossRefGoogle Scholar
Wilder, S and Rypstra, A (2007) Male control of copulation duration in a wolf spider (Araneae: Lycosidae). Behaviour 144, 471484.Google Scholar
Wittmeyer, JL, Coudron, TA and Adams, TS (2001) Ovarian development, fertility and fecundity in Podisus maculiventris Say (Heteroptera: Pentatomidae): an analysis of the impact of nymphal, adult, male and female nutritional source on reproduction. Invertebrate Reproduction and Development 39, 920.CrossRefGoogle Scholar
Xie, J, De Clercq, P, Zhang, Y, Wu, H, Pan, C and Pang, H (2015a) Nutrition-dependent phenotypes affect sexual selection in a ladybird. Scientific Reports 5, 13111.CrossRefGoogle Scholar
Xie, J, De Clercq, P, Pan, C, Li, H, Zhang, Y and Pang, H (2015b) Physiological effects of compensatory growth during the larval stage of the ladybird, Cryptolaemus montrouzieri. Journal of Insect Physiology 83, 3742.CrossRefGoogle ScholarPubMed
Yadav, T, Omkar, and Mishra, G (2019) Conspecific egg quality and distribution pattern do not affect life history traits of ladybird, Menochilus sexmaculatus. Bulletin of Insectology 72, 125133.Google Scholar
Yunding, Z, Gaochao, C, Qinglei, M, Jiguang, G and Gongming, W (1997) Searching behavior of Harmonia Axyridis (Pallas) larvae. Kun Chong xue bao. Acta Entomologica Sinica 40, 145150.Google Scholar