Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-30T21:18:50.186Z Has data issue: false hasContentIssue false

Predicting potential habitat distribution of the invasive species Rhynchophorus ferrugineus Olivier in China based on MaxEnt modelling technique and future climate change

Published online by Cambridge University Press:  19 September 2024

Zhiling Wang
Affiliation:
College of Life Science, China West Normal University, Nanchong 637002, China
Zhihang Zhuo
Affiliation:
College of Life Science, China West Normal University, Nanchong 637002, China
Habib Ali
Affiliation:
Depatment of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
Sumbul Mureed
Affiliation:
College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
Quanwei Liu
Affiliation:
College of Life Science, China West Normal University, Nanchong 637002, China
Xuebin Yang
Affiliation:
College of Life Science, China West Normal University, Nanchong 637002, China
Danping Xu*
Affiliation:
College of Life Science, China West Normal University, Nanchong 637002, China
*
Corresponding author: Danping Xu; Email: [email protected]

Abstract

Changes in the distribution of species due to global climate change have a critically significant impact on the increase in the spread of invasive species. An in-depth study of the distribution patterns of invasive species and the factors influencing them can help to better predict and combat invasive alien species. Rhynchophorus ferrugineus Olivier is an invasive species that primarily harms plants of Trachycarpus H. Wendl. The pest invades trees in three main ways: by laying eggs and incubating them in the crown of the plant, on roots at the surface and at the base of the trunk or petiole. Most of the plants in the genus Trachycarpus are taller, and the damage is concentrated in the middle and upper parts of the plant, making control more difficult. In this paper, we combine 19 bioclimatic variables based on the MaxEnt model to project the current and future distributions of R. ferrugineus under three typical emission scenarios (2.6 W m−2 (SSP1-2.6), 4.5 W m−2 (SSP2-4.5) and 8.5 W m−2 (SSP5-8.5)) in the 2050s and 2090s. Among the 19 bioclimatic variables, five variables were screened out by contribution rates, namely annual mean temperature (BIO 1), precipitation of driest quarter (BIO 17), minimum temperature of coldest month (BIO 6), mean diurnal range (BIO 2) and precipitation of wettest quarter (BIO 16). These five variables are key environmental variables that influence habitat suitability for R. ferrugineus and are representative in reflecting its potential habitat. The results showed that R. ferrugineus is now widely distributed in the southeastern coastal area of China (high suitability zone), concentrating in the provinces of Hainan, Guangdong, Fujian, Guangxi and Taiwan. In the future, the area of high and low suitability zones will increase and the area of medium suitability zones will decrease. The area of low suitability zone will still be in the largest proportion. This study aims to provide a theoretical reference for the future control of R. ferrugineus from the perspective of geographic distribution.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

These authors contributed equally to this work and should be regarded as co-first authors.

References

Abdel-Raheem, MA, ALghamdi, HA and Reyad, NF (2019) Virulence of fungal spores and silver nano-particles from entomopathogenic fungi on the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae). Egyptian Journal of Biological Pest Control 29, 97. doi: 10.1186/s41938-019-0200-2CrossRefGoogle Scholar
Abdel Raheem, M, ALghamdi, HA and Reyad, NF (2020) Nano essential oils against the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae). Entomological Research 50, 215220. doi: 10.1111/1748-5967.12428CrossRefGoogle Scholar
Abdelsalam, S, Alzahrani, AM, Elmenshawy, OM and Abdel-Moneim, AM (2020) Antioxidant status and ultrastructural defects in the ovaries of red palmweevils (Rhynchophorus ferrugineus) intoxicated with spinosad. Entomological Research 50, 309316.CrossRefGoogle Scholar
Ahmadi, M, Hemami, MR, Kaboli, M and Shabani, F (2023) MaxEnt brings comparable results when the input data are being completed; model parameterization of four species distribution models. Ecology and Evolution 13, e9827. doi: 10.1002/ece3.9827CrossRefGoogle ScholarPubMed
Ahmed, R and Freed, S (2021) Virulence of Beauveria bassiana Balsamo to red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Egyptian Journal of Biological Pest Control 31, 14. doi: 10.1186/s41938-021-00422-5CrossRefGoogle Scholar
Alsamadisi, AG, Tran, LT and Papeş, M (2020) Employing inferences across scales: integrating spatial data with different resolutions to enhance Maxent models. Ecological Modelling 415, 108857. doi: 10.1016/j.ecolmodel.2019.108857CrossRefGoogle Scholar
Alshammari, N, Alazmi, M, Alanazi, NA, Sulieman, AE, Veettil, VN and Ponce-Alonso, M (2022) A comparative study on the microbial communities of Rhynchophorus ferrugineus (red palm weevil)-infected and healthy palm trees. Arabian Journal for Science and Engineering 47, 67356746. doi: 10.1007/s13369-021-05979-9CrossRefGoogle Scholar
Barber, RA, Ball, SG, Morris, RKA and Gilbert, F (2022) Target-group backgrounds prove effective at correcting sampling bias in Maxent models. Diversity and Distributions 28, 128141. doi: 10.1111/ddi.13442CrossRefGoogle Scholar
Booth, TH, Nix, HA, Busby, JR and Hutchinson, MF (2014) et al. bioclim: the first species distribution modelling package, its early applications and relevance to most currentMaxEnt studies. Diversity and Distributions 20, 19. doi: 10.1111/ddi.12144CrossRefGoogle Scholar
Bowler, MG (2014) Species abundance distributions, statistical mechanics and the priors of MaxEnt. Theoretical Population Biology 92, 6977. doi: 10.1016/j.tpb.2013.12.002CrossRefGoogle ScholarPubMed
Chaoli, T, Yidong, Z, Heli, W and Yuanyuan, W (2023) Temporal and spatial variation characteristics of tropopause temperature over China in recent 40 years. Journal of Atmospheric and Environmental Optics 18, 2535. doi: 10.3969/j.issn.1673-6141.2023.01.003Google Scholar
Convertino, M, Muñoz-Carpena, R, Chu-Agor, ML, Kiker, GA and Linkov, I (2014) Untangling drivers of species distributions: global sensitivity and uncertainty analyses of MaxEnt. Environmental Modelling & Software 51, 296309. doi: 10.1016/j.envsoft.2013.10.001CrossRefGoogle Scholar
Costa, H, Ponte, NB, Azevedo, EB and Gil, A (2015) Fuzzy set theory for predicting the potential distribution and cost-effective monitoring of invasive species. Ecological Modelling 316, 122132. doi: 10.1016/j.ecolmodel.2015.07.034CrossRefGoogle Scholar
El-Zoghby, IRM, Awad, NS, Alkhaibari, AM and Abdel-Hameid, NF (2022) Ultrastructure traits and genetic variability of red palm weevil Rhynchophorus ferrugineus (Olivier) adults from different geographical locations in Egypt. Diversity 14, 404. doi: 10.3390/d14050404CrossRefGoogle Scholar
Fiaboe, M and Peterson, KK (2012) Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Florida Entomologist 95, 659. doi: 10.1653/024.095.0317CrossRefGoogle Scholar
Fourcade, Y, Engler, JO, Rodder, D and Secondi, J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122. doi: 10.1371/journal.pone.0097122CrossRefGoogle Scholar
Fredriksen, HB, Smith, CJ, Modak, A and Rugenstein, M (2023) 21st Century scenario forcing increases more for CMIP6 than CMIP5 models. Geophysical Research Letters 50, e2023GL102916. doi: 10.1029/2023GL102916CrossRefGoogle Scholar
Gao, R, Liu, L, Zhao, L and Cui, S (2023) Potentially suitable geographical area for Monochamus alternatus under current and future climatic scenarios based on optimized MaxEnt model. Insects 14, 182. doi: 10.3390/insects14020182CrossRefGoogle ScholarPubMed
Ge, X, He, S, Wang, T, Yan, W and Zong, S (2015) Potential distribution predicted for Rhynchophorus ferrugineus in China under different climate warming scenarios. PLoS ONE 10, e0141111. doi: 10.1371/journal.pone.0141111CrossRefGoogle Scholar
Guillera-Arroita, G, Lahoz-Monfort, JJ, Elith, J (2014) Maxent is not a presence-absence method: a comment on Thibaud et al. Methods in Ecology and Evolution 5, 11921197. doi: 10.1111/2041-210X.12252CrossRefGoogle Scholar
Halvorsen, R, Mazzoni, S, Dirksen, JW, Næsset, E, Gobakken, T and Ohlson, M (2016) How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt? Ecological Modelling 328, 108118. doi: 10.1016/j.ecolmodel.2016.02.021CrossRefGoogle Scholar
Harte, J, Umemura, K and Brush, M (2021) DynaMETE: a hybrid MaxEnt-plus-mechanism theory of dynamic macroecology. Ecology Letters 24, 935949. doi: 10.1111/ele.13714CrossRefGoogle ScholarPubMed
Kebiao, M, Yibo, Y, Bing, Z, Zijin, Y and Mengmeng, C (2023) Surface temperature analysis of temporal and spatial changes and driving factors in China. Journal of Catastrophology 38, 6073. doi: 10.3969/j.issn.1000-811X.2023.02.010Google Scholar
Korbel, J (2021) Calibration invariance of the MaxEnt distribution in the maximum entropy principle. Entropy-Switz 23, 96. doi: 10.3390/e23010096CrossRefGoogle ScholarPubMed
Kramer-Schadt, S, Niedballa, J and Pilgrim, JD (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19, 13661379. doi: 10.1111/ddi.12096CrossRefGoogle Scholar
Kurdi, H, Al-Aldawsari, A, Al-Turaiki, I and Aldawood, AS (2021) Early detection of red palm weevil, Rhynchophorus ferrugineus (Olivier), infestation using data mining. Plants-Basel 10, 95. doi: 10.3390/plants10010095CrossRefGoogle ScholarPubMed
Lijiao, P and Yihang, L (2022) Survey on the occurrence of red and brown weevil in Chenggong District, Kunming and its prevention and control measures. Hubei Plant Protection 190, 5455.Google Scholar
Losada, M, Penas, VA, Holik, F and Lamberti, PW (2022) MaxEnt principle and reduced density matrix estimation. Physica A: Statistical Mechanics and its Applications 600, 127517. doi: 10.1016/j.physa.2022.127517CrossRefGoogle Scholar
Montiel, EE, Mora, P, Rico-Porras, JM, Palomeque, T and Lorite, P (2022) Satellitome of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the most diverse among insects. Frontiers in Ecology and Evolution 10, 826808. doi: 10.3389/fevo.2022.826808CrossRefGoogle Scholar
Morales, NS and Fernández, IC (2020) Land-cover classification using MaxEnt: can we trust in model quality metrics for estimating classification accuracy? Entropy-Switz 22, 342. doi: 10.3390/e22030342CrossRefGoogle ScholarPubMed
Nengjie, Q (2022) The application of palm plants in Maoming urban landscape. Anhui Agricultural Science 50, 127129.Google Scholar
Nurashikin-Khairuddin, W, Abdul-Hamid, SNA, Mansor, MS, Bharudin, L, Othman, Z and Jalinas, J (2022) A review of entomopathogenic Nematodes as a biological control agent for red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Insects 13, 245. doi: 10.3390/insects13030245CrossRefGoogle ScholarPubMed
Wang, X, Hou, W, Song, C, Deng, MH, Li, Y and Wang, JQ (2021) BW-MaxEnt: a novel MCDM method for limited knowledge. Mathematics-Basel 9, 1587. doi: 10.3390/math9141587Google Scholar
Wang, Z, Xu, D, Liao, W, Xu, Y and Zhuo, Z (2023) Predicting the current and future distributions of Frankliniella occidentalis (Pergande) based on the MaxEnt species distribution model. Insects 14, 458. doi: 10.3390/insects14050458CrossRefGoogle ScholarPubMed
West, AM, Kumar, S, Brown, CS, Stohlgren, T and Bromberg, J (2016) Field validation of an invasive species Maxent model. Ecological informatics 36, 126134. doi: 10.1016/j.ecoinf.2016.11.001CrossRefGoogle Scholar
Xinyue, H, Mingjin, J and Buda, S (2023) Trends of summer apparent temperature in China metropolises for 1961–2022. Energy Research and Management 15, 106113.Google Scholar
Xu, L, Qu, J, Han, J, Zeng, J and Li, H (2021) Distribution and evolutionary in household energy-related CO2 emissions (HCEs) based on Chinese north–south demarcation. Energy Reports 7, 69736982. doi: 10.1016/j.egyr.2021.09.104CrossRefGoogle Scholar
Yang, T, Wu, L, Liao, C, Li, D, Young Shin, T and Nai, YS (2023) Entomopathogenic fungi-mediated biological control of the red palm weevil Rhynchophorus ferrugineus. Journal of Asia-Pacific Entomology 26, 102037. doi: 10.1016/j.aspen.2023.102037CrossRefGoogle Scholar
Yasin, M, Wakil, W and Qayyum, MA (2021) Biocontrol potential of entomopathogenic fungi, nematodes and bacteria against Rhynchophorus ferrugineus (Olivier). Egyptian Journal of Biological Pest Control 31, 138. doi: 10.1186/s41938-021-00484-5CrossRefGoogle Scholar
Yu, LH, Xianjie, M, Jiahui, T and Chunhan, J (2023) Characterization of temperature changes in the arid zone of Northwest China in the past millennium and analysis of their causes. Quaternary Sciences 43, 10891100.Google Scholar
Zhang, H, Bai, J and Huang, S (2020) Neuropeptides and G-protein coupled receptors (GPCRs) in the red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Frontiers in Physiology 11, 159. doi: 10.3389/fphys.2020.00159CrossRefGoogle ScholarPubMed
Zhijun, S (1998) Rihuazi and <the Rihuazi Materia Medica>. Jiangsu Traditional Chinese Medicine 12, 35.Google Scholar
Zhou, Y, Zhang, Z and Zhu, B (2021) MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China. Forests 12, 752. doi: 10.3390/f12060752CrossRefGoogle Scholar
Zhu, J, Li, J and Wang, C (2019) Anatomy of the windmill palm (Trachycarpus fortunei) and its application potential. Forests 10, 1130. doi: 10.3390/f10121130CrossRefGoogle Scholar
Supplementary material: File

Wang et al. supplementary material 1

Wang et al. supplementary material
Download Wang et al. supplementary material 1(File)
File 25 MB
Supplementary material: File

Wang et al. supplementary material 2

Wang et al. supplementary material
Download Wang et al. supplementary material 2(File)
File 104.7 KB
Supplementary material: File

Wang et al. supplementary material 3

Wang et al. supplementary material
Download Wang et al. supplementary material 3(File)
File 12.4 KB