Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-28T08:31:11.571Z Has data issue: false hasContentIssue false

An Augmented Variable Dirichlet Process mixture model for the analysis of dependent lifetimes

Published online by Cambridge University Press:  02 December 2024

Francesco Ungolo*
Affiliation:
School of Risk and Actuarial Studies University of New South Wales Kensington, NSW 2052, Australia ARC Centre of Excellence in Population Ageing Research, University of New South Wales Kensington, NSW 2052, Australia
Patrick J. Laub
Affiliation:
School of Risk and Actuarial Studies University of New South Wales Kensington, NSW 2052, Australia
*
Corresponding author: Francesco Ungolo; Email: [email protected]

Abstract

The analysis of insurance and annuity products issued on multiple lives requires the use of statistical models which account for lifetime dependence. This paper presents a Dirichlet process mixture-based approach that allows to model dependent lifetimes within a group, such as married couples, accounting for individual as well as group-specific covariates. The model is analyzed in a fully Bayesian setting and illustrated to jointly model the lifetime of male–female couples in a portfolio of joint and last survivor annuities of a Canadian life insurer. The inferential approach allows to account for right censoring and left truncation, which are common features of data in survival analysis. The model shows improved in-sample and out-of-sample performance compared to traditional approaches assuming independent lifetimes and offers additional insights into the determinants of the dependence between lifetimes and their impact on joint and last survivor annuity prices.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbring, J.H. and van den Berg, G.J. (2003) The identifiability of the mixed proportional hazards competing risks model. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(3), 701710.CrossRefGoogle Scholar
Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716723.CrossRefGoogle Scholar
Barcella, W., De Iorio, M., Favaro, S. and Rosner, G. L. (2017) Dependent generalized Dirichlet process priors for the analysis of acute lymphoblastic leukemia. Biostatistics, 19(3), 342358. https://doi.org/10.1093/biostatistics/kxx042 CrossRefGoogle Scholar
Beraha, M., Guglielmi, A., Quintana, F.A., Iorio, M.D., Eriksson, J.G. and Yap, F. (2023) Childhood obesity in Singapore: A Bayesian nonparametric approach. Statistical Modelling, 1471082X231185892. https://doi.org/10.1177/1471082X231185892 Google Scholar
Blackwell, D. and MacQueen, J.B. (1973) Ferguson distributions via Polya urn schemes. Annals of Statistics, 1(2), 353355. https://doi.org/10.1214/aos/1176342372 CrossRefGoogle Scholar
Blei, D., Kucukelbir, A. and McAuliffe, J. (2016) Variational inference: A review for statisticians. Journal of the American Statistical Association, 112, 859877.CrossRefGoogle Scholar
Carriere, J.F. (2000) Bivariate survival models for coupled lives. Scandinavian Actuarial Journal, 2000(1), 1732. https://doi.org/10.1080/034612300750066700 CrossRefGoogle Scholar
De Iorio, M., Müller, P., Rosner, G. and MacEachern, S. (2004) An ANOVA model for dependent random measures. Journal of the American Statistical Association, 99(465), 205215. https://doi.org/10.1198/016214504000000205 CrossRefGoogle Scholar
Denuit, M. and Cornet, A. (1999) Multilife premium calculation with dependent future lifetimes.Google Scholar
Denuit, M., Dhaene, J., Le Bailly De Tilleghem, C. and Teghem, S. (2001) Measuring the impact of a dependence among insured life lengths. Belgian Actuarial Bulletin, 1(1), 1839.Google Scholar
Deresa, N., Van Keilegom, I. and Antonio, K. (2022) Copula-based inference for bivariate survival data with left truncation and dependent censoring. Insurance: Mathematics and Economics, 107, 121. https://www.sciencedirect.com/science/article/pii/S0167668722000841 Google Scholar
Dickson, D.C.M., Hardy, M.R. and Waters, H.R. (2013) Actuarial Mathematics for Life Contingent Risks, International Series on Actuarial Science. Cambridge: Cambridge University Press.Google Scholar
Dufresne, F., Hashorva, E., Ratovomirija, G. and Toukourou, Y. (2018) On age difference in joint lifetime modelling with life insurance annuity applications. Annals of Actuarial Science, 12(2), 350371.CrossRefGoogle Scholar
Dunson, D.B. (2010) Nonparametric Bayes Applications to Biostatistics , Cambridge Series in Statistical and Probabilistic Mathematics, pp. 223273. Cambridge: Cambridge University Press.Google Scholar
Escobar, M.D. and West, M. (1995) Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90(430), 577588. https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476550 CrossRefGoogle Scholar
Ferguson, T.S. (1973) A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1(2), 209230. https://doi.org/10.1214/aos/1176342360 CrossRefGoogle Scholar
Frees, E.W., Carriere, J. and Valdez, E. (1996) Annuity valuation with dependent mortality. The Journal of Risk and Insurance, 63(2), 229261. http://www.jstor.org/stable/253744 CrossRefGoogle Scholar
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B. (2013) Bayesian Data Analysis, 3rd edn. Boca Raton, FL: Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.CrossRefGoogle Scholar
Gorfine, M. and Hsu, L. (2011) Frailty-based competing risks model for multivariate survival data. Biometrics, 67(2), 415426. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2010.01470.x CrossRefGoogle ScholarPubMed
Gourieroux, C. and Lu, Y. (2015) Love and death: A Freund model with frailty. Insurance: Mathematics and Economics, 63(C), 191203. https://ideas.repec.org/a/eee/insuma/v63y2015icp191-203.html Google Scholar
Gribkova, S. and Lopez, O. (2015) Non-parametric copula estimation under bivariate censoring. Scandinavian Journal of Statistics, 42(4), 925946. https://onlinelibrary.wiley.com/doi/abs/10.1111/sjos.12144 CrossRefGoogle Scholar
Heinz, D. (2014) Nonparametric mixed membership models. In Handbook of Mixed Membership Models and Their Applications. Handbook of Modern Statistical Methods, pp. 89–116. Chapman & Hall.Google Scholar
Hjort, N.L. (2000) Bayesian analysis for a generalised Dirichlet process prior. Technical Report, Matematisk Institutt, Universitetet i Oslo.Google Scholar
Huang, X. and Wolfe, R.A. (2002) A frailty model for informative censoring. Biometrics, 58(3), 510520.CrossRefGoogle ScholarPubMed
Ishwaran, H. and James, L.F. (2001) Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453), 161173. https://doi.org/10.1198/016214501750332758 CrossRefGoogle Scholar
Ji, M., Hardy, M. and Li, J.S.-H. (2011) Markovian approaches to joint-life mortality. North American Actuarial Journal, 15(3), 357376. https://doi.org/10.1080/10920277.2011.10597625 CrossRefGoogle Scholar
Ji, M., Hardy, M. and Li, J.S.-H. (2012) A semi-Markov multiple state model for reverse mortgage terminations. Annals of Actuarial Science, 6(2), 235257.CrossRefGoogle Scholar
Kalli, M., Griffin, J. and Walker, S. (2011) Slice sampling mixture models. Statistics and Computing, 21, 93105.CrossRefGoogle Scholar
Lo, A.Y. (1984) On a class of Bayesian nonparametric estimates: I. Density estimates. The Annals of Statistics, 12(1), 351357. https://doi.org/10.1214/aos/1176346412 CrossRefGoogle Scholar
Lopez, O. (2012) A generalization of the Kaplan–Meier estimator for analyzing bivariate mortality under right-censoring and left-truncation with applications in model-checking for survival copula models. Insurance: Mathematics and Economics, 51(3), 505516. https://www.sciencedirect.com/science/article/pii/S0167668712000881 Google Scholar
Lu, Y. (2017) Broken-heart, common life, heterogeneity: Analyzing the spousal mortality dependence. ASTIN Bulletin, 47(3), 837874.CrossRefGoogle Scholar
Luciano, E., Spreeuw, J. and Vigna, E. (2008) Modelling stochastic mortality for dependent lives. Insurance: Mathematics and Economics, 43(2), 234244. https://www.sciencedirect.com/science/article/pii/S0167668708000929 Google Scholar
MacEachern, S. (2000) Dependent Dirichlet process. Technical Report, Department of Statistics, The Ohio State University.Google Scholar
Müller, P., Erkanli, A. and West, M. (1996) Bayesian curve fitting using multivariate normal mixtures. Biometrika, 83(1), 6779. https://doi.org/10.1093/biomet/83.1.67 CrossRefGoogle Scholar
Norberg, R. (1989) Actuarial analysis of dependent lives. Bulletin de l’Association Suisse des Actuaires, 243255.Google Scholar
Papaspiliopoulos, O. and Roberts, G.O. (2008) Retrospective Markov Chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika, 95(1), 169186. http://www.jstor.org/stable/20441450 CrossRefGoogle Scholar
Parkes, C.M., Benjamin, B. and Fitzgerald, R.G. (1969) Broken heart: A statistical study of increased mortality among widowers. BMJ, 1(5646), 740743. https://www.bmj.com/content/1/5646/740 CrossRefGoogle Scholar
R Core Team (2013) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ Google Scholar
Richards, S.J. (2008) Applying survival models to pensioner mortality data. British Actuarial Journal, 14(2), 257303.CrossRefGoogle Scholar
Roberts, G.O., Gelman, A. and Gilks, W.R. (1997) Weak convergence and optimal scaling of random walk Metropolis algorithms. Annals of Applied Probability, 7(1), 110120.Google Scholar
Sethuraman, J. (1994) A constructive definition of Dirichlet priors. Statistica Sinica, 4(2), 639650. http://www.jstor.org/stable/24305538 Google Scholar
Spreeuw, J. and Owadally, I. (2013) Investigating the broken-heart effect: A model for short-term dependence between the remaining lifetimes of joint lives. Annals of Actuarial Science, 7(2), 236257.CrossRefGoogle Scholar
Ungolo, F., Christiansen, M.C., Kleinow, T. and MacDonald, A.S. (2019) Survival analysis of pension scheme mortality when data are missing. Scandinavian Actuarial Journal, 2019(6), 523547. https://doi.org/10.1080/03461238.2019.1580610 CrossRefGoogle Scholar
Ungolo, F., Kleinow, T. and Macdonald, A.S. (2020) A hierarchical model for the joint mortality analysis of pension scheme data with missing covariates. Insurance: Mathematics and Economics, 91, 6884. http://www.sciencedirect.com/science/article/pii/S0167668720300032 Google Scholar
Ungolo, F. and van den Heuvel, E.R. (2022) Inference on latent factor models for informative censoring. Statistical Methods in Medical Research, 09622802211057290. PMID: 35077263. https://doi.org/10.1177/09622802211057290 CrossRefGoogle ScholarPubMed
Ungolo, F. and van den Heuvel, E.R. (2024) A Dirichlet process mixture regression model for the analysis of competing risk events. Insurance: Mathematics and Economics, 116, 95113. https://www.sciencedirect.com/science/article/pii/S0167668724000295 Google Scholar
van den Berg, G.J. and Drepper, B. (2022) A unique bond: Twin bereavement and lifespan associations of identical and fraternal twins. Journal of the Royal Statistical Society Series A: Statistics in Society, 185(2), 677698. https://doi.org/10.1111/rssa.12789 CrossRefGoogle Scholar
Vaupel, J.W., Manton, K.G. and Stallard, E. (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16(3), 439454. http://www.jstor.org/stable/2061224 CrossRefGoogle ScholarPubMed
Vihola, M. (2012) Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics and Computing, 22, 9971008.CrossRefGoogle Scholar
Walker, S.G. (2007) Sampling the Dirichlet mixture model with slices. Communications in Statistics - Simulation and Computation, 36(1), 4554. https://doi.org/10.1080/03610910601096262 CrossRefGoogle Scholar
Watanabe, S. (2009) Algebraic Geometry and Statistical Learning Theory. New York, NY, USA: Cambridge University Press.CrossRefGoogle Scholar
Yashin, A.I. and Iachine, I.A. (1995) Genetic analysis of durations: Correlated frailty model applied to survival of Danish twins. Genetic Epidemiology, 12, 529538.CrossRefGoogle ScholarPubMed
Youn, H. and Shemyakin, A. (1999) Statistical aspects of joint life insurance pricing. Proceedings of the Business and Statistics Section of the American Statistical Association, pp. 34–38.Google Scholar
Supplementary material: File

Ungolo and Laub supplementary material

Ungolo and Laub supplementary material
Download Ungolo and Laub supplementary material(File)
File 182.8 KB