No CrossRef data available.
Published online by Cambridge University Press: 10 December 2019
Asymptotic expansions of the Gauss hypergeometric function with large parameters, $F(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D716}_{1}\unicode[STIX]{x1D70F},\unicode[STIX]{x1D6FD}+\unicode[STIX]{x1D716}_{2}\unicode[STIX]{x1D70F};\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D716}_{3}\unicode[STIX]{x1D70F};z)$ as
$|\unicode[STIX]{x1D70F}|\rightarrow \infty$, are known for many special cases, but not for one that the author encountered in recent work on fluid mechanics:
$\unicode[STIX]{x1D716}_{2}=0$ and
$\unicode[STIX]{x1D716}_{3}=\unicode[STIX]{x1D716}_{1}z$. This paper gives the leading term for that case if
$\unicode[STIX]{x1D6FD}$ is not a negative integer and
$z$ is not on the branch cut
$[1,\infty )$, and it shows how subsequent terms can be found.