Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Mariano, F. C. M. Q.
Lima, R. R.
Alvarenga, R. R.
Rodrigues, P. B.
and
Lacerda, W. S.
2014.
Neural network committee to predict the AMEn of poultry feedstuffs.
Neural Computing and Applications,
Vol. 25,
Issue. 7-8,
p.
1903.
de Oca, M.A.R. Montes
Ferreira, L.G.
Lima, R.R.
Gonçalves, T.M.
Saad, F.M.O.B.
and
Zangeronimo, M.G.
2017.
Prediction equations for metabolizable and digestible energy in feline diets.
Animal Feed Science and Technology,
Vol. 228,
Issue. ,
p.
91.
Gitoee, A.
Faridi, A.
and
France, J.
2018.
Mathematical models for response to amino acids: estimating the response of broiler chickens to branched-chain amino acids using support vector regression and neural network models.
Neural Computing and Applications,
Vol. 30,
Issue. 8,
p.
2499.
Indah, A S
Permana, I G
and
Despal
2020.
Determination dry matter digestibility of tropical forage using nutrient compisition.
IOP Conference Series: Earth and Environmental Science,
Vol. 484,
Issue. 1,
p.
012113.
Mariano, Flávia Cristina Martins Queiroz
Lima, Renato Ribeiro de
Alvarenga, Renata Ribeiro
and
Rodrigues, Paulo Borges
2020.
Committee neural network and weighted multiple regression to predict the energetic values of poultry feedstuffs.
Pesquisa Agropecuária Brasileira,
Vol. 55,
Issue. ,
Mariano, F.C.M.Q.
Neto, M.F.
Lima, R.R.
Alvarenga, R.R.
and
Rodrigues, P.B.
2020.
AMEn Predictor: A mobile app to predict energy values of broilers feedstuffs.
Computers and Electronics in Agriculture,
Vol. 175,
Issue. ,
p.
105509.
Alvarenga, Tatiane C
Lima, Renato R
Bueno Filho, Júlio S S
Simão, Sérgio D
Mariano, Flávia C Q
Alvarenga, Renata R
and
Rodrigues, Paulo B
2021.
Application of Bayesian networks to the prediction of the AMEn: a new methodology in broiler nutrition.
Translational Animal Science,
Vol. 5,
Issue. 1,
Alvarenga, Tatiane Carvalho
de Lima, Renato Ribeiro
Simão, Sérgio Domingos
Brandão Júnior, Luiz Carlos
de Sousa Bueno Filho, Júlio Sílvio
Alvarenga, Renata Ribeiro
Rodrigues, Paulo Borges
and
Furtado Leite, Daniel
2022.
Ensemble of hybrid Bayesian networks for predicting the AMEn of broiler feedstuffs.
Computers and Electronics in Agriculture,
Vol. 198,
Issue. ,
p.
107067.
Leishman, E.M.
You, J.
Ferreira, N.T.
Adams, S.M.
Tulpan, D.
Zuidhof, M.J.
Gous, R.M.
Jacobs, M.
and
Ellis, J.L.
2023.
Review: When worlds collide – poultry modeling in the ‘Big Data’ era.
animal,
Vol. 17,
Issue. ,
p.
100874.
Martínez Marín, Andrés L.
Gariglio, Marta
Biasato, Ilaria
Gasco, Laura
and
Schiavone, Achille
2023.
Meta-analysis of the effect of black soldier fly larvae meal in diet on broiler performance and prediction of its metabolisable energy value.
Italian Journal of Animal Science,
Vol. 22,
Issue. 1,
p.
379.
Thiruchchenthuran, S.
Zaefarian, F.
Abdollahi, M.R.
Wester, T.J.
and
Morel, P.C.H.
2025.
Validation of prediction equations to estimate the nutritive value of broiler chicken diets based on their chemical composition.
Animal Feed Science and Technology,
Vol. 322,
Issue. ,
p.
116272.