No CrossRef data available.
Published online by Cambridge University Press: 21 April 2025
Station-keeping control is a critical technology for stratospheric aerostats. For those aerostats that utilise wind field environments to achieve trajectory control, the station-keeping capability of a single aerostat is inherently limited. This limitation can lead to instances of the aerostat flying outside the designated task area, thereby diminishing the effectiveness of station-keeping control. To ensure continuous monitoring of the restricted area for long endurance, dynamic adjustments and cooperative coverage among multiple aerostats are necessary. This paper introduces an optimal coverage algorithm based on Voronoi diagrams and presents a formation control method for stratospheric aerostats that employs the virtual force method and the ${A^{\rm{*}}}$ algorithm, respectively. In a real wind field environment, ten aerostats are deployed to optimally cover the restricted area. Simulation results indicate that the coverage rate of the stratospheric aerostats within the restricted area can exceed 70%, while the network connectivity rate among the aerostats can reach 80% following guidance control during return flights. Furthermore, the stratospheric aerostats that flying out of the restricted area can return through path planning and optimal coverage algorithm, and the networking connectivity rate between aerostats is higher than that using the virtual force method.