Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-29T03:28:56.489Z Has data issue: false hasContentIssue false

An asymptotic approach to centrally planned portfolio selection

Published online by Cambridge University Press:  08 February 2024

Zongxia Liang*
Affiliation:
Tsinghua University
Yang Liu*
Affiliation:
The Chinese University of Hong Kong, Shenzhen
*
*Postal address: Department of Mathematical Sciences, Tsinghua University, 30 Shuangqing Road, Haidian Dist, Beijing 100084, China. Email address: [email protected]
**Postal address: Division of Mathematics, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Blvd, Longgang Dist, Shenzhen, Guangdong 518172, China. Email address: [email protected]

Abstract

We formulate a centrally planned portfolio selection problem with the investor and the manager having S-shaped utilities under a recently popular first-loss contract. We solve for the closed-form optimal portfolio, which shows that a first-loss contract can sometimes behave like an option contract. We propose an asymptotic approach to investigate the portfolio. This approach can be adopted to illustrate economic insights, including the fact that the portfolio under a convex contract becomes more conservative when the market state is better. Furthermore, we discover a means of Pareto improvement by simultaneously considering the investor’s utility and increasing the manager’s incentive rate. This is achieved by establishing the collection of Pareto points of a single contract, proving that it is a strictly decreasing and strictly concave frontier, and comparing the Pareto frontiers of different contracts. These results may be helpful for the illustration of risk choices and the design of Pareto-optimal contracts.

MSC classification

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aase, K. K. (1993). Equilibrium in a reinsurance syndicate; existence, uniqueness and characterization. ASTIN Bull. 23, 185211.10.2143/AST.23.2.2005091CrossRefGoogle Scholar
Asimit, V. and Boonen, T. J. (2018). Insurance with multiple insurers: a game-theoretic approach. Europ. J. Operat. Res. 267, 778790.10.1016/j.ejor.2017.12.026CrossRefGoogle Scholar
Barberis, N. and Thaler, R. (2003). A survey of behavioral finance. In Handbook of the Economics of Finance, Vol. 1, Financial Markets and Asset Pricing, eds Constantinides, M. H. G. M. and Stulz, R., Elsevier, Kidlington, pp. 1053–1128.Google Scholar
Berkelaar, A. B., Kouwenberg, R. and Post, G. T. (2004). Optimal portfolio choice under loss aversion. Rev. Econom. Statist. 86, 973987.10.1162/0034653043125167CrossRefGoogle Scholar
Bielecki, T. R., Jin, H., Pliska, S. R. and Zhou, X. Y. (2005). Continuous-time mean-variance portfolio selection with bankruptcy prohibition. Math. Finance 15, 213244.10.1111/j.0960-1627.2005.00218.xCrossRefGoogle Scholar
Boonen, T. J. (2015). Competitive equilibria with distortion risk measures. ASTIN Bull. 45, 703728.10.1017/asb.2015.11CrossRefGoogle Scholar
Borch, K. (1962). Equilibrium in a reinsurance market. Econometrica 30, 424444.10.2307/1909887CrossRefGoogle Scholar
Cai, J., Liu, H. and Wang, R. (2017). Pareto-optimal reinsurance arrangements under general model settings. Insurance Math. Econom. 77, 2437.10.1016/j.insmatheco.2017.08.004CrossRefGoogle Scholar
Carpenter, J. N. (2000). Does option compensation increase managerial risk appetite? J. Finance 55, 23112331.10.1111/0022-1082.00288CrossRefGoogle Scholar
Chen, A., Hieber, P. and Nguyen, T. (2019). Constrained non-concave utility maximization: an application to life insurance contracts with guarantees. Europ. J. Operat. Res. 273, 11191135.10.1016/j.ejor.2018.09.002CrossRefGoogle Scholar
Chinchuluun, A. and Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Ann. Operat. Res. 154, 2950.10.1007/s10479-007-0186-0CrossRefGoogle Scholar
Cvitanić, J., Possamaï, D. and Touzi, N. (2017). Moral hazard in dynamic risk management. Manag. Sci. 63, 3328–3346.10.1287/mnsc.2016.2493CrossRefGoogle Scholar
Cvitanić, J. and Zhang, J. (2013). Contract Theory in Continuous-Time Models. Springer, New York.10.1007/978-3-642-14200-0CrossRefGoogle Scholar
He, L., Liang, Z., Liu, Y. and Ma, M. (2019). Optimal control of DC pension plan manager under two incentive schemes. N. Amer. Actuarial J. 23, 120141.10.1080/10920277.2018.1513371CrossRefGoogle Scholar
He, L., Liang, Z., Liu, Y. and Ma, M. (2020). Weighted utility optimization of the participating endowment contract. Scand. Actuarial J. 2020, 577613.10.1080/03461238.2019.1698452CrossRefGoogle Scholar
He, X. D. and Kou, S. (2018). Profit sharing in hedge funds. Math. Finance 28, 5081.10.1111/mafi.12143CrossRefGoogle Scholar
Hodder, J. E. and Jackwerth, J. C. (2007). Incentive contracts and hedge fund management. J. Financial Quant. Anal. 2, 811826.10.1017/S0022109000003409CrossRefGoogle Scholar
Kahneman, D. and Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica 47, 263291.10.2307/1914185CrossRefGoogle Scholar
Karatzas, I. and Shreve, S. E. (1998). Methods of Mathematical Finance. Springer, New York.Google Scholar
Kouwenberg, R. and Ziemba, W. T. (2007) Incentives and risk taking in hedge funds. Journal of Banking and Finance 31, 32913310.10.1016/j.jbankfin.2007.04.003CrossRefGoogle Scholar
Larsen, K. (2005). Optimal portfolio delegation when parties have different coefficients of risk aversion. Quant. Finance 5, 503512.10.1080/14697680500305204CrossRefGoogle Scholar
Liang, Z. and Liu, Y. (2020). A classification approach to the principal-agent problem of general S-shaped utility optimization. SIAM J. Control Optimization 58, 37343762.10.1137/20M1330993CrossRefGoogle Scholar
Lin, H., Saunders, D. and Weng, C. (2017). Optimal investment strategies for participating contracts. Insurance Math. Econom. 73, 137155.10.1016/j.insmatheco.2017.02.001CrossRefGoogle Scholar
Markowitz, H. M. (1952). Portfolio selection. J. Finance 7, 7791.Google Scholar
Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econom. Statist. 51, 247257.10.2307/1926560CrossRefGoogle Scholar
Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. J. Econom. Theory 3, 373413.10.1016/0022-0531(71)90038-XCrossRefGoogle Scholar
Miettinen, K. M. (1999). Nonlinear Multiobjective Optimization. Kluwer, Boston.Google Scholar
Raviv, A. (1979). The design of an optimal insurance policy. Amer. Econom. Rev. 69, 8496.Google Scholar
Reichlin, C. (2013). Utility maximization with a given pricing measure when the utility is not necessarily concave. Math. Financial Econom. 7, 531556.10.1007/s11579-013-0093-xCrossRefGoogle Scholar
Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.10.1515/9781400873173CrossRefGoogle Scholar
Sannikov, Y. (2008). A continuous-time version of the principal-agent problem. Rev. Econom. Stud. 75, 957984.10.1111/j.1467-937X.2008.00486.xCrossRefGoogle Scholar
Stracca, L. (2006). Delegated portfolio management: a survey of the theoretical literature. J. Econom. Surveys 20, 823848.10.1111/j.1467-6419.2006.00271.xCrossRefGoogle Scholar
Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 5, 297323.10.1007/BF00122574CrossRefGoogle Scholar
Yong, J. and Zhou, X. (1999). Stochastic Controls: Hamilton Systems and HJB Equations. Springer, New York.10.1007/978-1-4612-1466-3CrossRefGoogle Scholar