Skip to main content Accessibility help
×
Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-25T14:52:01.379Z Has data issue: false hasContentIssue false

Mechanisms of Change and Creativity in Nature and Culture

Published online by Cambridge University Press:  03 April 2025

Arne Dietrich
Affiliation:
American University of Beirut

Summary

This Element is about change. Specifically, it's about the underlying mechanisms that cause change to happen, both in nature and in culture; what types there are, how they work, where they can be found, and when they come into play. The ultimate aim is to shed light on two barbed issues. First, what kind of system of change is culture and, second, what kind of change in that system counts as creativity; that is, what are the properties of the mechanisms of change when we explore unknown regions of the cultural realm. To that end, a novel theoretical framework is proposed that is based on the concept of a sightedness continuum. A sightedness framework for the mechanisms of change can integrate the three mechanisms causing gradual, adaptive, and cumulative change – evolution, learning, and development – into a single dimension and provide a clear view of how they cause change.
Get access
Type
Element
Information
Online ISBN: 9781009091701
Publisher: Cambridge University Press
Print publication: 03 April 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Element purchase

Temporarily unavailable

References

Baldwin, J. M. (1886). A new factor in evolution. American Nature, 30, 441451.CrossRefGoogle Scholar
Baldwin, J. M. (1902). Development and evolution. New York: Macmillan.Google Scholar
Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Science, 11, 280289.CrossRefGoogle ScholarPubMed
Bar, M. (2009). The proactive brain: Memory for prediction. Philosophical Transactions of the Royal Society B, 364, 12351243.CrossRefGoogle Scholar
Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 12811289.CrossRefGoogle ScholarPubMed
Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago: University of Chicago Press.Google Scholar
Brenner, T. (1998). Can evolutionary algorithms describe learning processes? Journal of Evolutionary Economics and Evolution, 8, 271283.CrossRefGoogle Scholar
Brown, G. R., Dickins, T., Sear, R., & Laland, K. N. (2011). Evolutionary accounts of human behavioural diversity. Philosophical Transactions of the Royal Society Series B, 366, 313324.CrossRefGoogle ScholarPubMed
Bubic, A., Von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4. doi:10.3389/fnhum.2010.00025.Google ScholarPubMed
Burke, J. (1995). Connections. New York: Little Brown & Co. Press.Google Scholar
Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380400.CrossRefGoogle ScholarPubMed
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 173. doi:10.1017/S0140525X12000477.CrossRefGoogle ScholarPubMed
Colder, B. (2011). Emulation as an integrating principle for cognition. Frontiers in Human Neuroscience, 5, 112. doi:10.3389/fnhum.2011.00054.CrossRefGoogle Scholar
Darwin, C. (1859/1968). The origin of species. London: Penguin.Google Scholar
Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1986). The blind watchmaker. New York: W.W. Norton.Google Scholar
Dennett, D. C. (1995). Darwin’s’ dangerous idea. New York: Simon & Schuster.CrossRefGoogle Scholar
Diedrichsen, J., Verstynen, T., Hon, A., Zhang, Y., & Ivry, R. B. (2007). Illusions of force perception: The role of sensori-motor predictions, visual information, and motor errors. Journal of Neurophysiology, 97, 33053313.CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11, 10111026.CrossRefGoogle ScholarPubMed
Dietrich, A. (2007). Introduction to consciousness. London: Palgrave Macmillan.Google Scholar
Dietrich, A. (2015). How creativity happens in the brain. London: Palgrave Macmillan.CrossRefGoogle Scholar
Dietrich, A. (2019). Types of creativity. Psychonomic Bulletin and Review, 26, 112.CrossRefGoogle ScholarPubMed
Dietrich, A., & Haider, H. (2015). Human creativity, evolutionary algorithms, and predictive representations: The mechanics of thought trials. Psychonomic Bulletin & Review, 22, 897915.CrossRefGoogle ScholarPubMed
Dietrich, A., & Haider, H. (2017). A neurocognitive framework for human creative thought. Frontiers in Psychology: Cognitive Science, 7, 20782085.CrossRefGoogle ScholarPubMed
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848.CrossRefGoogle ScholarPubMed
Doncieux, S., Bredeche, N., Mouret, J., & Eiben, E. A. (2015). Evolutionary robotics: What, why, and where to. Frontiers in Robotics AI, 2, 118.CrossRefGoogle Scholar
Downing, K. L. (2009). Predictive models in the brain. Connection Science, 21, 3974.CrossRefGoogle Scholar
Duesberg, R., Stindl, R., & Hehlmann, R. (2000). Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proceedings of the National Academy of Sciences, 97(26), 1429514300.CrossRefGoogle ScholarPubMed
Duffy, S. (2018). Why are RNA virus mutation rates so damn high? PLoS Biology, 16, e3000003.CrossRefGoogle ScholarPubMed
Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. New York: Springer.CrossRefGoogle Scholar
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.CrossRefGoogle Scholar
Fisher, J. C. (2006). Does simulation theory really involve simulation? Philosophical Psychology, 19, 417432. doi:10.1080/09515080600726377.CrossRefGoogle Scholar
Frith, C. D. (1992). The cognitive neuropsychology of schizophrenia. Hove: Lawrence Erlbaum.Google Scholar
Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62, 451482. doi: 10.1146/annurev-psych-120709–145346.CrossRefGoogle ScholarPubMed
Godfrey-Smith, P. (2007). Conditions for evolution by natural selection. Journal of Philosophy, 104, 489516.CrossRefGoogle Scholar
Gould, S. J. (1979). Shades of Lamarck. Natural History, 88, 2228.Google Scholar
Grush, R. (1997). The architecture of representation. Philosophical Psychology, 10, 523.CrossRefGoogle Scholar
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377396.CrossRefGoogle ScholarPubMed
Hammond, R., & Axelrod, R. (2006). The evolution of ethnocentrism. Journal of Conflict Resolution, 50, 926936.CrossRefGoogle Scholar
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646674.CrossRefGoogle ScholarPubMed
Hassabis, D., & Maguire, E. A. (2009). The construction system of the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 12631271. doi:10.1098/rstb.2008.0296.CrossRefGoogle ScholarPubMed
Henrich, J., Boyd, R., & Richerson, P. J. (2008). Five misunderstandings about cultural evolution. Human Nature, 19, 119137.CrossRefGoogle ScholarPubMed
Huxley, J. (1942). Evolution: The modern synthesis. London: Allen & Unwin.Google Scholar
Jablonka, E., & Lamb, M. J. (2014). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Kawato, M., Kawato, M., & Wolpert, D. (1998). Internal models for motor control. Sensory Guidance of Movement, 218, 291307. doi: 10.1016/S0959-4388(99)00028-8Google ScholarPubMed
Kronfeldner, M. E. (2007). Is cultural evolution Lamarckian? Biology and Philosophy, 22, 493512.CrossRefGoogle Scholar
Kronfeldner, M. E. (2010). Darwinian “blind” hypothesis formation revisited. Synthese, 175, 193218.CrossRefGoogle Scholar
Lau, H. (2008). A higher order Bayesian decision theory of consciousness. In Banerjee, R., & Chakrabarti, B. K. (Eds.), Models of brain and mind: Physical, computational, and psychological approaches (pp. 3748). Boston: Elsevier.Google Scholar
Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 118.CrossRefGoogle Scholar
Lewontin, R. C. (1991). Biology as ideology. New York: Harper.Google Scholar
Llinás, R. R. (2001). I of the vortex: From neurons to self. Boston: MIT Press.CrossRefGoogle Scholar
Llinás, R. R., & Roy, S. (2009). The “prediction imperative” as the basis for self-awareness. Philosophical Transactions of the Royal Society B, 364, 13011307.CrossRefGoogle Scholar
Mayr, E. (1981). The growth of biological thought: Diversity, evolution and inheritance. Cambridge, MA: Harvard University Press.Google Scholar
Medawar, P. M. (1953). A commentary on Lamarckism. Repr. in Medawar, P. (Ed.), The uniqueness of the individual (pp. 6387). New York: Dover.Google Scholar
Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88, 942953.CrossRefGoogle ScholarPubMed
Mesoudi, A. (2008). Foresight in cultural evolution. Biological Philosophy, 23, 243255.CrossRefGoogle Scholar
Mesoudi, A. (2011). Cultural evolution: How Darwinian theory can explain human culture and synthesize the social sciences. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Mesoudi, A. (2015). Pursuing Darwin’s curious parallel: Prospects for a science of cultural evolution. Proceedings of the National Academy of Sciences, 114, 78537860.CrossRefGoogle Scholar
Moulton, S. T., & Kosslyn, S. M. (2009). Imagining predictions: Mental imagery as mental emulation. Philosophical Transactions of the Royal Society B, 364, 12731280.CrossRefGoogle ScholarPubMed
Pezzulo, G., Butz, M. V., Castelfranchi, C., & Falcone, R. (Eds.). (2008). Anticipation in natural and artificial cognition. In Pezzulo, G., Butz, M., Castelfranchi, C., The challenge of anticipation: A unifying framework for the analysis and design of artificial cognitive systems, (pp. 322). New York: Springer.CrossRefGoogle Scholar
Pinker, S. (2002). The blank slate: The modern denial of human nature. New York: Penguin.Google Scholar
Plotkin, H. (2011). Human nature, cultural diversity and evolutionary theory. Philosophical Transactions of the Royal Society Series B, 366, 454463.CrossRefGoogle ScholarPubMed
Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 7987. doi: 10.1038/4580.CrossRefGoogle ScholarPubMed
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H., & Prokasy, W. F. (Eds.), Classical conditioning II: Current research and theory (pp. 6499). New York: Appleton Century Crofts.Google Scholar
Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. Chicago: University of Chicago Press.Google Scholar
Schacter, D. L., & Addis, D. R. (2009). On the nature of medial temporal lobe contributions to the constructive simulation of future events. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 12451253. doi:10.1098/rstb.2008.0308.CrossRefGoogle Scholar
Schooler, J. W., & Dougal, S. (1999). Why creativity is not like the proverbial typing monkey. Psychological Inquiry, 10, 351356.Google Scholar
Schubotz, R. I. (2007). Prediction of external events with our motor system: Towards a new framework. Trends in Cognitive Sciences, 11, 211218. doi: 10.1016/j.tics.2007.02.006.CrossRefGoogle ScholarPubMed
Schultz, W. (2000). Multiple reward signals in the brain. Neuroscience, 1, 199207.Google ScholarPubMed
Simonton, D. K. (1999). Creativity as blind variation and selective retention: Is the creative process Darwinian? Psychological Inquiry, 10, 309328.Google Scholar
Simonton, D. K. (2007). The creative process in Picasso’s Guernica sketches: Monotonic improvements or nonmonotonic variation. Creativity Research Journal, 19, 329344.CrossRefGoogle Scholar
Simonton, D. K. (2010). Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity. Physics of Life Reviews, 7, 156179. doi:10.1016/j.plrev.2010.02.002CrossRefGoogle ScholarPubMed
Smith, E. A. (2013). Agency and adaptation: New directions in evolutionary anthropology. Annual Review of Anthropology, 41, 103120.CrossRefGoogle Scholar
Sternberg, R. J. (1998). Cognitive mechanisms in human creativity: Is variation blind or sighted? Journal of Creative Behavior, 32, 159176.CrossRefGoogle Scholar
Thelen, E., & Smith, L. B. (2006). Dynamic systems theories. In Lerner, R. M., & Damon, W. (Eds.), Handbook of child psychology: Theoretical models of human development (6th ed., pp. 258312). Hoboken, NJ: John Wiley & Sons.Google Scholar
Tennebaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure and abstraction. Science, 331, 12791285.CrossRefGoogle Scholar
Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature, 302, 575.CrossRefGoogle ScholarPubMed
Tsao, J. Y., Ting, C. L., & Johnson, C. M. (2019). Creative outcome as implausible utility. Review of General Psychology, 23, 279292.CrossRefGoogle Scholar
Weisberg, R. W. (2004). On structure in the creative process: A quantitative case-study of the creation of Picasso’s Guernica. Empirical Studies of the Arts, 22, 2354.CrossRefGoogle Scholar
Weisberg, R. W., & Hass, R. (2007). We are all partly right: Comment on Simonton. Creativity Research Journal, 19, 345360.CrossRefGoogle Scholar
Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society Series B, 358, 593602.CrossRefGoogle ScholarPubMed
Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 12121228.CrossRefGoogle ScholarPubMed
Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269, 18801882.CrossRefGoogle ScholarPubMed

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanisms of Change and Creativity in Nature and Culture
  • Arne Dietrich, American University of Beirut
  • Online ISBN: 9781009091701
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Mechanisms of Change and Creativity in Nature and Culture
  • Arne Dietrich, American University of Beirut
  • Online ISBN: 9781009091701
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Mechanisms of Change and Creativity in Nature and Culture
  • Arne Dietrich, American University of Beirut
  • Online ISBN: 9781009091701
Available formats
×