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Abstract

This note introduces quasi-local-balance for discrete-time Markov chains with absorbing
states. From quasi-local-balance product-form quasi-stationary distributions are derived
by analogy with product-form stationary distributions for Markov chains that satisfy local
balance.

1. Introduction

Product-form distributions have proven to be a useful tool in the analysis of queueing
networks in equilibrium. Based on product-form distributions various tools for the
analysis of performance measures have been derived. In applications it is often found
that also for systems that do not approach equilibrium, results derived from product-
form distributions give adequate approximations of the system. This note provides
an explanation of the robustness of queueing-network formulas. It will be shown that
the quasi-stationary distribution for queueing networks with defective routing is of
product-form. This result allows one to use known techniques for queueing networks
in equilibrium in the quasi-stationary regime.

This note considers finite Markov chains with a single communicating class of
transient states at which the behaviour of the Markov chain is of interest. As absorp-
tion into the remaining states is certain, the equilibrium distribution at the transient
communicating class is of little value for the analysis of the process. However, it is
often of interest to calculate the limiting distribution of the Markov chain being in a
transient state before absorption takes place. When the time to absorption is suffi-
ciently long, under some conditions, this distribution is known as the quasi-stationary
distribution. The theory for quasi-stationary distributions of Markov chains with finite
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state space is well-developed. The product-form results of this note can be seen as
examples of the results in the papers of Darroch and Seneta [2], [3]. Further results
on quasi-stationary distributions and related notions such as R-recurrence can, for
example, be found in Vere-Jones [8], Seneta and Vere-Jones [7], Kesten [5].

The results of this note are mainly designed to analyse queueing networks of the
Jackson type. To obtain a more comprehensive formulation of the results, the theory is
formulated for queueing networks with batch routing. Section 2 presents the results for
discrete-time Markov chains. In Section 3 the results are illustrated through the jump
chain of a Jackson network. Furthermore, the results are extended to continuous-time
Markov chains.

2. Discrete-time models

Consider a queueing network consisting of N queues or stations. Assume that
the queueing network can be represented by a discrete-time Markov chain X =
{Xk, k = 0,1,2,...} with finite state space 5 that describes the number of customers
at the stations of the network; X makes a transition when customers move among the
queues. A state n = (nu ... , nN) e S is a vector with components «, € No denoting
the number of customers at queue i,i = I,... , N.

For 0 < g < n (componentwise) let fi(g,n).denote the probability that a batch
g = (gi,... , gN), containing gt customers at station i, i = 1,... , N, leaves the
stations when the network is in state n. In accordance with the literature on product-
form distributions (cf. Boucherie and van Dijk [1], Henderson and Taylor [4]), assume
that i/ : N$ -» [0, oo), </> : N$ -+ (0, oo), 0 : N$ -> [0, oo), exist such that

= 1 fo r a l l neS . (2.1)

Upon departure from the queues a batch g becomes a batch g' = (g\,... ,g'N) of
arrivals, g\ customers arriving at station /, with probability p(g,g"). The transition
probabilities of X are

q(n,n')= £ q(g,g';m), n,n' 6 5, (2.2)
I'n.g.g': m+g=n, m+g'=n'}

where

q(g,g'\m)=*{'n)e^)p{g,g'), g,g',meHN
0. (2.3)

We are interested in the case in which X has an absorbing set 5' c 5; X terminates
upon arrival in S' c S. For this process X, let 7 (/in) be the time until absorption
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conditional on X starting in n0 e 5. The quasi-stationary distribution n = (n(n), n €
5 \ 5') is defined by

Jtin) = }}rnP(X, = n\X0 = n0, Tin0) > t),

if the limit exists and is independent of the initial state n0. The quasi-stationary
distribution corresponds to the probability of being in state n given that absorption
has not yet occurred. The limit then accounts for those sample paths for which the
time to absorption is infinite, which supports the independence of n0 for jr.

For discrete-time Markov chains with finite state space, under the assumption that
the matrix

Q:=(q(n,n'), n,n'eS\S')

is primitive, Darroch and Seneta [2] show that the quasi-stationary distribution can be
obtained as the unique Perron-Frobenius left eigenvector of Q, that is, with a < 1 the
maximal real eigenvalue of Q (a < 1 because Q is substochastic), it must be that jr
is the unique solution of

itQ = ajt. (2.4)

Below we will show that the quasi-stationary distribution 7r is of product-form when
the reduced state space 5 \ 5' is of a form that would be compatible with a product-
form equilibrium distribution in a way to be made precise below. The underlying
idea is the notion of quasi-local-balance that replaces the notion of local balance used
to obtain product-form equilibrium distributions. The notion of quasi-local-balance
is related to the routing probabilities p(g,gO- Let us therefore first describe these
routing probabilities in more detail.

ASSUMPTION 2.1. Let G C N^ be such that dig) > 0 if and only ifg e G. Assume
that P = (pig, g1), g,gf e G) is substochastic and primitive. Let a' be the maximal
real eigenvalue of P and c > 0 the corresponding left eigenvector:

cP = a'c. (2.5)

The set G defined above is the set of all batches that can be served. Hence, the routing
matrix P contains entries for batches that can only be served. The substochasticity of
P implies that some of the batches g £ G can route to batches g1 g G, batches that
cannot be served.

By analogy with local balance for ergodic Markov chains, we now define quasi-
local-balance for Markov chains with an absorbing set. Quasi-local-balance can be
seen as the extension of (2.5) to the state space level.
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DEFINITION 2.2. The Markov chain X satisfies quasi-local-balance for some a when
for all m,g such that m+g e S\S',g e G, a positive solution n = (n(n), n e S\S')
exists of

^2n(m+g')q(g',g;m) = an(m + g)/z(g, m + g). (2.6)^2
g'eG

We also say that n satisfies quasi-local-balance for pt at S\ S'.

The relation between quasi-local-balance and (2.4) is similar to the relation between
local balance and global balance.

LEMMA 2.3. If n satisfies quasi-local-balance for a at S \ S' then a is the Perron-
Frobenius eigenvalue of Q, n satisfies (2.4), and n is the unique quasi-stationary
distribution of X.

PROOF. Summing the left-hand side of (2.6) over [g, m : m + g = n, n e S \ S'}
gives that

g,m: m+g=n)g'eC

= J2 H n(m+g')q(g',g;m)
{g.m: m+g=n) fe'eC: m+g'65\S/)

= ^2 ^2 n(m+g')q(g',g;m)
n'eS\5' {m,g',g:m+g'=n',m+g=n}

We have used that n{m + g')q(g', g;m) = 0foTm+g> &S\S',m+ge S \ S in
the first equality. The second equality is due to the primitiveness of P, and the last
equality is obtained from (2.2).

Summing the right hand side over {g, m : m+g = n], using (2.1), gives that

an(m+g)/x(g, m+g) =an(n),
[g.m: m+g=n)

which establishes that n satisfies (2.4).
We have found a positive number a and a vector n > 0, n / 0, such that n Q = an.

Theorem 1.6, p. 23, of Seneta [6] implies that a is the Perron-Frobenius eigenvalue
of Q, which also implies that n is the unique Perron-Frobenius left eigenvector of Q.

We are now ready to state the main result of this section.
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THEOREM 2.4. Assume that H : S \ S' -> (0, oo) exists such that for all g,g* € G,
m+g^m+g1 e S\S'

H(m+g>)9(g') = c(gf)
H(m+g)6(g) c(g)' K'}

Then n given by
n(n) = B4>(n)H(n), neS\S'

satisfies quasi-local-balance for a = a', and n is the unique quasi-stationary distri-
bution of X at S\ S' (B is the normalising constant).

PROOF. It is sufficient to show that n satisfies quasi-local-balance (2.6) at S \ S' with
a = a'. For m, g such that m + g G 5 \ 5':

y^ n(m +gf)q(g>,g; m) y^ jr(m)9(g) H(m +g/)6(g/)

} P(8'S)n{m+g) }?c<t>(m+g) H(m+g)6(g)

(2.7) ^(

( j )

<P(m+g)

REMARK (Local balance). Quasi-local-balance determines the state space S \ S' for
which the equations (2.5) at G can be translated to a set of equations at the state space.
Similar to local balance for product-form results for the equilibrium distribution of
ergodic Markov chains, quasi-local-balance (2.6) restricts the reduced state space
S\ S' considerably. In fact, due to quasi-local-balance, the reduced state space S\S'
must be such that a Markov chain with stochastic routing matrix at G could have a
product-form equilibrium distribution. If g e G, m +g e S \ S', and p(g,g') > 0
for some g1 e G, then m + g' € 5 \ 5' for all g' e G, a direct consequence of the
primitiveness of P.

REMARK (Absorption). Termination of X occurs due to the substochasticity of the
routing matrix P. X terminates when a batch g is routed to a batch g1 & G. The
probability that X terminates from state n € 5 \ S' is

')), n€S\S'. (2.8)
«eG g'eC

As S' is an absorbing set, the transition rates (2.2) are such that q(n,n') = 0 for
n 6 5', ri 6 S \ 5', which imposes restrictions on the rates q(g,gf; m). These rates
do not influence the quasi-stationary distribution at 5 \ S', and the functional form of
q(g, g1', tn) as given in (2.3) is not required when m +g € S'.

https://doi.org/10.1017/S0334270000000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000795


[6] On the quasi-stationary distribution for queueing networks with defective routing 459

REMARK (Decay parameter). The Perron-Frobenius eigenvalue a is the decay para-
meter or convergence norm of the substochastic matrix Q and can also be found
from

I/a = sup I J^ Qk{n, n')zk < oo!.
z U=o J

A result of Theorem 2.4 is that the decay parameter of P equals the decay parameter
of Q. This is not surprising, since X terminates due to the substochasticity of P.

REMARK (Countable state spaces). The results of this note are presented for Markov
chains with a finite state space only. In this case, the left Perron-Frobenius eigenvector
determines the quasi-stationary distribution. For countable state spaces S \ S' we
cannot draw this conclusion. The measure n found in Theorem 2.4 is still a left
eigenvector for the eigenvalue a. To conclude that n is indeed the quasi-stationary
distribution it is sufficient to establish that the transition matrix Q is /^-positive, and
that n is summable (Seneta and Vere-Jones [7]). Also when the Q matrix is not
R-positive, for Markov chains with bounded jumps Kesten [5] shows, under some
conditions, that we can conclude that a positive left eigenvector of Q with eigenvalue
1 / R, is indeed the quasi-stationary distribution. The eigenvalue a obtained in Theorem
2.4 is not guaranteed to coincide with \/R. Moreover, the states of a queueing network
cannot be ordered such that jumps are bounded. Therefore we cannot conclude that
the measure n found in Theorem 2.4 is the quasi-stationary distribution unless S\S'
is finite.

3. Examples and extensions

In this section we will present some examples of discrete-time queueing networks
for which the quasi-stationary distribution has a product-form. In the first example we
consider the jump-chain of a Jackson network. The second example uses the results
for Jackson networks to obtain the quasi-stationary distribution for a discrete-time
queueing network with independently routing customers. Finally, we present the
extension of Theorem 2.4 to continuous-time Markov chains.

3.1. A discrete-time Jackson network We consider a closed Jackson network con-
sisting of N stations in which customers route singly. The process can be seen as
a model for a manufacturing system, stations representing machines, and customers
representing produced items. The system might fail due to defective routing, that
is an item transported from one machine to another might be damaged. When this
occurs the manufacturing system is stopped to remove the damaged item. Below we
will show that the quasi-stationary distribution for this manufacturing system has a
product-form.
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The jump chain of the Jackson network records the number of customers at the
stations and ignores the sojourn time in the states. This jump chain is a discrete-time
model and fits the requirements of Theorem 2.4. The service probabilities are

/*(<?,, n) = —— , i = l,...,N,

where e, denotes the i-th unit vector, and /Lt(e,-, n) satisfies (2.1). Upon completion
at station i a customer is routed to station j with probability p,;. Assume that
P = (pjj, i, j = I, ... , N) is primitive. While routing a customer is damaged with
probability 1 — Yl^i pihi = 1,. . . , N. The probability that the network terminates
from state n is therefore given in (2.8).

Let a' be the Perron-Frobenius eigenvalue of P, and c = (cu ... , cN) the Perron-
Frobenius eigenvector. From Theorem 2.4 we then obtain that the quasi-stationary
distribution of the network that starts with M identical customers is given by

N f N 1

n(n) = B(t>(n)Y\{ck9{ek))
nk, /i e In : ]Tn, = M I , (3.1)

where B is the normalising constant that can be determined using standard techniques
known for product-form queueing networks. The decay parameter is a = a'.

REMARK (Primitiveness of P). The assumption that P is primitive restricts the queue-
ing networks under consideration. For example, a tandem line with absorbing last
queue does not have a primitive routing matrix. On the other hand, in the present
setting the assumption of primitiveness is quite natural, since we are interested only
in those networks for which sample paths of unbounded length are possible. This is
clearly not the case for the tandem network.

REMARK (Product-form). This example illustrates the power of product-form distribu-
tions for the analysis of manufacturing systems. In practical situations the assumption
that the system is in equilibrium is usually not satisfied. Still, in many applications,
it is observed that product-form distributions do give adequate results. The results
of this paper provide an explanation of the robustness of queueing network formulas
also in situations where the obvious assumptions are not satisfied: the form of the
distribution in the quasi-stationary regime is the same as the form of the distribution in
equilibrium. Therefore, when the parameters figuring in the distribution are obtained
from observations of the application, fitting a product-form distribution is justified.

3.2. Discrete-time queueing networks with independently routing customers
Consider a discrete-time closed queueing network consisting of N stations. Assume
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that the service probabilities satisfy (2.1), and assume that customers route independ-
ently according to the routing probabilities p(J defined above. The probability that a
batch g e G is routed to a batch g1 e G is then given by (cf. Boucherie and van Dijk
[1])

P(g,g') = E
j , i= l N, j=l,...,N

gij>0. gii=0 if p,v=0.

The substochasticity of (py, i, j = I,... , N) implies that P = (p(g, g7), g, g' G G)
is substochastic too. The assumption that P is primitive implies that there is a
constant M such that G = {g : Y^=i 8j = M}. This implies that the size of the batch
of customers that can be served is fixed (see Assumption 2.1).

Consider a discrete-time network containing K > M customers. The network
terminates as soon as a batch g is routed to a batch g' with X!.1i (#; ~ Si) 7̂  0. that is,
as soon as a batch is damaged while routing. It can easily be shown that

k=\

is the Perron-Frobenius eigenvector, with corresponding eigenvalue (a')M of P. For

0(ff) = Y\k=\ 8k-\ .the quasi-stationary distribution is given in (3.1).

3.3. Continuous-time Markov chains For continuous-time Markov chains the
quasi-stationary distribution can be obtained by analogy with the result of Theorem
2.4. To this end, consider a continuous-time Markov chain with transition rates

q(n,n')= ^ q(g,g'\m), n'^n,n,rieS,
lm,g,g':m+g=n,m+g'=n'}

q(n,n) = - ^ q(n,ri), n G S,
n'eS, n'jm

where

Assume that /x(g, n) satisfies (2.1), and that Assumption 2.1 is satisfied. Let 5' be the
absorbing set. The transition rate from n e 5 \ S' to 5' is given in (2.8). We have the
following result.
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THEOREM 3.1. Assume that H : S \ S' ->• (0, oo) exists such that for allg,g e G,
m+g,m+g! 6 S\S'

H{m + g^ig) = cjg2
H{m+g)9(g) c(g)'

Then n given by
n(n) = B<p(n)H(n), neS\S'

is the unique quasi-stationary distribution ofXatS\S'(B is the normalising constant).
The decay parameter is a = a' — 1.

PROOF. Darroch and Seneta [1967] show that it is sufficient to prove that n is the
unique Perron-Frobenius eigenvector with Perron-Frobenius eigenvalue a for the
matrix Q = (q(n,ri), n,n' e S\S'). Insertion of the definition of the transition rates
in the equations n Q = an gives that n and a must be determined from

{n(n')q(nr, n) -n{n)q(n, ri)} = an(n) + ^ n(n)q{n, ri).
{n'eS\S\ n'^n) n'eS'

Insertion of the proposed distribution and the transition rates into this equation
gives that a must be determined from

ir(m)9(g)H(m +g) J^ ^ ^ ^ ' ^ - 1 = a<P(n)H(n).
{m,g: m+g=n) [ C ^ J

Assumption 2.1 shows that a is independent of n if and only if /x(g, n) satisfies
(2.1), and that a = a' — 1, which completes the proof.

REMARK (Service probabilities). Assumption (2.1) on fi(g,n) is generally not re-
quired in a continuous-time model to obtain the equilibrium distribution as a product
over the places. This assumption is required to obtain the result of Theorem 3.3.
This illustrates part of the difference between the stationary distribution and the quasi-
stationary distribution. A further difference is that quasi-local-balance for continuous-
time models cannot be defined by analogy with (2.6).

Acknowledgements

The research of R.J. Boucherie has been made possible by a fellowship of the
Royal Netherlands Academy of Arts and Sciences. This research was carried out
while the author was visiting the University of Adelaide supported by Australian

https://doi.org/10.1017/S0334270000000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000795


[10] On the quasi-stationary distribution for queueing networks with defective routing 463

Research Council Grant A69112151. Discussions with N.G. Bean and P.G. Taylor
helped to improve the final result.

References

[1] R. J. Boucherie and N. M. van Dijk, "Product-forms for queueing networks with state dependent
multiple job transitions", Adv. Appl. Prob. 23 (1991) 152-187.

[2] J. N. Darroch and E. Seneta, "On quasi-stationary distributions in absorbing discrete-time finite
Markov chains", J. Appl. Prob. 2 (1965) 88-100.

[3] J. N. Darroch and E. Seneta, "On quasi-stationary distributions in absorbing continuous-time finite
Markov chains", J. Appl. Prob. 4 (1967) 192-196.

[4] W. Henderson and P. G. Taylor, "Product-forms in networks of queues with batch arrival and batch
services", Queueing Systems 6 (1990) 71-88.

[5] H. Kesten, "A ratio limit theorem for (sub) Markov chains on {1, 2, . . .} with bounded jumps", Adv.
Appl. Prob. 27 (1995) 652-691.

[6] E. Seneta, Non-negative matrices and Markov chains (Springer-Verlag, New-York, 1981).
[7] E. Seneta and D. Vere-Jones, "On quasi-stationary distributions in discrete-time Markov chains with

a denumerable infinity of states", /. Appl. Prob. 3 (1966) 403^134.
[8] D. Vere-Jones, "Geometric ergodicity in denumerable Markov chains", Quart. J. Math. Oxford 13

(1962)7-28.

https://doi.org/10.1017/S0334270000000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000795

