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LINEAR STRUCTURE OF WEIGHTED
HOLOMORPHIC NON-EXTENDIBILITY

L. BERNAL-GONZALEZ

In this paper, it is proved that, for any domain G of the complex plane, there exists
an infinite-dimensional closed linear submanifold Mi and a dense linear submanifold
M2 with maximal algebraic dimension in the space H(G) of holomorphic functions on
G such that G is the domain of holomorphy of every nonzero member / of M\ or Mi
and, in addition, the growth of / near each boundary point is as fast as prescribed.

1. INTRODUCTION AND NOTATION

Throughout this paper, the following standard terminology and notation will be
used. The symbols N, C, D, T denote, respectively, the set of positive integers, the com-
plex plane, the open unit disk {z € C : \z\ < 1}, and the unit circle {z G C : \z\ = l } .
If a € C and r > 0 then B(a,r) (B(a,r), respectively) denotes the open (closed, respec-
tively) Euclidean ball with centre a and radius r; in particular, B(0,1) = D. For points
a, b of C, the line segment joining a with b is [a, b]. If A C C then ~A (A0, dA, respec-
tively) denotes its closure (interior, boundary, respectively) in C Moreover, if ZQ G C
then d(zo, A) :— inf{\zo — z \: z € A}. A domain is a nonempty open subset of C. If G is
a domain, then H(G) denotes the Frechet space (= completely metrisable locally convex
space) of holomorphic functions on G, endowed with the topology of uniform convergence
on compacta. In particular, H(G) is a Baire space. Finally, if a e G and / € H(G) then
p{f, a) represents the radius of convergence of the Taylor series of / with centre at a. It
is well known that p(f, a) ^ d(a, dG).

In 1884 Mittag-Leffler (see [9, Chapter 10]) discovered that for any domain G there
exists a function f £ H(G) having G as its domain of holomorphy. Recall that G is said
to be a domain of holomorphy for / if / is holomorphic exactly at G, that is, / e H(G)
and / is analytically non-extendible across dG or, more precisely, p(f, a) = d(a, dG) for
all a € G. Note that this implies that / has no holomorphic extension on any domain
containing G strictly. Both properties are equivalent if, for instance, G is a Jordan
domain, but the equivalence is not general (for instance, consider G := C \ (-oo,0] and
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/ := the principal branch of the logarithm on G). By He(G) we denote the subclass of
functions which are holomorphic exactly at G. Hence, the Mittag-Leffler result mentioned
above says that He(G) / 0 for any domain G.

In 1933 Kierst and Szpilrajn [12] showed that at least for G = D the property
discovered by Mittag-Leffler is generic, in the sense that He(H) is not only nonempty
but even residual -hence dense- in H(D), that is, its complement in H(B>) is of first
category. Recently, Kahane ([11, Theorem 3.1 and following remarks]; see also [10,
Proposition 1.7.6] and [4, Theorem 3.1]) has observed that Kierst-Szpilrajn's theorem
can be extended to every domain G and to rather general topological vector spaces
X C H(G) (including the full space X = H(G))\ indeed, under suitable conditions on
X, he shows that He(G)nX is residual in X. In other words, He(G) C\X is topologically
large in X.

Recently, we have proved [4] for the case G = D that under adequate hypotheses a
topological vector space X C H(U>) satisfies that He(B)r\X is also algebraically large, in
the sense that the last subset contains -except for zero- some "large" (= dense, or closed
infinite-dimensional) linear manifold. Again, the case X = H(D) is covered. Note that
the fact that He(G) is not a linear manifold increases the interest in this matter. As for a
general domain G, Aron, Garcia and Maestre [1, Theorem 8] had already proved in 2001
that H(G) contains a dense linear manifold Mi as well as a closed infinite-dimensional
linear manifold M2 such that Mi\{0} C He{G) (i — 1,2). In fact, their result extends to
any domain of holomorphy in C^ (see also [4, Theorem 5.1] for an independent, different
proof in the 'dense' case with N = 1), and the manifolds Mj (i = 1,2) are even ideals.

In the terminology of [8], a subset 5 of a linear topological space E is spaceable
whenever 5 U {0} contains some closed infinite-dimensional subspace in E (see [8] and
[2] for nice, recent examples of spaceable sets). Therefore, under this convention, it has
been demonstrated in [1, Theorem 8] that He(G) is spaceable in H(G).

Nevertheless, the approach in [1, Theorem 8] does not give any information about
how fast the functions in Mi or M2 can grow near the boundary. In [4, note after Theorem
5.1] it is suggested how this can be proved for the manifold Mi ('dense' case) in H(G),
with G c C . Hence, it is natural to ask the following:

Given any prescribed ('weight') function <p : G -> (0, +00), is the set

5^ := {/ <E He(G) : limsup|/(z)|/v?(z) = +00 for all t € dG\

spaceable in H(G)t
The main aim in this paper is to furnish an affirmative answer to this question.

This will be obtained in Section 2. Finally, in Section 3 we shall complete this study by
showing the existence of a dense linear submanifold M with maximal algebraic dimension
-that is, dim(M) = x := t n e cardinality of the continuum- such that M \ {0} C S^,,
where ip is a given weight function as above.
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2. SPACEABILITY OF THE WEIGHTED NON-EXTENDIBILITY

Before establishing our main result, an auxiliary statement about basic sequences is
needed. Let us consider the Hilbert space L2(T) of all (Lebesgue classes of) measurable
functions / : T —• C with finite quadratic norm

1/2

Since (z")JJL_oo is an orthonormal basis of L2(T), we have that (zn)n^i is a basic sequence
in L2(T). Recall that two basic sequences ( i n ) n ^ i , (yn)n>i in a Banach space (E, \\ • ||) are

oo

said to be equivalent if, for every sequence (an)n^i of scalars, the series £) anxn converges
oo n=l

if and only if the series YLanVn converges. This happens (see [3, p. 108]) if and only if
n=l

there exist two constants m,Me (0, +oo) such that, for every finite sequence (dj)j=i,...,j
of scalars, we have

(1) m
3=1

LEMMA 2 . 1 . Assume that G is a domain with BcG and that (/,-
is a sequence such that it is a basic sequence in L2(T) that is equivalent to

C H (G)

i = i

is a sequence in span(fj)j^i converging in H(G), then

(2) < +OO.

PROOF: Observe first that, since D is a compact subset of G, convergence in H(G)
is stronger than convergence in L2(T)-norm. Therefore (/i/)/^i converges in L2(T), so the
sequence (H^ilh),^ is bounded, say \\h[\\2 ^ a (I 6 N). Let Xj, yj, \\ • || be respectively
the function z >-¥ zj, the function fj and the norm || • ||2. Then, by (1), we get for every
/ G N that

•/(')

a2

Hence (2) is satisfied because the supremum is not greater that a2/m2.

Now, our main assertion about non-extendibility can be established.
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THEOREM 2 . 2 . Let G C C be a domain and tp : G -* (0, +oo) be a function.

Then .Ŝ , is spaceable in H(G).

PROOF: We must prove the existence of an infinite-dimensional closed linear mani-
fold M in H(G) such that M \ {0} C 5^. The case G = C being trivial, we may assume
G ^ C. We denote by G» the one-point compactification of G. Recall that in G, the
whole boundary dG collapses to a unique point, say w. Without loss of generality, it can
be supposed that D c G .

We are going to choose countably many pairwise disjoint sequences {a(k, n) : n £ N}
(k £ N) of distinct points of G \ D such that each of them has no accumulation point in
G and every prime end (see [5, Chapter 9]) of dG is an accumulation point of each such
sequence. The last property means, more precisely, the following: For every k £ N, every
a € G and every r > d(a,dG), the intersection of {a(k,n) : n € N} with the connected
component of B(a,r)C\G containing a is infinite. In particular, every point t £ dG would
be an accumulation point of each sequence {a(k,n) : n £ N}.

Let us show how such a family of sequences can be constructed. We begin with
k — 1. Let {CJ : j € N} be a dense countable subset of G. For each j £ N choose bj £ dG
such that \bj — Cj\ — d(cj, dG). For every j £ N let {dij,i : I S N} be a sequence of points
in [CJ, bj] \ ID such that

\dlJ>l - bj\< 1/(1+j +1) ( j , f € N ) .

Then we choose as {a(l, n) : n £ N} a one-fold sequence (without repetitions) consisting
of all distinct points of the set {rfi j , ; : j , I £ N}. It is easy to check that {a(l, n) : n £ N}
satisfies the required property. In a second step -that is, for k = 2- we can select for
every j e N a sequence {d2jti : I £ N} of points of [cj,bj] \ UD>U {a(l,n) : n £ N}J such
that, in addition,

\d2Jil- bj\ < 1/(2 + j + l) ( j , J € N ) ;

this is possible due to the denumerability of {a(l, n) : n £ N}. Again, we define {a(2, n) :
n £ N} as a sequence consisting of all distinct points of the set {ckj,; : j , I € N}; it then
satisfies the required prime end property. It is now clear that this process can be repeated
inductively, so yielding the desired disjoint family

{{a(k,n) : n£N} : Jtew}.

Secondly, let us consider the subset A:=B U B c G, where

B:= {a{k,n) : k,n£N}.

Recall that for each k £ N the sequence {a(k,n) : n £ N} is an enumeration of the
distinct points of a certain subset {dkjj : j , I £ N} C G satisfying

(3) \dkjjt-bj\ <
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We have tha t A is relatively closed in G. Indeed, the set of accumulation points of A in

G is just D (which is included in ^4) because the set of accumulation points of B in G is

empty. Let us explain why this is so. Assume, by way of contradiction, tha t z0 G G is an

accumulation point of B. Then there is a sequence of distinct points (dA(n),j(n),((n))n^i in

B tending to zQ. Then the set < (k(n), j{n),l(n)) : n e N l i s infinite, so at least one of

the sets of positive integers {k(n) : n G N } , {j(n) : n 6 N } , {/(n) : n € N} is infinite,

hence unbounded. Therefore the sequence (fc(n) + j(n) + ^ ( ^ ) ) n > 1 is also unbounded,

thus k(n) + j(n) + l(n) > 2/d(z0, dG) for infinitely many n G N. Consequently,

K(n)j(n),J(n)

for infinitely many n £ N, which is absurd.

Thus, A is closed in G. But note that G,\A is connected as well as locally connected
at ijj, because D is compact (so it is "far" from w, and we can suppose that the basic
connected neighbourhoods of u do not intersect D), G \ D is connected and B is countable
(so deleting B from G \ D makes no influence in connectedness or local connectedness).
Let us consider, for every N £ N, the function gN : A —> C defined as

if z € D,

if z = a{N, n) and n € N,

if z = a(/c, n) and A;, n € N with Jfc ̂  TV.

Observe that gN is continuous on A and holomorphic on 4̂° (= D). Then the Arakelian
approximation theorem (see [7, pp. 136-144]) guarantees the existence of a function
fN e H(G) such that

\Mz) - 9N(Z)\ < -^ for all z € A.

Consequently, one obtains

(4) \fN(z)-zN\<-^ ior&WzeB,

(5) \fN(a{N,n))-n(l + <p(a(N,n))M<l for all n G N, and

(6) M a ( * , n ) ) | < ^ 7 for all n G N and all k G N \ {TV}.

Finally, we define the sought-after linear manifold M by

M := closureff(G)(span{/Ar : TV G

It is clear tha t M is a closed linear manifold in H(G). On the other hand, we have from

(4) that H/AT - tfNh < 3 " N for all TV G N (where <pN{z) := zN). By using this last
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00

inequality as well as the fact £) 3~N < 1 together with the basis perturbation theorem
N=l

[6, p. 46, Theorem 9], we can derive that (/AT)//^I is a basic sequence in L2(T). Indeed,
let (e*)nj.i be the sequence of coefficient functionals corresponding to the basic sequence
(zn)nzi- Since ||e*||2 = 1 (n € N), one obtains

Therefore the perturbation theorem applies because (<PN)M^I is a basic sequence.

Since (/w)jv^i is a basic sequence, we get that, in particular, the functions fN (N

£ N) are linearly independent. Hence M has infinite dimension.

It remains to show that M \ {0} C Sv. Fix f £ M \ {0}. Since the convergence in
H(G) is stronger that the convergence in I2(T), we have that (the restriction to T of) /
is in M := closure^(T) (span{/w : N £ N}). Therefore / has a (unique) representation

oo

/ = J2 cjfj in £2(T), because (/N)N^I is a basic sequence in this space. But / ^ 0, so

there is N £ N with c^ ̂  0. On the other hand, there is a sequence

f m \

1^1

in span{/j : j £ N} (without loss of generality, we can assume that J(l) > N for all /)
that converges to / compactly in G. By Lemma 2.1,

C := sup V] |c;ij|
2 < +00.

But (ht)i^i also converges to / in L2(T), so the continuity of each projection

djfj £M^dm£C (m G N)

yields that lim CN,I = c^. In particular, there exists Zo £ N such
I-»oo

(7) \cNtl\ 2 i ^ i for all Z ^ Zo-

Let us fix n £ N. Since the singleton {a(N, n)} is a compact subset of G, we get the
existence of a positive integer I = l(n) ^ l0 such that

(8) \hl(a(N,n))-f(a(N,n))\<l.
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By using (5), (6), (7), (8), the triangle inequality and the Cauchy-Schwarz inequality,

we obtain

\f(a(N,n))\^\h,{a(N,n))\-l

cN,ift<(a{N,n))\ -

^

55

UN

Consequently,

lim f(a(N,n)) = 0 0 = lim f(a(N,n))/<p(a(N,n)).
n-+oo n-+oo

The second equality shows that limsup|/(z)|/V(z) = +00 for all t € dG, because each

boundary point is a limit point of (zn :— a(N,n))n>l.
Now, it is time to use the prime end approximation property of the sequence (zn).

Suppose, by way of contradiction, that / £ Sv. Then / £ He(G), so there must be a
point c € G such that p(f,c) > d{c,dG). Choose r with d(c,8G) < r < p{f,c). By
the construction of the sequences (a(A;,n))n>1 (k 6 N), there exists a sequence {ni < n2

< • • •} C N for which znj € G D B(c,r) (fe N). Finally, the sum S(z) of the Taylor
series of / with centre c is bounded on B(c,r). But 5 = / on G D B(c,r), so S(znj)
= f(zij) —• 00 (j —>• 00), which is absurd. This contradiction finishes the proof. D

3. MANIFOLDS WITH MAXIMAL ALGEBRAIC DIMENSION

We conclude this note with a theorem that completes our Theorem 2.2 as well as
Theortn 5.1 in [4] and (in the one-dimensional case) Theorem 8 in [l]. Specifically, we
are able to construct -for a prescribed function cp : G -> (0, +00)- a linear submanifold
M C H(G) with M \ {0} C Sv that is not only dense, but even it satisfies dim(M) = x
(notice that the dense linear manifold M whose construction is suggested in [4, note
following Theorem 5.1] was only of countably infinite dimension; in the opposite direction,
the dense manifold X provided in [1, Theorem 8] does satisfy dim(X) = x> but the
fact X \ {0} C Sv does not hold). Observe that, as an easy consequence of Baire's
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category theorem and of the fact that H(G) is infinite-dimensional, metrisable, separable
and complete, we have &im{H(G)) = X- Hence \ IS the maximal algebraic dimension
which is permitted for the submanifolds of H(G). For instance, the linear manifold M
constructed in the proof of Theorem 2.2 satisfies dim(M) = x (because it is a closed
subspace of H(G), so M is also infinite-dimensional, metrisable, separable and complete)
but it is not dense.

THEOREM 3 . 1 . Let G C C be a domain and <p : G -> (0, +00) be a function.

Then there is a dense linear manifold M in H(G) such that dim(M) = x and M \ {0}

c Sv.
PROOF: Again, the case G = C is trivial, so we suppose G ^ C. First, we consider

pairwise disjoint sequences {a(k,n) : n € N} (k € N), and then we select a sequence
{fN : N € N} C H[G). This is made exactly as in the proof of Theorem 2.2, with the
sole exception that instead of (5) we have

(9) fN(a{N,n)) - n1/2(l + <p(a{N,n))}\ < 1 for all n € N.

In other words, with the notation of the proof of Theorem 2.2 we would define

gN{a(N,n)) :=nl

before the application of Arakelian's theorem. The key point will be that n1/2 tends to

infinity as n —¥ 00, but less rapidly than any power nN (TV e N). Let us define

Mi := closure#(G) (span{/^ : /V € N}).

Therefore we obtain as in the proof of Theorem 2.2 that Mi \ {0} C S^,. As observed at
the beginning of this section, we have dim(Mi) = x-

Second, fix an increasing sequence {Kn : n € N} of compact subsets of G such
that each compact subset of G is contained in some Kn and each component of the
complement of every Kn contains some connected component of the complement of G
(see [13, Chapter 13]). Choose a dense countable subset {ipn : n G N} of H(G). Now
consider for each TV e N the set AN := KN U {a(k, n) : A;, n 6 N}. In a similar way to the
proof of [4, Theorem 5.2], we have that AN is closed in G and that G. \ As is connected
and locally connected at CJ. The function hn : AN -> C defined as

~ SN(l + ((k))) if z = a{k,n) ( J t , n e N ) and z $ KN

is continuous on AN and holomorphic on AN (= KN). We now use again the Arakelian

approximation theorem to obtain this time a function FN G H{G) such that

(10) \FN{z) - hN(z)\ < jj for all z e AN.
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From (10) we derive that \FN(z) - i/>N(z)\ < 1/N for all z G AN and all N G N. These

inequalities together with the denseness of {ipN : N G N} and the exhaustion property

of the family {KN : N G N} yield the denseness of the sequence {FN : N G N} in H(G).

Finally, we define M as

M := span(Mi U {FN : N G N}).

Since M D {FN : iV G N} and M D M\, it is evident that M is a dense linear submanifold
of H(G) and dim(M) = x- It remains to show that M\ {0} C <SV. For this, fix a function
/ € M \ {0}. If f € Mi then we already know that / G 5^. Thus, we can assume that
/ G M \ M i . Then there are finitely many scalars Ci,...,cN,di,...,d^ with CN # 0 such
that

(11) f = Y,ciF3
i=\ j=i

Recall that according to the proof of Theorem 2.2 the set B := {a(k,n) : k, n € N} has
no accumulation point in G. In particular, each compact set Kj may contain only finitely
many points o(fc, n). Therefore we can derive from (10) the existence of a number n0 G N
such that

(12) Fj(a{N,n)) - n J ( l +<p(a(N,n)))| < 1 for all n > n0 (j = 1, . . . , N).

On the other hand, we obtain by (6) and (9) that

(13) = l | i ; n e

To finish, from (11), (12), (13) and the triangle inequality it is deduced for n ^ n0 that

J V - l

f{a(N, n)) | £ M [nN (l + <p{a(N,n))) - lj - £ M [n' (l + y>(a(M n)))

Consequently,

lim f(a(N,n)) = oo = lim f(a(N,n))/<p(a(N,n)).
n-»oo v ' n-»oo v ^ '

Then the desired conclusion may be achieved as in the last paragraph of the proof of
Theorem 2.2. D

FINAL QUESTION. DO the analogues of Theorems 2.2 and 3.1 hold for a domain of holo-
morphy in CN?
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