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ABSTRACT. The forces snow avalanches are able to exert on protection dams or buildings are of crucial
interest in order to improve avalanche mitigation measures and to quantify the mechanical vulnerability
of structures likely to be damaged by snow avalanches. This paper presents an analytical model that
is able to calculate these forces taking into account dead-zone mechanisms. First, we present a 2-D
analytical hydrodynamic model describing the forces on a wall overflown by gravity-driven flows down
an inclined plane. Second, the 2-D model is successfully validated on discrete simulations of granular
flows. Third, we provide ingredients to extend the 2-D model to flows of dry and cold snow. Fourth,
we propose a simplified 3-D analytical model taking into account lateral fluxes. Finally, the predictions
from the simplified 3-D analytical model are successfully compared to recent measurements on two
full-scale snow avalanches released at the Lautaret site in France.

1. INTRODUCTION
The influence of obstacles on avalanche flows has been the
topic of many recent studies combining full-scale obser-
vations on snow avalanches, small-scale experiments with
granular materials, theory and numerical modelling. Studies
refer to avalanche flows interacting with deflecting dams
(Irgens and others, 1998; Jóhannesson, 2001; Hákonardóttir
and Hogg, 2005; Cui and others, 2007; Faug and others,
2007; Gray and Cui, 2007), catching dams (Chu and others,
1995; McClung and Mears, 1995; Naaim and others, 2004;
Gauer and others, 2007, 2009; Faug and others, 2008a,b)
and retarding mounds (Hákonardóttir and others, 2003;
Chiou and others, 2005). Up to now the particular situation
of free-surface flows overflowing a catching dam has been
addressed in terms of the run-out shortening downstream
of the dam (Faug and others, 2008a,b). This situation is of
crucial interest with regard to the residual risk downstream
of protection dams. Here we consider the force these
avalanche flows are able to exert on a flat obstacle when
overflowing it, which is also important when estimating the
mechanical vulnerability of buildings and protection dams.
Recent full-scale observations on snow avalanches report
large pressures at low incoming Froude numbers on tubular
pylons (Sovilla and others, 2008b,a) and on a flat obstacle
(a 1m2 plate) (Sovilla and others, 2008b; Thibert and others,
2008). Complex materials, such as granular materials and
dry snow, can behave as a fluid or a solid: their ability to
undergo a transition from a fluid state to a solid state can lead
to the formation of stagnant zones when the flow encounters
a topographic discontinuity of the ground. While a part of
the incoming material is jammed (solid-like phase) another
part of the material remains in a fluid-like phase and is
deflected, being able to overflow the obstacle. The ability
of a granular fluid to form stagnant zones, called granular
’dead zones’ (Faug and others, 2002, 2008a; Gray and others,
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2003), upstream of a topographic discontinuity may lead to
severe modifications of the resulting force on the obstacle.
The size of the stagnant zone formed upstream of a catching
dam is very large if the catching dam prevents side flows.
In this paper, we present a simple analytical model based
on momentum balance over a control volume upstream of a
flat obstacle in order to analyse and quantify the effect of the
dead-zone mechanism on the resulting force. The analytical
model is first developed for two-dimensional (2-D) flows
and validated in a discrete numerical model for dry granular
flows overflowing a dam. Asymptotic behaviours at low and
high Froude numbers are discussed. We then extrapolate the
model to 2-D dry-snow flows using a Voellmy friction law
and adapt the model to a more complex three-dimensional
(3-D) geometry, taking into account lateral fluxes. Finally
we compare the predictions of the 3-D simplified analytical
model to field data available from a 1m2 plate subject to the
impact of snow avalanches, at the Lautaret test site in France.
It is shown that our analytical model is able to correctly
reproduce themeasured force values within the experimental
uncertainty found in related previous studies (Thibert and
others, 2008; Baroudi and Thibert, in press).

2. MODELLING OF FREE-SURFACE FLOWS
OVERFLOWING A DAM
2.1. General framework equations in 2-D geometry
We consider a steady incoming free-surface flow of thickness
h, mean velocity u and mean density ρ down a flat slope
with inclination θ, as shown in Figure 1. A nearly triangular
stagnant zone is formed upstream of the dam, as shown in
Figure 1. Momentum conservation over a control volume,
V0, upstream of the dam (pink area in Fig. 1) allows us to
show that, in a steady-flow regime, the resulting force, F ,
normal to the dam is the sum of four contributions:

F = Fu + Fh + Fw + Ff . (1)

V0 is a volume per unit width and we consider forces
per unit width. Fu is a purely dynamic force resulting
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Fig. 1. Sketch of the flow and control volume, V0 (pink area). H is
the obstacle height; αzm is the mean angle of the dead zone; αsl
is the mean angle of the free surface above the dead zone; α is
the angle between the velocity, �u∗, and the ground; h and u are
the thickness and the depth-averaged velocity outside the influence
area of the obstacle; h∗ and u∗ are the thickness and the depth-
averaged velocity of the overflow at the top of the dam (in the x∗
direction); and L is the length of the influence zone upstream of the
obstacle, assumed to be close to the length of the dead zone.

from the momentum variation between sections S1 and S2,
defined in Figure 1: Fu = β(1 − δu cosα)ρu2h, where δu
is the velocity ratio, u∗/u, u∗ is the velocity at the top of
the dam, as defined in Figure 1, and α is the deflection
angle (i.e. the angle between �u∗ and the ground). The
coefficient β depends on the shape of the velocity profile

and is defined by 1
h

∫ h
0 u

2 dz = β
(
1
h

∫ h
0 u dz

)2
. The relative

velocity reduction, (u − u∗)/u, is simply assumed to be
proportional to the deflection angle, α, which gives:

δu = 1− κα, (2)

where κ is a velocity-reduction coefficient. Fh is a purely
hydrostatic contribution due to the incoming flow undis-
turbed by the obstacle, Fh =

1
2kρgh

2 cos θ, where k is the
earth pressure coefficient classically introduced for gravity-
driven flows of granular materials (Savage and Hutter, 1989)
or snow (McClung and Mears, 1995; Bartelt and others,
1999). Fw is the x-axis component of the weight of the
control volume, V0: Fw = ρgV0 sin θ. Ff is the basal friction
force assumed to be proportional to the y-axis component
of the weight of the control volume, V0 (Coulomb friction):
Ff = μzmρgV0 cos θ, where μzm is the friction coefficient
between the dead zone and the ground. We discuss μzm
further below.
The volume, V0, can be calculated from Figure 1 as

follows:

V0 ≈ 1
2

{[
H + h

(
1 +

δh
cosα

)]
L− h2δ2h tanα

}
, (3)

where h∗ is the thickness of the outcoming flow defined in
Figure 1, δh is the depth ratio, h

∗/h, H is the obstacle height
and L is the length of the influence zone upstream of the
obstacle. The zone of influence upstream from the dam is
defined as the length of the disturbed flow upstream of the
dam (flow depth and velocity are not equal to the incoming
flow depth, h, and velocity, u) and can be approximated
by tan(αzm) = H/L. By mass flow rate conservation, the flow
depth ratio, δh, is equal to 1/δu , if we assume that the density
is unchanged. The angle α is equal to (αsl + αzm)/2 where
αsl is the angle of the free surface inside the control volume,
V0. We detail below how we can estimate the angles αzm
and αsl.

If we neglect the second-order term (δ2h tanα) in Equa-
tion (3), then Equation (1) can be synthesized in terms of the
normalized force, F/(0.5ρu2h), versus the incoming Froude
number, Fr = u/

√
gh cos θ:

F
1
2ρu

2h
= 2β [1− (1− κα) cosα]

+
1
Fr2

{
k +

(
sin θ − μzm cos θ

tanαzm

)

·
[
H
h
+ 1 +

1
(1− κα) cosα

]
H
h

}
.

(4)

The second-order term (δ2h tanα) is strictly negligible when
h∗ � L and h∗ ≈ h, which is almost true when the Froude
number is not too high (typically less than 5–10). When the
Froude number is more than 5–10, the contribution due to
the volume, V0, in the total force is so weak (purely dynamic
force) that an error in V0 has no effect on the total resulting
force. This analytical model has been initially developed
for granular flows (Faug and others, 2009) for which the
parameters (k , β, μzm, κ) have been determined, as well as
expressions to calculate the angles αzm and αsl, which give
the deflection angle, α. Results for granular flows are briefly
reported in the next subsection.

2.2. Validation of the analytical model for 2-D
granular flows
We performed discrete-particle simulations using a linear
damped spring law between spherical particles with a
Coulomb failure criterion, in order to simulate 2-D steady
granular flows down an inclined slope, as shown in
Figure 1 (see details in Faug and others, 2009). These
discrete numerical simulations were based on the molecular-
dynamics method introduced by Cundall and Strack (1979)
and widely used to simulate dense granular flows (Ertas and
others, 2001; Silbert and others, 2001; da Cruz and others,
2005). The following microscopic parameters were needed
to describe the contacts between grains: the normal and
tangential stiffnesses, kn and kt; the restitution coefficient,
e (linked to the damping coefficient) and the interparticle
friction coefficient, μ. The influence of these parameters
was discussed by Silbert and others (2001): (1) kn and kt
have no effect in the limit of rigid grains (overlap between
particles < 1/1000d , where d is the particle diameter);
(2) e has little effect except for extreme values e = 0 and
e = 1; (3) μ has a greater effect on the results, but its
influence becomes weak at low values, typically<0.5. In our
simulations, we used the following values: kn = 104 Nm−1,
kt = 1/2kn, e = 0.5 and μ = 0.5 (corresponding to a typical
value of the internal friction angle of granular materials).
Here we used the commercial code PFC2D (Itasca Consult-
ing: http://www.itasca.com/pfc/index.php). These numerical
simulations allowed us to estimate the macroscopic empir-
ical laws to close Equation (4) for the case of granular mater-
ials. A first result of the numerical simulations is that the basal
friction, μzm, was shown to be constant, equal to tan θmin,
where θmin is the minimal angle below which no steady
flow is possible (stopping of the flow) (Pouliquen, 1999;
GDR MiDi, 2004). Second, the mean angle of the dead zone
with the horizontal, θ−αzm, was shown to be equal to θmin
for all slope inclinations, θ. The length, L, of the influence
zone of the obstacle was then assumed to be equal to the
length of the stagnant zone and accordingly was defined as:
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tan(θ − θmin) = H/L. Third, the free-surface angle, αsl, was
shown to be a simple linear function of the slope inclination,
θ: αsl = aθ+b, where a and b are coefficients depending on
the incoming flow regime. We defined θmax as the maximum
angle above which uniform flows were not possible. For uni-
form flows (θmin < θ < θmax), the angle αsl was expressed as:

αsl =
θmin

θmax − θmin
(θ − θmin) . (5)

For non-uniform flows (θ > θmax), the angle αsl was
expressed as:

αsl =
π

2
−

(
θmin − π/2
θmax − π/2

)
(π/2− θ). (6)

Equation (4) was successfully tested on data from discrete
numerical simulations using the following values (Faug
and others, 2009): k = 1, β = 5/4 (for a Bagnold-like
velocity profile (GDR MiDi, 2004)), κ = (1 − e)/(π/2)
(where e = 0.5 is the restitution coefficient), θmin = 14◦

and θmax = 24◦ (typical values for 2-D granular flows (GDR
MiDi, 2004)). The value of κ is simply estimated from a
purely collisional regime assuming that u∗/u scales as e
when α = π/2 which gives e = 1 − κ(π/2) according to
Equation (2). Figure 2 shows predictions of the analytical
model compared to discrete simulations. The predictions
of the model are in very good agreement with the discrete
simulations, without having introduced any fitting parameter.
Note that Equation (4) predicts a force ratio F/(0.5ρu2h) =
2β[1 − (1 − κα) cosα] at high Froude numbers, which
gives a value of 2 for α = π/2, compatible with the drag
coefficient classically given for a flat obstacle in the inertial
regime (high Froude number). Figure 2 also reports the force
normalized by the purely hydrostatic force, 12ρgh

2 cos θ. It
is interesting to consider the asymptotic prediction for this
ratio when θ tends towards θmin (i.e. the Froude number, Fr,
tends to zero). According to the analytical model, this ratio
should scale as k + (H/h)

(
2 + H/h

)
(1/ cos θmin). With

k = 1 and H/h = 1, this gives a value of 1 + 3/ cos θmin.
The ratio is then close to 4 (cos θmin ≈ 1), as found in
discrete simulations and shown in Figure 2. In section 2.3,
we use the analytical model for dry snow and we provide
the model parameters adapted to dry snow.

2.3. Outlook for 2-D snow flows
Here we use Equation (4) for dry snow flows and we describe
the parameters characterizing the behaviour of dry snow.
Cemagref has designed a 10m long and 20 cm wide channel
at Col du Lac Blanc, Alpe d’Huez, France, described in detail
by Bouchet and others (2003, 2004). Recent investigations
on flows of dense and dry snow (for T < 0◦C) down this
10m long flume showed that snow exhibits some properties
similar to those of granular flows (Rognon, 2006; Rognon
and others, 2008). Dry and dense snow is a polydisperse
granular material. Similarly to granular flows, there exists
a minimum angle below which the flow is stopped, and
a maximum angle above which flows accelerate along
the channel. Steady and uniform flows are only possible
between these two angles. Typical values were derived from
experimental investigations at Col du Lac Blanc for dense
and dry snow (Rognon and others, 2008): θmin = 33◦

and θmax = 42◦. These angles were obtained in a narrow
channel with typical flow depths ∼10 cm. Even if these
angles are likely to be influenced by wall effects (whose
extent is still under discussion), we will use these angles

Fig. 2. Granular flows: prediction of the model for the rescaled
force, F/(0.5ρu2h) and F/(0.5ρgh2 cos θ), vs slope, compared to
data from numerical discrete simulations. The following parameters
were used: β = 5/4, k = 1, κ = 0.31 (e = 0.5), θmin = 14◦,
θmax = 24◦ (Faug and others, 2009).

for snow in the following. The flow is divided into two
layers: a highly sheared layer of snow grains (typically 1mm
in size) at the base, surmounted by a low shear layer of
aggregates (with a maximum size close to the flow depth).
This flow configuration results in a typical velocity profile
close to velocity profiles obtained from discrete numerical
simulations on bi-disperse granular flows. A value of β close
to 1 is then reasonable for snow flows.
The friction law for snow flows is still an open question.

However, an effective friction law corresponding to a
Voellmy model could be fitted to data from the Lac Blanc
chute (Rognon, 2006): μ = μs + (g/ξ)Fr2. The Voellmy
model is classically used in snow-avalanche engineering
applications (Bartelt and others, 1999); μs is a dry friction
coefficient and ξ is a turbulent coefficient. Both parameters
(μs, ξ) were fitted corresponding to various choices. The best
fit was obtained for μ = 0.61, i.e. θs = arctan(μs) = 31.2◦,
and ξ = 1050m s−2, which are values encountered for snow
avalanches (Salm and others, 1990). With respect to the limit
angle, θmin = 33

◦, which would imply μ = tan θmin, a value
of ξ = 1400m s−2 was obtained.
We assume that the empirical laws derived from investiga-

tions on granular flows to estimate the free-surface angle, αsl,
the dead-zone angle, αzm, and consequently the deflection
angle, α, as well as the friction, μzm, still hold for our
granular-like snow flows. A value of k = 1 is chosen. Here,
κ is calculated using a very low value for e that is more
compatible with the properties of snow material: e = 0.1
gives κ = 0.57.
The angle α is assumed to be equal to:

α =
αzm + αsl

2
, (7)

where αsl is defined by Equations (5) and (6).
In steady and uniform flow conditions, or within a

flow regime for which the effect of acceleration terms
(time-derivative terms in momentum conservation) can be
neglected, we have the following equation corresponding to
equilibrium between gravity and friction forces (tan θ = μ):

θ = arctan
(
tan θmin +

g
ξ
Fr2

)
. (8)
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Fig. 3. Snow flows. Prediction of the analytical model for the rescaled forces (a) F/(0.5ρu2h) and (b) F/(0.5ρgh2 cos θ) vs the Froude
number at different ratios, H/h (0.1, 1 and 5). The following parameters were used: β = 1, k = 1, κ = 0.57 (e = 0.1) and ξ = 1000ms−2.
Predictions are given for two pairs (θmin, θmax) keeping θmax − θmin = 9◦: [33◦; 42◦] (μs = 0.65) and [10◦ ; 19◦] (μs = 0.18).

Equation (8) allows us to eliminate the slope, θ, in
Equations (7) and (4) and to express the rescaled force,
F/(0.5ρu2h), as a function of the incoming Froude number,
Fr, without the prior knowledge of the slope (information
which is included in the Froude number). This raises the
question whether we may extrapolate the predictions of
our analytical model to slope inclinations less than θmin
in transient conditions towards stopping. The answer to
this question is positive if the system is able to reach
an equilibrium state for which the assumption tan θ = μ
still holds. This assumption seems reasonable in the case
of decelerating flows evolving towards stopping (tails of
avalanches), for which the effect of time-derivative terms is
expected to be negligible. We use this assumption in the
following when applying equations established for the steady
regime to full-scale avalanche flows.
It is important to note that the rescaled force, F/(0.5ρu2h),

depends on the ratio H/h. Indeed, attempts to find a relation
between this ratio and Fr are meaningful only ifH/h remains
constant. Figure 3 gives the prediction of the analytical model
in terms of the rescaled force vs Fr for different values ofH/h,
θmin and θmax, keeping θmax−θmin constant. The curves show
that the results are not very sensitive to the value of θmin. The
results are, rather, influenced by the geometry corresponding
to a varying ratio, H/h. We also show the rescaled force,
F/(0.5ρgh2 cos θ), for the same set of parameters to give the
prediction of the analytical model at very low Fr in order to
highlight the transition towards the hydrostatic regime.

2.4. Outlook for 3-D effects with lateral fluxes
2.4.1. General framework equations in 3-D geometry
We propose a modification of Equation (4), taking into
account 3-D effects corresponding to lateral fluxes and to
the modification of the shape of the dead zone by these
lateral fluxes. The resulting analytical model is a simplified
model that does not take into account the entire effect of
flow spreading, which would require fully 3-D numerical
models (e.g. Naaim and others, 2004). Here, we consider
the thickness, hL, and the depth-averaged velocity, uL,
that correspond to the lateral fluxes around the obstacle.
Figure 4a gives a top view of the flow configuration in 3-D

geometry. A dead zone is formed upstream of the obstacle.
The base of the dead zone in the plane (x, y ) is triangular
and is characterized by angle γ.
Compared to the 2-D geometry, the angles αzm, αsl and

α depend on the transverse position, y , along the width,
�, of the obstacle as depicted in Figure 4b. As a first
approximation, and in the absence of well-documented
experimental evidence of the shape of the dead zone, we
assume a simple triangular shape for the dead zone in a
plane normal to the z axis (Fig. 4a), and the length, L(y ), at
location y can be expressed as L(y ) = c +dy . The boundary
conditions require 0 = c + d (�/2) (edge of the obstacle) and
H/ tan(θ− θmin) = c (centre of the obstacle), which leads to:

L(y ) =
H

tan(θ − θmin)

(
1− 2

�
y
)
. (9)

The dead-zone angle at position y is αzm(y ) =
arctan

(
H/L(y )

)
. The free-surface angle is assumed to vary

linearly between π/2 (edge of the obstacle) and the value
of αsl in 2-D given by Equations (5) and (6), which gives
αsl(y ) = 2(π/2−αsl)(y/�)+αsl. The mean angle of deflection
is then given by α(y ) = (αzm(y ) +αsl(y ))/2. The dependence
of these angles on y complicates the calculation of the
momentum balance (3-D integrals).
We assume that the basal friction is proportional to the

weight in the z-axis direction. The total basal force is caused
by the basal friction below the dead zone and the sum of
the weights of the dead zone and the fluid above the dead
zone: Fw−F f = (sin θ−μzm cos θ)ρgV . Here V is the control
volume in 3-D geometry (between sections S, S∗ and SL in
Fig. 4):

V =
2
�

∫ �/2

0

(
1
2
L(y )

{
H + h

[
1 +

δh(y )
cos

(
α(y )

)
]}

−1
2
h2δh(y ) tan

(
α(y )

))
dy .

(10)

Equation (10) can be solved numerically and is work
in progress. In section 2.4.2 we propose some rough
approximations to simplify the model in order to be able to
provide an analytical solution under restrictive conditions.
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Fig. 4. (a) Top view of the flow and dead zone (pink area) in 3-D geometry. γ is the mean angle of the dead zone in the plane (x, y ).
h and u are the thickness and the depth-averaged velocity outside the zone of influence of the obstacle. 
a is the width of the incoming
flow. h∗ and u∗ are the thickness and the depth-averaged velocity at the top of the dam. 
 is the width of the obstacle. hL and uL are the
mean thickness and the depth-averaged velocity in the flow branch corresponding to lateral fluxes. L is the length of the dead zone at the
centre (in y-axis direction) of the obstacle, and L(y ) is the length of the dead zone at a given position, y . Note that h∗, u∗, hL and uL are
mean values in sections S∗ (overflow) and SL (lateral fluxes). Due to the symmetry of the problem, we only show one lateral flux. (b) Side
view at a position y of the flow overflowing the obstacle. We use a notation similar to that of the 2-D configuration given in Figure 1, but
here the variables depend on the position, y .

2.4.2. Simplified analytical model for 3-D snow flows
For the sake of simplicity and to provide an analytical model,
we here consider the mean values over the obstacle width:

αsl =
1
(�/2)

∫ �/2

0
αsl(y ) dy =

π

4
+

αsl
2
, (11)

αzm =
1
(�/2)

∫ �/2

0
αzm(y ) dy , (12)

α =
αsl + αzm

2
. (13)

One parameter is introduced: r = �a/� is the ratio between
the width of the incoming avalanche flow, �a, and the width
of the obstacle, �. Similarly to the 2-D case, we can apply the
momentum balance over the control volume, V . We simplify
the calculation by taking the mean values over the obstacle
width (given by Equations (11–13)) out of the 3-D integrals,
which gives:

(
F/�a
1
2ρu

2h

)
u

= 2β
[
1− 1

r
δ
2
uδh cosα

−
(
1− 1

r
δuδh

)
δ
L
u cos γ

]
,

(14)

(
F/�a
1
2ρu

2h

)
h+w−f

=
1
Fr2

{
k +

1
4r

[
cos θ + (tan θmin) sin θ

]

·
(
H
h
+ 1 +

δh
cosα

)
H
h

}
.

(15)

We split the resulting ratio, (F/�a)/(0.5ρu2h), into two
parts: Equation (14) is the contribution due to the dynamic
force and Equation (15) is the contribution of the sum of the
incoming pressure force, the weight and the basal friction
force. Three parameters have to be quantified: the mean ratio

of velocities at the centre, δu , the mean ratio of the flow
depths, δh, and the mean ratio of velocities on both lateral

sides, δ
L
u . The mean lateral flow depths ratio, δ

L
h = h

L
/h,

where hL is the thickness of lateral fluxes, is determined
by the conservation of the mass flow rate: 1 − δuδh(1/r ) =

δ
L
uδ
L
h
[
1− (1/r )].

We use the following assumptions to derive simple
empirical laws for these quantities. The mean ratio of
velocities at the centre is calculated from the mean angle,
α: δu = 1 − κα, similarly to the 2-D geometry. The mean
ratio of flow depths at the centre is assumed to be∼1, which
corresponds to the assumption that the typical size of the
overflowing flow is close to the typical size of the undisturbed
flow. This is almost true for the case of 2-D granular flows
(Faug and others, 2009) but it remains an assumption for 3-D
flows, in the absence of well-documented experimental data.
The mean ratio of velocities on both lateral sides is assumed
to depend on the mean angle, γ (by analogy with the

definition of δu according to α): δ
L
h = 1 − κLγ, where we

simply assume a value of κL equal to κ = (1− e)/(π/2). This
latter assumption is argued by the fact that the restitution
coefficients are similar for collisions in the planes (x, z) and
(x, y ). The angle γ is defined as γ = arctan

[
(�/2)/L

]
(Fig. 5a).

3. MODEL PREDICTIONS COMPARED TO
FULL-SCALE FIELD DATA
Only few data corresponding to the geometry considered
here are available in the literature. Three large-scale
avalanche test sites provide some promising data. First,
the Lautaret avalanche site in France, particularly the track
equipped with a flat obstacle of surface equal to 1m2 (Thibert
and others, 2008), is of interest even if the geometry is
complex due to lateral fluxes, jet and spreading effects.
Second, the Vallée de la Sionne test site in Switzerland
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Fig. 5. Avalanche flows at Lautaret: predictions of the analytical model compared to the measured data (full black curve). The following
parameters were used: β = 1, k = 1, H/h = 1, θmin = 33◦, θmax = 42◦, ξ = 1000m s−2 and κ = κL = (1− e)/(π/2) with e = 0.1. The
grey dashed curve shows the contribution from the sum of the hydrostatic force, the gravity force and the basal friction force (Equation (15)).
The black dashed curve shows the contribution from the incoming dynamic force (Equation (14)). (a) 15 February 2007 avalanche (Thibert
and others, 2008) with r = 7. (b) 26 March 2008 avalanche (Baroudi and Thibert, in press) with r = 3.

provides well-documented data, but only obstacles that are
small compared to the width of the avalanche flow (pylons or
flat obstacles) are investigated (Sovilla and others, 2008b,a);
these do not fit into the framework of our analytical model.
Third, the Ryggfonn test site in Norway is of interest because
it is close to the geometry of our analytical model, but it
suffers from a lack of flow–depth data, implying an unknown
Froude number (Faug and others, 2008b) and the dam is not
normal to the incident flow.
The full-scale avalanche flows are transient flows that, a

priori, are not compatible with our 3-D analytical model,
for which we assume a steady state. As discussed above,
we assume that the effects of time-derivative terms in the
equations of motion are weak, so that a quasi-steady state
is reached at each time, t , and that the basal friction, μ,
is close to tan θ. These assumptions allow us to express
θ as a function of the incoming Froude number, where
μ = tan θmin + (g/ξ)Fr

2 (Voellmy friction law). Then we can
describe variations of (F/�a)(0.5ρu2h) with Fr.
Here we compare the predictions of the simplified 3-D

model to the measurements from the Lautaret test site.
One of the avalanche paths is equipped with a 1m2 plate
with pressure sensors. The avalanche site, the instruments
and the procedure are presented in detail by Thibert and
others (2008). In Figure 5, we compare the prediction from
Equations (14) and (15) to the data for two avalanches
from the Lautaret test site, 15 February 2007 (Thibert and
others, 2008) and 26 March 2008 (Baroudi and Thibert,
in press). Both avalanches were released in cold and dry
snow conditions. Furthermore, the time-derivative terms
were estimated and shown to be negligible for the 2007
avalanche in the decelerating-flow phase (see Thibert and
others, 2008, fig. 11). We only consider data obtained in the
decelerating-flow phase of the avalanche. The following set
of parameters was used: β = 1, k = 1, H/h = 1, θmin = 3

◦,
θmax = 42◦, ξ = 1000m s−2 and κ = κL = (1 − e)/(π/2)
with e = 0.1. We used r = 7 for the 15 February 2007
avalanche and r = 3 for the 26 March 2008 avalanche.
These values of r are compatible with field observations
from films taken of the avalanches. The 2007 avalanche
was substantially larger than the 2008 avalanche. In spite

of many assumptions, the prediction of our 3-D simplified
model is in good agreement with the field data (full black
curve in Fig. 5). We plot both contributions to the total
force in Figure 5: one contribution from the dynamic force
(Equation (14)) and the other contribution (Equation (15))
corresponding to the sum of the hydrostatic force, the gravity
force and the basal friction. The graphs clearly show that
the increase of the total rescaled force, (F/�a)/(0.5ρu2h), at
low values of the Froude number (Fr ≈ 1) is mainly due to
the contribution corresponding to the sum of the hydrostatic
force, the gravity force and the basal friction. Note that the
increase of the rescaled force, (F/�a)/(0.5ρu2h), does not
mean that the corresponding force, F , becomes the design
force. For both avalanches investigated here, the force is
maximal when the Froude number is higher (close to 4–5)
and, in an engineering project, this maximal force would
be the design force. By these graphs we demonstrate that
when the avalanche comes to rest, the contributions from
forces due to hydrostatic effect, weight and friction become
dominant. This effect is particularly important in the run-out
areas of snow avalanches. The simplified analytical model
presented here has to be validated with more data. However,
it can provide the ingredients for a practically applicable
approximation of the total force exerted on obstacles by
snow avalanches. When the design reference Froude number
is low and large stagnant zones are likely to be formed
upstream of the protection structure it is crucial to check
whether the resulting force, F , calculated from the proposed
model is greater than the force calculated using traditional
engineering methods (Salm and others, 1990).

4. DISCUSSION AND CONCLUSION
We have presented an analytical model to estimate the force
on flat obstacles when a stagnant zone is formed upstream
of the obstacle. We first presented a 2-D analytical model
describing gravity-driven flows overflowing a wall normal
to the ground. Three important parameters were needed to
close the model: the friction, μzm, between the dead zone
and the ground, the coefficient of velocity reduction, κ, and
the angle of the free-surface upstream of the wall, α. The
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analytical 2-D model and the empirical laws proposed to
quantify these parameters were validated by discrete-particle
simulations of granular flows down an inclined slope. We
provided the parameters to use this analytical model for 2-D
flows of dry snow, which allowed us to quantify the effect of
the stagnant zone on the resulting force, particularly at low
incoming Froude numbers, and to provide a tool to estimate
the force on large catching dams with no (or little) lateral
overflows. This 2-D analytical model was then extended to a
3-D configuration in order to predict the force when lateral
fluxes occur. The analytical model was given for steady-flow
conditions but we believe that it is also suitable for transient
flows for which the effect of time-derivative terms can be
neglected. This is typically the case for snow avalanches
in the decelerating phase (before the final standstill). We
compared the prediction of our analytical model to the
field data available at Lautaret. We only used the data
in the quasi-steady state corresponding to the decelerating
phase (Thibert and others, 2008, fig. 11). The analytical
predictions are in good agreement with field observations
within the experimental uncertainty. More validation of the
analytical model is needed (not only for the force, but
also for geometrical data, such as the deflecting angles
and the shape of the stagnant zone). Let us stress the fact
that the time dependency of avalanche flows has not been
considered in this paper, which means that our proposed
model is not able to predict acting transient forces on
obstacles induced by the avalanche front. Further work is
needed to analyse these transient forces and the related
fluctuations. Furthermore, a sensitivity analysis of the model
with respect to all the parameters needs to be performed
before we can propose that the sketched methodology serve
as conceptional base for a practioners’ recipe to estimate
design forces for structures that can be hit by avalanches.
The parameter combinations for various avalanche types,
similar to those of Salm and others (1990) for the estimation
of avalanche run-out lengths and velocities with the Voellmy
friction law, could be used to carry out this task. However, we
recommend investigating the force at low Froude numbers,
when stagnant-zone mechanisms are likely to occur, at a
more fundamental level.
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Hákonardóttir, K.M. and A.J. Hogg. 2005. Oblique shocks in rapid
granular flows. Phys. Fluids, 17, 077101. (10.1063/1.1950688.)
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