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Abstract. The physical background of scaling laws of disk galaxies is reviewed. The match
between analytically derived and observed scaling laws is briefly discussed. Accurate modeling
of the fraction of baryons that end up populating a disk, and the conversion efficiency of those
into stars, remains a challenging task for numerical simulations. The measurement of rotational
velocity tends to be made with criteria of convenience rather than through rigorous definition.
And yet, the Tully–Fisher and the disk size versus rotational velocity relations exhibit surpris-
ingly small scatter. Practical recipes (and costs) to optimize the quality of template relations
are considered.
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1. Introduction
Thirty-five years have passed since Brent Tully and Rick Fisher advocated the use of the

relation between optical luminosity, L, and 21 cm Hi linewidth, W , previously discovered
by Mort Roberts, as a tool to obtain redshift-independent distances to spiral galaxies
(Roberts 1969; Tully & Fisher 1977). Since then, the Tully–Fisher relation (hereafter
TFR) has been used extensively in measurements of H0 as well as of deviations from
a smooth Hubble flow, to distances approaching z � 0.1. Over the range of linewidths
W > 100 km s−1 , typically used in those applications, the TFR exhibits a tight power-law
behavior, where the linewidth is (to first order) equal to twice the maximum rotational
velocity of the disk within galactocentric radii populated with detectable Hi, and L is a
proxy for the total mass within that radius. A TFR template will have a slope of between
3 and 4 in log L versus log W and a scatter between 0.14 and 0.18 dex in log L (0.35 to 0.45
mag), which translates to a distance uncertainty for a single galaxy between 15 and 20%.
These values vary somewhat depending mostly on the adopted optical band. The quality
of a TFR template, i.e. the accuracy with which it can accurately provide a distance
prediction, depends on a variety of parameters, including primarily those pertaining to
the selection criteria for membership in the sample used to define that template and the
reliability of the corrections applied to the observed quantities. Improvements to that
quality should result from a clear understanding of the sources of scatter and of the
physical basis of the TFR.

2. Towards a Physical Understanding of the TFR
Take 1. Assume that disk mass and light are exponentials with scale length rd . The

luminosity is then Ld ∝ r2
dI(0), where I(0) is the disk’s central surface brightness. The

mass within radius r is M(< r) ∝ rv2
rot , so if the rotation curve becomes flat due to a

dark matter (DM) halo truncated at n scale lengths, then Mtot ∝ nrdv2
max and

Ld ∝ av4
max , with a = (Md/Ld)−2m2

dn−2I(0)−2 , (2.1)
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where Md (md) is the mass (fraction) of the disk. A rough match for the slope of the
TFR is recovered, but much is contained in a.

Take 2. Mo et al. (1998) model the DM halo, within which the disk galaxy resides,
as a singular isothermal sphere. Then the rotational velocity, vc , is the same at all radii,
and the mass density at, and the mean density within, radius r are

ρ(r) =
v2

c

4πGr2 and ρ̄ =
3v2

c

4πGr2 . (2.2)

The critical density of the Universe at redshift z is

ρcrit =
3H2(z)
8πG

, (2.3)

so the radius within which the mean density is 200ρcrit is r200 = vc/10H(z) and the mass
within r200 is

Mhalo = v2
c r200/G = v3

200/10GH(z). (2.4)
Introducing the disk mass, Md , and md = Md/Mhalo , we get

Md =
mdv3

200

10GH(z)
� 1.7 × 1011h−1M�

(
md

0.05

)(
v200

250 km s−1

)3[
H(z)
H0

]−1

. (2.5)

This is starting to look familiar, but:
• halos are not singular isothermal spheres;
• disk masses are not negligible and they can alter the total density profile;
• we measure disk luminosity, not disk mass;
• we do not measure v200 but rather a circular (?) velocity at whatever radius Nature

kindly leaves a tracer for us to measure.
Take 3. We thus abandon the singular isothermal sphere model and, still following

Mo et al. (1998), model the mass density more realistically with the Navarro, Frenk, &
White (NFW) profile:

ρ(r) =
ρcritδ0

(r/rs)(1 + /rs)2 , (2.6)

where δ0 = 4ρ(rs)/ρcrit and c = r200/rs is the concentration index. The mass within
radius r is then

M(r) = 4πρcritδ0r
3
s

[
1

1 + c(r/r200)
− 1 + ln(1 + r/r200)

]
, (2.7)

the total halo mass is

Mhalo = 4πρcritδ0r
3
s

[
ln(1 + c) − c/(1 + c)

]
, (2.8)

and the rotation curve is given by

v(r)
v200

=
[ 1
x

ln(1 + cx) − cx/(1 + cx)
ln(1 + c) − c/(1 + c)

]1/2
, (2.9)

where x = r/r200 and v200 = (GMhalo/r200)1/2 .
Fig. 1 (after Mo et al. 1998) shows rotation curves of galaxies characterized by the

same disk mass but different combinations of concentration indices, disk mass fractions,
and spin parameters. The shape of the rotation curve, its maximum value, and its value
at the virial radius (indicated by the short, thick line at the left-hand side of each box)
vary widely, illustrating the uncertainty that can be associated with the determination of
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Figure 1. NFW rotation curves of galaxies having the same disk mass (5 × 1010h−1 M�) and
different combinations of concentration indices, disk mass fractions, and spin parameters, as
indicated in the legends within each box. Disk and halo contributions to the rotation curve
(solid line) are shown as, respectively, long- and short-dashed lines. The thick line on the right
of each panel is the circular velocity, v200 , at the virial radius. Note the variance in the shapes
of the rotation curves and in their amplitudes at any radius. (Credit: Mo et al. 1999)

the TFR linewidth parameter. Because now vrot(r) is not constant, it matters at which
radius rmeas it is measured. It is sensible to measure it at a radius near which the gradient
of vrot is small, e.g., the radius within which 80% of the light is produced, or a few disk
scale lengths out, nrd (a value of n � 3 is often used, and r80 is near 3rd). The equation
for Md is then modified via a fudge factor which accounts for the shape of vrot and the
radius at which it is measured. For instance, if rmeas = 3rd , then that fudge factor is
fv = [vrot(3rd)/v200 ]−3 . Finally, to convert the disk mass relation into a TFR look-alike,
Md is divided by a stellar mass-to-luminosity ratio; a star-formation efficiency factor, εsf ,
is also introduced, which accounts for the fraction of the disk’s baryon mass which has
been converted to stars. Thus,

Ld = 1.7 × 1011h−1M�εsf

( md

0.05

) (M

L

)−1

∗

[ vobs(3rd)
250 km s−1

]3[H(z)
H0

]−1
fv . (2.10)

Accurately modeling mdεsf (M/L)−1
∗ is difficult, and so is measuring fv . Moreover, the

value of the rotation curve at 3rd may not be known from the kinematic data. Much
progress has been made since Steinmetz & Navarro (1999) in modeling the gastronomy
of disks, thanks to increased resolution of numerical simulations and a higher grade of so-
phistication in treating feedback mechanisms, including adiabatic contraction of the halo
(e.g., Governato et al. 2007; Piontek & Steinmetz 2011). Generally, simulations recover
the slope of the TFR, but have problems in reproducing the photometric zero point. In
particular, the stellar mass fraction in hydrodynamical simulations tends to be too high
and bulges too large, while galaxies at low z are too gas-poor (Scannapieco et al. 2012).
Improvements are obtained by forcing a slow-down in the growth of bulges. However,
processes of feedback, those affecting interstellar medium (ISM) structure and metallic-
ity, and their effect on star formation take place on scales which are still much smaller
than those currently achievable by cosmological simulations. As for fv , an interesting ob-
servational result has recently come to the fore, throwing additional light on Eq. (2.10),
as we will see next.
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Figure 2. (left) Stellar mass as a fraction of the baryon mass within the halo, plotted versus the
halo mass; the baryon mass within the halo is fbMhalo , where fb is the cosmic baryon fraction.
(Credit: Papastergis et al. 2012) (right) Observable baryon mass (stars plus disk ISM) as a
fraction of the total baryon mass within the halo, plotted versus the total halo mass (shaded
curve). The thin line is the stellar mass fraction, as in the left-hand panel. (Credit: Papastergis
et al. 2012. Reproduced with permission from the American Astronomical Society)

Reyes et al. (2012) directly measured the average fv value, implementing a technique
earlier adopted by Seljak (2002). They used the sdss database, stacking images of 133,598
disk-galaxy images at a mean z = 0.07, in three bins of stellar mass. The signature of
weak lensing was identified in the stacked images, thus yielding average halo masses out
to r200 . The stellar mass bins were centered respectively at M∗ = 0.6, 2.7, and 6.5× 1010

M�. They could then measure M200 and r200 , and hence v200 . From a child catalog
of galaxies with resolved rotation curves, they obtained vobs(r80); then the averages of
the ratios vobs(r80)/v200 , for the three stellar mass bins, were found to be respectively
1.27, 1.39, and 1.27. Interestingly, the corresponding stellar masses, as fractions of the
total baryon mass fbarM200 , computed assuming baryons are present with the cosmic
abundance within the halo, are 0.15, 0.26, and 0.23, respectively, for the three stellar
mass bins, where fbar = 0.169 is the cosmic baryon mass fraction. Disk galaxies in the
three stellar mass bins fall short of converting their baryons into stars by factors of
between 4 and 5. This is illustrated graphically in Fig. 2 (after Papastergis et al. 2012).
In each panel, the abscissa is the halo mass; in the left-hand panel, the ordinate is the
ratio of the stellar mass to fbarM200 ; in the right-hand panel, the ordinate is the ratio of
the combined baryon mass of stars and cold disk gas to fbarM200 . The mismatch between
the observed baryon mass in disks and that which would be expected if the baryons were
present within the halo in the fraction fbar is thought to be mainly due: (i) for low halo
masses, to the inability of the halos to hold on to their baryons, which increases with
decreasing halo mass; and (ii) for galaxies near the peak of the curve, likely to the fact
that in those systems most baryons are in hot galactic coronae, rather than in disks. The
Reyes et al. (2012) data are identified by the three circles near the top of the curve in
the left-hand panel.

Eq. (2.10) and Fig. 2 summarize our understanding of the physical basis of the TFR. It
remains surprising that the variance in the combination of parameters mdεsf (M/L)−1

∗ fv

is as small as indicated by the observed scatter in the TFR, and that the baryonic version
of the TFR remains a pure power law over five orders of magnitude in mass (see Fig. 4
and Section 4).
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Figure 3. Hi gas fraction fHI = MHI/M∗ of 7459 alfalfa survey galaxies versus stellar
mass, M∗; shading (color) represents the mean value of the spin parameter λ within each
(log fHI , log M∗) cell. Cells in the diagram containing more than 20 galaxies fall within the
region bounded by contour lines. The typical galaxy used for the TFR in cosmic distance stud-
ies falls within a few highly populated cells (those within the contour lines) in the diagram with
log M∗ > 10 and log fHI > 0.1. As Huang et al. (2012) point out, the mean value of λ remains
nearly constant along lines of constant log MHI ; see section 3.1 for discussion. (Credit: Huang
et al. 2012. Reproduced with permission from the American Astronomical Society)

3. Understanding Sources of Scatter: the RV Scaling Law
An interesting case study on the sources of scatter is that of the disk size versus vobs

(for short, RV ) scaling law. Assuming that the baryons collapse within the potential
well of the halo without altering its density profile, radiating but conserving angular
momentum, and settling into a thin, exponential disk of scale length rd , a reasoning
similar to that described in the previous section yields

rd � 8.8h−1
( λ

0.05

)( jd

md

)( vc

250 km s−1

)[H(z)
H0

]−1
fcfR kpc, (3.1)

where λ is the spin parameter of the halo, jd the fraction of the angular momentum
carried by the disk, fc a fudge factor which depends solely on the concentration index of
the NFW halo profile, and fR a factor which depends mainly on the shape of the rotation
curve.

An important source of scatter in this relation would appear to be that driven by the
variance in λ. N -body simulations show that, over all halos, λ has a lognormal distribution
centered near 0.045 with a scatter of 0.22 dex in log λ. Thus, it would be expected that
the observed scatter of the RV law is greater than 0.22 dex in log rd . Yet, the observed
scatter is no greater than 0.16 dex (Courteau et al. 2007; Saintonge & Spekkens 2011).
The possible explanation of the mismatch is found in fig. 14 of Huang et al. (2012),
reproduced here as Fig. 3. Using the α.40 release of the alfalfa survey (Haynes et al.
2011), Huang et al. derive spin parameters of 7459 galaxies using the estimator

λ = 21.8
rd [kpc]

v
3/2
rot [km s−1 ]

. (3.2)

The inferred values of λ are very coarse, and their dispersion is, as a result, much broader
than the intrinsic spread. In a plane of Hi gas fraction, fHI = MHI/M∗, versus stellar
mass, M∗, the average value of λ within each cell of that plane is represented by a
different degree of shading (color). Cells containing more than 20 galaxies fall within
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the region bounded by contour lines. The typical galaxy used by the TFR in cosmic
distance studies falls within a few highly populated cells (those within the contour lines)
of the diagram, stretching along lines of roughly constant Hi mass in the region with
log M∗ > 9.5 [M�] and higher-than-average log fHI for any given M∗. Because the λ
estimator used is a ragged one, an estimate of the intrinsic log λ scatter is difficult
to derive. However, as Huang et al. point out, it is apparent in Fig. 3 that the mean
value of λ remains nearly constant along lines of constant MHI. Thus, the typical TFR
target galaxies are extracted from a sample with tighter variance than that in any sample
representative of the global halo-mass function resulting from numerical simulations. The
less-than-initially-feared impact of λ scatter on the RV law makes the latter a desirable
complement to the TFR. Saintonge & Spekkens (2011) find that the scatter in the I-band
RV relation can be reduced to ∼0.11 dex in the linear size parameter if rd is replaced
with an isophotal radius measured at a sufficiently large galactocentric distance so that
the disk is transparent and the isophotal radius requires no correction for opacity. Such
an RV relation is comparable in predictive quality with the TFR. Saintonge & Spekkens
use a template RV relation from the Cornell SCI data set to derive an estimate of the
Hubble parameter: H0 = 72 ± 7 km s−1 Mpc−1 .

4. Ways to Improve Your Scaling Law Template
Significant benefits to a cosmic distances program based on disk galaxy scaling laws

can result from wise choices in terms of template sample selection and optimization of
photometric and kinematic parameters.
• Sample Selection: All Sky. The cosmic microwave background (CMB) dipole

is due to the peculiar velocity of the Milky Way. It produces an apparent reflex mo-
tion, with respect to the observer, of galaxies in shells of progressively increasing radius.
Asymptotically, that motion converges both in amplitude and apex direction toward the

Figure 4. Baryonic mass as a function of half linewidth (left) and circular velocity, as obtained
from resolved rotation curves (right). The section of the plot for the high-mass end of the relation
is overplotted with higher resolution in the left-hand panel. Note (i) the power-law extension
of the relation all the way to the low-mass end, and (ii) the significant reduction of the scatter
when the rotational velocity is extracted from a resolved rotation curve. (Credit: McGaugh 2012.
Reproduced with permission from the American Astronomical Society)
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CMB dipole vector. Convergence is reached at shell radii of ∼ 100 Mpc (Giovanelli et al.
1998; Dale & Giovanelli 2000). Combined with their clustering properties, an uneven
distribution of galaxies in the template sample can produce TFR template relations with
an incorrect zero point, simulating inflating or deflating, Local Group-centered Hubble
bubbles.
• Sample Selection: Basket of Clusters. Photometric parameters of galaxies, such

as inclinations to the line of sight and disk scale lengths, are best measured for relatively
nearby objects. Peculiar velocities of galaxies can contribute a measurable fraction of TFR
scatter at distances up to � 100 Mpc. In the case of a cluster with N measured members,
the offset from a template due to the cluster motion can be gauged with an accuracy that
is approximately

√
N times better than for a single galaxy. Thus, if the TFR template

sample consists of galaxies in clusters, the component of the scatter introduced by each
cluster’s peculiar velocity is removable. This can be achieved by adding cluster galaxies
to the template after their offset from the mean TFR, due to the peculiar velocity of their
parent cluster, has been removed. A template relation built from galaxies in a basket of
clusters will thus have smaller scatter than one obtained for a field-galaxy sample.
• Photometric Band. Because a good estimate of the kinematic parameter in the

TFR requires that galaxies be sufficiently inclined to the line of sight, corrections to the
optical flux for internal extinction are an important source of TFR scatter. This advises
for selecting a photometric band within which internal extinction corrections are small,
a concern that needs to be weighed against the requirement that the photometry be as
representative as possible of the stellar population. Major TFR surveys of the last two
decades chose either the R or I optical bands as a compromise between the two require-
ments. More recently, the wide field coverage of the Spitzer Space Telescope’s archival
data in the 3.8 μm band has offered the opportunity to build substantial TFR samples for
which extinction corrections—very small—and homogeneity of the photometric source
offer the possibility of reduced scatter. The recent work of Sorce et al. (2012) indicates
that, while the reliance on a consistent photometric scale over the entire sky is a definite
plus, improvements in TFR scatter by going to the mid-IR regime are not yet substantial:
the scatter of a preliminary 3.8 μm template is 0.49 mag, which can be reduced to 0.42
mag after introducing a color correction. Contamination by emission from hot dust and
PAHs may play a role in the relatively large scatter in this relation.
As just indicated, a color correction can have an important impact in reducing the TFR
scatter. Until recently, large TFR samples were monochromatic. A dependence of the
TFR template attributed to morphological type has often been found in monochromatic
TFR templates (see, e.g., figs 3 and 4 of Giovanelli et al. 1997): that is in fact a color
dependence. Availability of multicolor photometry can thus be a good asset towards
building a good scaling-relation template.
• Stellar versus Baryonic. In the TFR, disk luminosity is considered a proxy for

stellar mass, and the relation becomes significantly noisier for disks with rotational ve-
locities lower than 50 km s−1 . However, the power-law character of the TFR is preserved
through slower rotators if disk luminosity is replaced with the baryon mass, i.e. the sum
of the ISM mass, as obtained through the 21 cm Hi line, and the stellar mass as inferred
from the disk luminosity and color. Fig. 4 (after McGaugh 2012) shows the baryonic
TFR behavior as a single power law to rotational velocities as low as 20 km s−1 . The
usefulness of this relation can apply to the determination of distances to nearby dwarf
systems, as an economical substitute for techniques such as measuring the tip of the red
giant branch.
• Linewidths versus Resolved Rotation Curves. The two panels of Fig. 4 dif-

fer in the adoption of the kinematic parameter: the scatter in the baryonic TFR is
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significantly reduced if the rotational velocity is inferred from a resolved rotation curve
(the label vf indicates that the velocity was measured at a radius where the rotation
curve becomes ‘flat’). A template that uses single-dish Hi linewidths is economical, but
it can be improved if replaced with Hα rotation curves and, even more so, if Hi synthesis
maps are available, since the Hi can typically be detected to larger galactocentric radii
than Hα and therefore provide better sampling of the large-scale dynamics of the galaxy.

• The Cost of Reduced Scatter. Several of the recommendations in this section
require more data than does the ‘basic’ TFR. For the added value, there is a cost penalty.
Since we live in times of fiscal austerity, it can be useful to quantify the cost of reduced
scatter. The more ‘expensive’ observational parameter is the kinematic one. Consider
three versions of the latter, most often used, and the operating costs of telescopes needed
to obtain them., and see how they would impact a TFR project budget:

◦ Single-dish Hi linewidths; cost: ∼ $ 200 galaxy−1 ; feasible sample size: ∼ 104;
◦ Hα rotation curve; cost: ∼ $ 2K galaxy−1 ; feasible sample size: ∼ 103;
◦ Hi synthesis map; cost: ∼ $ 15K galaxy−1 ; feasible sample size: ∼ 102.

These are very rough numbers. Perhaps better deals can be had after careful shopping.
• Invitation to Harvest. The alfalfa Hi survey is now complete and nearly half

of the extragalactic Hi sources are in the public domain. The final catalog will contain
more than 30,000 sources, including optical identifications, Hi masses, and linewidths
(see Giovanelli et al. 2005; Haynes et al. 2011).
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