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Turbulent flows over porous substrates are studied via a systematic exploration of the
dependence of the flow properties on the substrate parameters, including permeability
K , grain pitch L and depth h. The study uses direct numerical simulations mainly
for staggered-cube substrates with L+ ≈ 10–50,

√
K/L ≈ 0.01–0.25 and depths from

h = O(L) to h � L , ranging from typical impermeable rough surfaces to deep porous
substrates. The results indicate that the permeability has significantly greater relevance
than the grain size and microscale topology for the properties of the overlying flow,
including the mean-flow slip and the shear across the interface, the drag increase relative
to smooth-wall flow and the statistics and spectra of the overlying turbulence, whereas
the direct effect of grain size is only noticeable near the interface as grain-coherent flow
fluctuations. The substrate depth also has a significant effect, with shallower substrates
suppressing the effective transpiration at the interface. Based on the direct-simulation
results, we propose an empirical ‘equivalent permeability’ K t

eq that incorporates this
effect and scales well the overlying turbulence for substrates with different depths,
permeabilities, etc. This result suggests that wall normal transpiration driven by pressure
fluctuations is the leading contributor to the changes in the drag and the overlying
turbulence. Based on this, we propose a conceptual h+–

√
K + regime diagram where, for

any given substrate topology, turbulence transitions smoothly from that over impermeable
rough surfaces with h = O(L) to that over deep porous substrates with h+ � 50, with the
latter limit determined by the typical lengthscale of the overlying pressure fluctuations.
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1. Introduction
Turbulent flows over porous substrates are prevalent in both nature and engineering.
They play a central role in diverse problems in environmental science (e.g. forest winds,
soil evaporation, sediment transport in water and riverbed/seabed erosion), aerospace
engineering (e.g. surface treatment for drag and noise reduction and boundary layer
control), chemical engineering (e.g. heat/mass transfer enhancement in catalyst layers,
fluidised beds and nuclear reactors), metallurgical engineering (e.g. industrial painting
and metal foam processing) and light industry (e.g. food dehydration). This subject is
characterised by a coupling of two systems originally with distinctively different nature
– the turbulent boundary layer, which features vigorous fluctuations, inertia-dominated
inter-scale energy transfer and self-organised flow structures, and the porous medium,
in which flow is relatively creeping and viscosity-dominated, and large flow structures
spanning many pores are strongly impeded. Such contrast indicates an acute transition
of flow behaviour across the interface between the overlying and the subsurface flow,
which involves multiple mechanisms with a broad range of characteristic scales. In recent
decades, this subject has been increasingly attracting experts from various traditional
communities of fluid mechanics, including wall turbulence, flow instability, free shear
turbulence, low-Reynolds-number flows, transport phenomena and chaotic systems. Some
typical effects of porous substrates, such as drag increase and mixing enhancement, have
been studied extensively in diverse scenarios. However, due to the complicated interplay
between different mechanisms, our understanding of the general dependence of the flow
behaviour on different characteristics of a porous substrate is still vague.

The most distinctive characteristic of a porous substrate is permeability, i.e. the ability
for the overlying flow to penetrate into the substrate. Jimenez et al. (2001) represented
permeability using a boundary condition where the transpiration, i.e. the wall-normal
velocity at a notional interface plane, was proportional to the local instantaneous
overlying pressure, with a ‘porosity coefficient’ of proportionality. Their direct numerical
simulations (DNSs) showed that such boundary conditions cause the onset of large
spanwise rollers associated with a Kelvin–Helmholtz (K–H)-like instability, resulting in an
increase in mixing and drag. This boundary condition is a reasonable characterisation of
substrates where the flow can travel freely through a plenum below the substrate (Kawano
et al. 2021).

A practical parameter to characterise substrate permeability is the bulk permeability
K of the porous medium, which is defined as K ≡ −νU/∂x P , where U is the mean
velocity induced by a uniform mean pressure gradient ∂x P and ν is the kinematic viscosity
(Darcy 1856). Note that here, and elsewhere throughout the paper, any pressure we refer
to is the kinematic pressure, that is, the actual, static pressure divided by the density.
The above expression for K can be obtained by volume-averaging the corresponding
pore-resolved solution assuming Stokes flow, and

√
K is a characteristic permeability

lengthscale. Breugem, Boersma & Uittenbogaard (2006) systematically investigated the
influence of K on the overlying turbulence. They conducted DNSs for overlying flows
while using a volume-averaged-Navier–Stokes (VANS) approach to model subsurface
flows. Their results showed that turbulence differs little from smooth-wall flows for√

K + � 0.3, where the superscript ‘+’ denotes wall-unit scaling. As
√

K + increases up
to

√
K + ≈ 9, typical near-wall structures such as low-speed streaks and quasi-streamwise

vortices, are gradually destroyed. The significance of
√

K + to near-wall structures was
confirmed by the experiments of Suga et al. (2010, 2011) for

√
K + ≈ 1–11. They found

that the increase of
√

K + tends to intensify sweep events and weaken ejection ones near
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the interface, and presented a conceptual model for the associated destruction of structures.
A broader range

√
K + ≈ 2–17 was investigated experimentally by Manes, Poggi & Ridolfi

(2011). Based on the evolution of near-wall vortical structures with
√

K +, they proposed
a theory to describe the competition between two types of eddies: the typical smooth-
wall-like eddies, and the spanwise-elongated eddies induced by the K–H instability. The
onset and development of this instability was theoretically modelled by Abderrahaman-
Elena & García-Mayoral (2017), Sharma et al. (2017), and Gómez-de-Segura et al. (2018a)
in a more general situation with anisotropic permeability, establishing a criterion for its

onset of
√

K +
y � 0.3–0.4, where Ky is wall-normal permeability. Khorasani et al. (2024)

have recently corroborated this value in texture-resolving DNSs of mesh-like anisotropic
permeable substrates. Focusing on low permeability in a range

√
K + ≈ 0.05–0.7, Rosti,

Cortelezzi & Quadrio (2015) conducted VANS-based simulations and suggested a similar
critical value,

√
K + ≈ 0.2, below which almost all the flow statistics are indistinguishable

from those of a smooth wall. Voermans, Ghisalberti & Ivey (2017) measured more
flow details across the substrate interface for

√
K + ≈ 0.3–6. They could obtain detailed

measurements of the flow near the interface and in the subsurface region, not usually
accessible in experiments, by matching the refraction index between the flow and the solid
inclusions of the substrate (Rousseau & Ancey 2020). The results confirmed the strong
dependence of various interfacial flow properties and penetration depths on

√
K +. More

recently, Wang et al. (2021) investigated the transfer of information across the interface.
They found strong asymmetry between top-down and bottom-up transfer in terms of both
scale and strength for

√
K + ∼ O(1), which provided a novel perspective on understanding

the turbulence–subsurface flow interaction.
Since real-world porous media are composed of grains or inclusions of finite size

and pitch L , the free-flow/substrate interface has an irregular topography and, thus, a
porous substrate also exhibits some features of surface roughness. Some research has
aimed to understand the role of surface roughness in the problem of turbulence over
porous substrates. A natural strategy to approach this issue is to compare between porous
substrates and impermeable rough surfaces with analogous interfacial topography. Such
discussions can be at least traced back to Zagni & Smith (1976); Kong & Schetz (1982);
and Zippe & Graf (1983). In their experiments, the corresponding rough surface was
obtained by placing a flat and smooth plate, which we term ‘floor’ in this paper, just below
the first layer of grains that constitute a porous substrate, so the former has a depth h ∼ L
in contrast to the latter where h � L . They all observed that a porous substrate induces
higher drag than its rough counterpart.

The role of surface roughness in turbulence over porous substrates has drawn more
attention in recent decades. Manes et al. (2009) explored this issue using particle image
velocimetry (PIV). They considered porous substrates and rough surfaces consisting of
regularly packed spheres with

√
K + ≈ 31–45, L+ ≈ 260–370 and h/L ≈ 5 and 1. Their

measurements confirmed that porous substrates had higher drag coefficients, and they
proposed that the intense downward transport of turbulent kinetic energy by pressure
fluctuations is an important feature distinguishing porous substrates from impermeable
rough surfaces. A similar argument has been proposed by Karra et al. (2023) using fully
resolved DNSs for substrates constituted by randomly packed spheres with

√
K + ≈ 3–9,

L+ ≈ 80–300 and h/L ≈ 1–4. Also using fully resolved DNSs, Kuwata & Suga (2016a,b)
compared the flow structures over porous and rough surfaces consisting of staggered
cubes with

√
K + ≈ 3, L+ ≈ 50 and h/L ≈ 5 and 1. They argued that the porous surface
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has stronger spanwise eddies originating from the K–H instability but weaker near-wall
streaks. This is reminiscent of the “competing mechanism” in Manes et al. (2011), where
they discussed the influence of

√
K +. Cooper et al. (2017) conducted experiments of

turbulence over permeable substrates and impermeable surfaces with replicated interfacial
topography, suggesting that momentum transfer was more efficient in the permeable case,
and Reynolds stresses higher. Fang et al. (2018) considered substrates composed of very
large grains with

√
K + ≈ 1–100, L+ ≈ 250–3000 and h/L ≈ 3 and 0.5 using large eddy

simulations (LES). Their results suggested that the flow behaviour near the interface
depends more on

√
K + than L+ even for such large grains. To separate the permeability

and roughness effects, Esteban et al. (2022) provided more experimental data in the ranges√
K + ≈ 1–60, L+ ≈ 10–500 and h/L ≈ O(10), 3 and 1. A generic formulation to predict

drag increase was proposed based on an analogy between the roles of
√

K + and L+ in the
problem. This generic formulation was partially verified more recently by Wangsawijaya,
Jaiswal & Ganapathisubramani (2023). They overlaid external roughness over the surface
of a permeable substrate. The substrate had large permeability

√
K + ≈ 10–30 but small

grains, while the mesh-like roughness had very large mesh pitch L+ � 5000. Their results
suggested that the drag increase for the composite permeable-and-rough surface could be
characterised by the scale

√
K +L+.

To understand the role of surface roughness in turbulence over porous substrates,
Kim et al. (2020) instead polished the substrate interface, in essence eliminating its
rough character. For

√
K + ≈ 50 and L+ ≈ 1000, the comparison between the original,

unpolished substrate and the polished one showed that the latter induces higher drag
than the former. They attributed the difference primarily to the roughness-coherent flow
present in the former. A similar strategy was used in Shen, Yuan & Phanikumar (2020).
For

√
K + ≈ 3 and L+ ≈ 80. They compared two substrates with a regularly packed and

a randomly packed surface layer, respectively, suggesting that the interfacial topographic
details affect the flow dynamics.

Overall, the works cited above suggest that turbulence over porous substrates is affected
by three characteristics of the substrate. The first is the permeability of the porous medium,
characterised by the bulk parameter K . This is a macroscale property, in the sense that it
emerges from a volume-average over scales larger than the grain pitch and, therefore, does
not reflect the details of the geometry at the grain size or microscale. The permeability
controls the general degree of penetration of the overlying turbulent fluctuations into the
substrate. The second characteristic is the granularity of the porous medium, which refers
to those microscale features directly associated with the geometrical detail of individual
grains. The granularity induces grain-coherent fluctuations in the flow, especially near
the interface, with characteristic length scale L . The third characteristic is the substrate
depth, h. A finite depth tends to suppress the penetration of the overlying flow, thus
counteracting the effect of the bulk permeability. For the three characteristics, the literature
generally suggests that the permeability and the granularity of a porous medium have some
similar phenomenological effects on its overlying flow, such as intensifying the near-wall
turbulence and increasing the drag, while these effects are attenuated if the substrate is not
sufficiently deep.

In the present paper we aim to characterise the above general trends quantitatively. One
difficulty lies in separating the effects of permeability and granularity. In previous studies,
the grain topology, which determines the ratio

√
K/L , has typically little variation;

K and L are then varied in synchrony, making it difficult to separate their effects. In
addition, transpiration is known to be important not only for porous substrates, but also
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for roughness (Orlandi & Leonardi 2006, 2008; Orlandi, Leonardi & Antonia 2006).
Although strictly speaking rough surfaces are impermeable, in the sense that they do not
allow flow through, they allow transpiration in the sense of non-zero wall-normal velocity
at a notional interface plane at top of the roughness crests. This transpiration does not
only occur at the microscale L , but also at the macroscale, for the typical sizes of the
overlying turbulent eddies. The latter would be more intense for porous substrates, but the
question arises of whether the nature of the transpiration effect is different for porous and
rough walls, or whether the difference is only in intensity, and a smooth transition can be
observed between a porous substrate with h � L and a corresponding rough surface, with
h ∼ L .

To address these questions, we systematically explore the parameter space of K , L and
h using DNS, aiming to understand the effects of permeability, granularity and substrate
depth as independent parameters on the overlying turbulence. We limit the scope of this
study to substrates composed of relatively small grains, 10 � L+ � 50, i.e. essentially
in the transitionally rough regime. In this range, the overlying turbulence deviates from
smooth-wall-like behaviour but the near-wall turbulent structures are not fully disrupted by
the granularity of the substrate (Abderrahaman-Elena, Fairhall & García-Mayoral 2019).
At L+ ≈ 20–50, the length scales of the overlying turbulence and the grain-coherent flow
become comparable, and microscale and macroscale cannot be clearly separated (Fairhall,
Abderrahaman-Elena & García-Mayoral 2019; Xie, Fairhall & García-Mayoral 2024).

The paper is organised as follows. Section 2 describes the substrate configurations,
numerical methods and simulation set-up and techniques for post-processing. Section 3
reports the general dependence of flow properties on the geometrical parameters of
substrates. Section 4 discusses the scaling of turbulence with substrate parameters.
Section 5 investigates the transition from porous substrates to typical rough surfaces.
Section 6 concludes this paper.

2. Methods

2.1. Configurations of substrates
The substrate configurations considered in this study are arrays of staggered solid cubes
with grain pitch L , inclusion width � and gap size g = L − �, as shown in figure 1, similar
to those of Kuwata & Suga (2016a). Compared with collocated arrays, such as those in
Breugem & Boersma (2005), the staggered arrays are more representative of randomly
packed grains that are prevalent in realistic scenarios, where large gaps between grains
would be occupied and blocked by other grains. The gap-to-pitch ratio g/L controls the
connectivity of pores, which can be regarded as partially connected for g/L < 1/2 and
fully connected for g/L > 1/2. The porosity is ε = 1 − 2(�/L)3 + max[(2�/L − 1)3, 0] =
1 − 2(1 − g/L)3 + max[(1 − 2g/L)3, 0]. Regular topologies such as these have been used
often in the literature to study porous substrates (Breugem & Boersma 2005; Breugem
et al. 2006; Chandesris & Jamet 2009; Manes et al. 2009; Zhang & Prosperetti 2009;
Liu & Prosperetti 2011; Jin et al. 2015; Kuwata & Suga 2016a,b; Fang et al. 2018; Kim
et al. 2020; Wang et al. 2021; Rao & Jin 2022; Khorasani et al. 2024). They present
the advantage that in macroscopically homogeneous flow only one pore unit of size L
is needed to obtain volume-averaged quantities (Breugem & Boersma 2005). Concerns
were raised by the reviewers of the paper about substrates with g/L > 1/2 being made
up of ‘frozen suspensions’ of inclusions, and thus not being realisable experimentally.
This is indeed the case, but such substrates have nevertheless been used widely in the
literature as idealised high-permeability topologies (Prinos, Sofialidis & Keramaris 2003;
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Figure 1. Sketches of porous substrates and computational domain used in the DNSs. Here L and g are the
grain pitch and the gap size and h is the substrate depth. The wall-normal coordinate is set to y = 0 at the
interface of the bottom substrate with the free flow, the plane of the tips of the top layer of cubes. (a) Staggered-
cube topology, where D ≡ L/2 is the thickness of one cube layer. (b) Computational domain, with dimensions
2πδ, 2(δ + h), and πδ in x , y and z, respectively. (c) Plan and side views of staggered-cube substrates of
different depths. (d) Mesh topology. (e) Side view of a mesh substrate.

Breugem & Boersma 2005; Chandesris & Jamet 2009; Zhang & Prosperetti 2009; Liu &
Prosperetti 2011; Jin et al. 2015; Lācis et al. 2020; Naqvi & Bottaro 2021; Sudhakar et al.
2021; Wang et al. 2021; Rao & Jin 2022; Aghaei-Jouybari et al. 2024). In Appendix A, we
show that there is no fundamental difference between the flow in these and in substrates
made up of interconnected inclusions, and that there is a continuum in the flow properties
as g/L increases above 1/2 and the inclusions cease to be interconnected. We have
nevertheless included some additional simulations with mesh-like substrates, similar to
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0 0.2 0.4 0.6 0.8 1.0

10–2

10–1

√– K– /
L

ε

Figure 2. Porosity–permeability relationship for the staggered-cube configuration considered in this study. The
green markers represent the a posteriori values resulting from the DNSs for all deep porous (Pd) substrates,
with those at Reτ ≈ 360 and Reτ ≈ 550 in magenta and purple. The black line represents the a priori values
obtained from Stokes-flow simulations at the same resolution. The blue to red crosses are a priori results for
increasing resolution and the black ones values kindly provided by one of the manuscript reviewers, as detailed
in Appendix B. Symbols: for L+ ≈ 12; for L+ ≈ 24; for L+ ≈ 36; for L+ ≈ 48.

those of Khorasani et al. (2024), which could also yield the desired high permeabilities,
albeit at an increased computational cost. These substrates were designed so that they
exhibited a rough interface with protrusions, like our cube topologies, as shown in
figure 1(d).

For each topology and value of g/L or ε, the bulk permeability K ≡ −νU/∂x P is
obtained via a simulation of Stokes flow driven by a uniform pressure gradient ∂x P and
yielding a mean velocity U , as in Sharma & García-Mayoral (2020b). We refer to this as
the a priori permeability. Alternatively, the value of K can also be estimated from the
Darcy region in a DNS. We refer to this as the a posteriori permeability. In the literature,
the former is often denominated the intrinsic permeability, and the latter the effective
permeability. For consistency, the Stokes computations were conducted with the same
resolution per pitch as the DNSs; see Appendix B for a discussion on spatial resolution.
Both Stokes-flow and DNS values of K are displayed for our staggered-cube topologies
against the porosity ε in figure 2, showing no significant discrepancies between the two.
The figure also shows that a change of g/L in the range 2/9– 3/4 or ε in 0.23 – 0.97
changes

√
K/L in 0.013–0.243, more than one order of magnitude.

The interface of a staggered-cube configuration can be defined as the plane through the
tips of the first layer of cubes and set to have y = 0. The thickness D of a grain layer, which
is defined as the distance between the tips of two adjacent layers, is D = L/2. The bottom
of the substrate is a smooth wall, termed ‘floor’, at y = −h, where h is the substrate depth.
In this paper, we primarily consider three categories of substrates based on the ratio of
the depth h to the grain-layer thickness D: deep porous substrates (Pd), with h/D ≥ 5,
shallow porous substrates (Ps), with h/D = 2, and rough surfaces (Ro), with h/D = 1.
The floor of our rough surfaces is thus at y = −D = −L/2, exactly through the tips of
the second grain layer for the corresponding deep and shallow porous layouts, where the
flow first perceives blockage after penetrating the interface from above. Note that this

1008 A1-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

55
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.55


Z. Hao and R. García-Mayoral

corresponding rough surface is slightly different from that in Breugem & Boersma (2005)
or Kuwata & Suga (2016a), who set the floor at the bottom of the first layer of cubes. The
a posteriori permeability was obtained from our deep-substrate DNSs, Pd, from the mean
pressure gradient and the bulk velocity in the third layer of grains from the floor. Our aim
is to investigate if and how the character of a given substrate topology changes gradually
from being simply rough to being fully permeable, as its depth progressively increases.
Although our interest is mainly academic, there are practical cases where substrates would
exhibit an intermediate character, being permeable yet thin, e.g. for thin sediment beds
or in porous surface coatings or paints. We note that, as detailed in § 1, porous substrates
and rough walls with equivalent grain topology or superficial texture have been previously
compared extensively, likewise for regular (Manes et al. 2009; Kuwata & Suga 2016a,b;
Fang et al. 2018) and irregular topologies (Zagni & Smith 1976; Zippe & Graf 1983;
Cooper et al. 2017; Karra et al. 2023), and both experimentally and numerically. One of
the paper’s reviewers raised concerns, especially for our rough and shallow substrates,
about regular topologies having a uniform superficial texture, while irregular ones would
have unique, heterogeneous distributions that would make generalisations questionable. It
is, however, well established for rough walls, which is what our substrates with h/D = 1–2
essentially are, that heterogeneities at the grain level do not result in significant differences
in the flow over different samples of the same surface (Jiménez 2004; Chung et al. 2021).
Surface heterogeneity only becomes relevant when it occurs over significantly larger
lengthscales, typically comparable to the boundary layer thickness, as studied recently
in Li et al. (2021); Wangsawijaya et al. (2020) and Stroh et al. (2020) and reviewed in
Bou-Zeid et al. (2020) and García-Mayoral et al. (2024).

2.2. Numerical methods and simulation set-up
The DNSs in this paper are conducted in channels bounded by a pair of parallel substrates
with identical configurations. The two substrates are symmetric about the channel central
plane and the distance between their interfaces is 2δ, as portrayed in figure 1(b). The size
of the channel is 2πδ in the streamwise (x) direction and πδ in the spanwise (z) direction.
Periodic boundary conditions are applied in x and z. A constant mean pressure gradient
∂x P < 0 is imposed in x in the entire domain to drive the channel flow. The substrate
parameters in wall units are based on the kinematic viscosity ν and the friction velocity uτ

measured at the interface y = 0, i.e. uτ = √−∂x P δ. We note that this value of uτ is not
strictly the one that is expected to scale the flow, which would be set at the virtual origin
at y = −�yd perceived by the overlying turbulence, i.e. uτ = √−∂x P(δ + �yd) (Luchini
1996; Ibrahim et al. 2021). Nevertheless, as we show in § 2.3, the difference between the
two values of uτ is never larger than 1 %.

We use the computational code of Sharma & García-Mayoral (2020a,b), which is
briefly summarised here. The code solves the incompressible Navier–Stokes equations
using a pseudo-spectral discretisation in the x and z directions and a finite-difference
discretisation in the y direction. A three-step Runge–Kutta scheme with a fractional-step
method is used for the time discretisation. No-slip conditions are imposed on all solid
surfaces of substrates through an immersed boundary method. The code features a multi-
block structure (García-Mayoral & Jiménez 2011) that allows local refinement of near-wall
grids in x and z to resolve small texture, while retaining a coarser resolution away from
substrates, sufficient to fully resolve the turbulence. Full details of the numerical method
and its validation can be found in Sharma (2020).

In the substrate blocks, for the staggered cubes the resolution is set to 24–32 grid points
in x and z per grain period L . The number of grid points covering one gap size g is
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13 or greater, except for cases Pd-12-33, Ro/Pd-24-25, Pd-36-22, Ro/Pd-48-22, Pd-48-25
and Ro/Pd-48-28 (nomenclatures to be introduced below), for which it is 9–11. For these
cases, both the porosity and the permeability are low, and thus the interfacial turbulent
fluctuations are weak. In this situation, the grid-dependence investigation in Sharma &
García-Mayoral (2020b) showed that further refinement had no significant influence. For
the mesh substrates, the resolution is set to 36 grid points per grain period L , with 8–16
points resolving the mesh ligaments of width �, depending on the ratio g/L . The fine-
resolution blocks reach up to y ≈ 2L away from the substrate interface into the channel
core, sufficient for the fine scales induced by the grain geometry to have vanished already.
In the channel-core block, the resolution is set lower to �x+ ≈ 6 and �z+ ≈ 3. In the
y direction, the grid is finest with �y+ ≈ 0.35 near the interface y = 0, where the shear
is higher, and is gradually stretched away from this plane, as in Chen & García-Mayoral
(2023). For y > 0, the grid spacing is stretched to �y+ ≈ 3.5 near the channel centre; for
y < 0, the grid spacing is stretched to �y ≈ �x = �z at y = −2D = −L and becomes
uniform for y < −2D.

Table 1 lists the basic parameters of all 58 DNSs presented in this paper, among which
52 cases have friction Reynolds number Reτ ≡ uτ δ/ν ≈ 180, 4 cases with suffix ‘HR’ have
Reτ ≈ 360 and 2 cases with suffix ‘HHR’ have Reτ ≈ 550. The cases at higher Reynolds
numbers were run to verify that the effect of the texture is Reynolds-number independent
in viscous scaling, with results compared in Appendix C. The two numbers in the label
of a case indicate its pitch L+ and gap-to-pitch ratio g/L , respectively, e.g. ‘Pd-24-56’
has L+≈ 24 and g/L ≈ 0.56. The prefix ‘Ro/Ps/Pd’, as introduced in § 2.1 and figure 1(c),
indicates the depth h = 1D, 2D or ≥ 5D; there is also one very deep case with suffix
‘VD’, with h = 9D. A letter ‘M’ precedes the name for cases with interconnected-mesh
substrates. The parameter space considered is portrayed in figure 3. The porosity ε, pitch
L+, and permeability K + are in the ranges ε ≈ 0.23–0.97, L+ ≈ 12–48 and

√
K + ≈ 0.4–

8.1, respectively.

2.3. Techniques for post-processing
Table 2 lists the main properties resulting from all the DNSs. For each simulation, we
obtain the flow statistics and spectra by averaging multiple instantaneous fields over a
period of time at least 12δ/uτ after turbulence reaches a statistically steady state. Unless
otherwise stated, the statistics at a y location below the interface are spatially averaged over
the entire x–z plane containing both fluid and solid areas, i.e. the ‘superficial average’.

We use the mean-velocity deficit in wall units, �U+, commonly known as the roughness
function, to quantify how a substrate increases drag compared with a smooth wall.
Following classical turbulence theory, the mean velocity profile U+(y+) in the logarithmic
layer over a complex surface is shifted relative to a smooth-wall one, U+

Sm(y+),

U+(y+) = κ -1 ln (y+ + �y+
d ) + B − �U+, (2.1)

where κ ≈ 0.4 and B ≈ 5 are the constants characterising U+
Sm(y+) in the logarithmic

layer and �y+
d is the zero-plane displacement, the y-coordinate offset that results in a

best collapse for the outer flow. We follow Chen & García-Mayoral (2023) and extend this
relation above the logarithmic layer to include the wake region, for a robust estimation
of �U+ by adjusting �yd to maximise the region sufficiently above the surface where
U+(y+) and U+

Sm(y++�y+
d ) are parallel. Nevertheless, the resulting values of �U+ are

almost identical to the velocity difference �U+
δ = U+

Sm(δ+) − U+(δ+) measured at the
channel centre y = δ without zero-plane offsetting, both listed in table 2. For all the cases
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Case Reτ L+ g/L h/D ε
√

K + Nx Nz Nyc Nys

Pd-12-33 182.7 12.0 1/3 5 0.44 0.37(0.37) 2304 1152 176 64
Ro-12-50 182.7 12.0 1/2 1 0.75 0.91 2304 1152 176 16
Ps-12-50 182.7 12.0 1/2 2 0.75 0.91 2304 1152 176 28
Pd-12-50 182.7 12.0 1/2 5 0.75 0.91(0.88) 2304 1152 176 64
Pd-12-67 182.7 12.0 2/3 7 0.93 2.03(1.97) 2304 1152 176 88
Ro-24-25 182.7 23.9 1/4 1 0.28 0.39 1536 768 176 28
Pd-24-25 182.7 23.9 1/4 7 0.28 0.39(0.39) 1536 768 176 126
Ro-24-38 182.7 23.9 3/8 1 0.53 0.94 1536 768 176 28
Ps-24-38 182.7 23.9 3/8 2 0.53 0.94 1536 768 176 46
Pd-24-38 182.7 23.9 3/8 7 0.53 0.94(0.95) 1536 768 176 126
Ro-24-50 182.7 23.9 1/2 1 0.75 1.82 1536 768 176 28
Ps-24-50 182.7 23.9 1/2 2 0.75 1.82 1536 768 176 46
Pd-24-50 182.7 23.9 1/2 5 0.75 1.82(1.76) 1536 768 176 94
Pd-24-50-HR 360.0 23.6 1/2 5 0.75 1.79(1.69) 2304 1152 352 74
Pd-24-50-VD 182.7 23.9 1/2 9 0.75 1.82(1.78) 1536 768 176 158
Pd-24-56 182.7 23.9 9/16 7 0.83 2.44(2.42) 1536 768 176 126
Ro-24-62 182.7 23.9 5/8 1 0.89 3.33 1536 768 176 28
Ps-24-62 182.7 23.9 5/8 2 0.89 3.33 1536 768 176 46
Pd-24-62 182.7 23.9 5/8 7 0.89 3.33(3.29) 1536 768 176 126
Ro-24-67 182.7 23.9 2/3 1 0.93 4.06 1728 864 176 29
Ro-24-75 182.7 23.9 3/4 1 0.97 5.80 1536 768 176 28
Ps-24-75 182.7 23.9 3/4 2 0.97 5.80 1536 768 176 46
Pd-24-75 182.7 23.9 3/4 7 0.97 5.80(5.73) 1536 768 176 126
Pd-36-22 182.7 35.9 2/9 5 0.23 0.45(0.45) 1152 576 176 112
Ps-36-33 182.7 35.9 1/3 2 0.44 1.10 1152 576 176 51
Pd-36-33 182.7 35.9 1/3 5 0.44 1.10(1.11) 1152 576 176 96
Pd-36-39 182.7 35.9 7/18 7 0.55 1.55(1.50) 1152 576 176 133
Ro-36-50 182.7 35.9 1/2 1 0.75 2.73 1152 576 176 33
Ps-36-50 182.7 35.9 1/2 2 0.75 2.73 1152 576 176 49
Pd-36-50 182.7 35.9 1/2 6 0.75 2.73(2.67) 1152 576 176 105
Pd-36-50-HR 360.0 35.3 1/2 6 0.75 2.69(2.54) 1536 768 352 91
Ro-36-67 182.7 35.9 2/3 1 0.93 6.10 1152 576 176 34
Ps-36-67 182.7 35.9 2/3 2 0.93 6.10 1152 576 176 51
Pd-36-67 182.7 35.9 2/3 6 0.93 6.10(5.95) 1152 576 176 111
Ro-48-22 182.7 47.8 2/9 1 0.23 0.60 864 432 176 44
Pd-48-22 182.7 47.8 2/9 5 0.23 0.60(0.60) 864 432 176 117
Pd-48-25 182.7 47.8 1/4 5 0.28 0.77(0.75) 768 384 176 106
Ro-48-28 182.7 47.8 5/18 1 0.33 0.98 864 432 176 44
Pd-48-28 182.7 47.8 5/18 5 0.33 0.98(0.97) 864 432 176 117
Ro-48-38 182.7 47.8 3/8 1 0.53 1.88 768 384 176 40
Ps-48-38 182.7 47.8 3/8 2 0.53 1.88 768 384 176 58
Pd-48-38 182.7 47.8 3/8 7 0.53 1.88(1.89) 768 384 176 138
Pd-48-38-HR 360.0 47.1 3/8 7 0.53 1.85(1.87) 1536 768 352 138
Ro-48-44 182.7 47.8 7/16 1 0.65 2.66 768 384 176 40
Pd-48-44 182.7 47.8 7/16 6 0.65 2.66(2.60) 768 384 176 122
Ro-48-50 182.7 47.8 1/2 1 0.75 3.64 768 384 176 40
Ps-48-50 182.7 47.8 1/2 2 0.75 3.64 768 384 176 58
Pd-48-50 182.7 47.8 1/2 6 0.75 3.64(3.50) 768 384 176 122
Pd-48-50-HHR 550.4 48.0 1/2 6 0.75 3.66(3.42) 1728 864 484 107
Ro-48-61 182.7 47.8 11/18 1 0.88 6.28 864 432 176 44
Ps-48-61 182.7 47.8 11/18 2 0.88 6.28 864 432 176 63
Pd-48-61 182.7 47.8 11/18 6 0.88 6.28(6.05) 864 432 176 135
Ro-48-62 182.7 47.8 5/8 1 0.89 6.66 768 384 176 40

Table 1. For caption see next page.
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Case Reτ L+ g/L h/D ε
√

K + Nx Nz Nyc Nys

Ps-48-62 182.7 47.8 5/8 2 0.89 6.66 768 384 176 58
Pd-48-62 182.7 47.8 5/8 7 0.89 6.66(6.42) 768 384 176 138
Pd-48-62-HR 360.0 47.1 5/8 7 0.89 6.56(6.35) 1536 768 352 138
Pd-48-62-HHR 550.4 48.0 5/8 7 0.89 6.69(6.47) 2304 1152 484 137
Ro-48-67 182.7 47.8 2/3 1 0.93 8.13 864 432 176 44
MPd-36-78 182.7 35.9 7/9 10 0.87 5.34(5.16) 1152 576 176 202
MRo-48-56 182.7 47.8 5/9 1 0.58 3.30 864 432 176 44
MPs-48-56 182.7 47.8 5/9 2 0.58 3.30 864 432 176 63
MPd-48-56 182.7 47.8 5/9 10 0.58 3.30(3.18) 864 432 176 207
MPd-48-72 182.7 47.8 13/18 10 0.81 5.94(5.68) 864 432 176 207
MPd-48-78 182.7 47.8 7/9 10 0.87 7.12(6.71) 864 432 176 207

Table 1. (cntd). Simulation parameters. L is the grain pitch, g the gap size, h the substrate depth, D = L/2 the
thickness of one grain layer, ε the porosity and K the permeability, with a posteriori values in parenthesis. The
number of grid points is Nx in x , Nz in z and Nyc and Nys in y in the free-flow region and for the substrates,
respectively.

5

5

10

10

15

15

20

25

ε
0 0.2 0.4 0.6 0.8 1.0

√K
+

0.3

0.5

1

2

3

5

10

0.3

0.5

1

2

3

5

10

5
5

10

10

10

15

15

15

20

20

25

25

30
35

(b)(a)

L+
100 20 30 40 50 60

10
15

20
25

30

Figure 3. DNS cases in this study represented in (a)
√

K +–ε and (b)
√

K +–L+ parameter spaces. The isolines
with embedded numbers represent constant values of the gap size g+. Symbols: for L+ ≈ 12; for L+ ≈ 24;

for L+ ≈ 36; for L+ ≈ 48.

studied, the distance between the interface and the zero-plane-displacement height was
under 3 wall units, and the resulting difference in uτ under 1 %, as mentioned above.

The mean pressure gradient ∂x P driving the flow induces a Darcy velocity UDa
within the substrate, which is not present in an external-flow application where ∂x P 	 0
(see Gómez-de-Segura & García-Mayoral 2019). In an internal flow, U+

Da scales with
Re−1

τ , which is intrinsically different from other near-wall quantities that are essentially
independent of Reτ when normalised in wall units. To allow for direct application to
external flows, we subtract U+

Da from the mean velocity U+ to evaluate the drag increase
�U+, thus redefined by

U+(y+) = κ -1 ln (y+ + �y+
d ) + B + U+

Da − �U+. (2.2)
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Case U+
s �+

U rsh rν U+
Da

√
K +

√
K s+

eq

√
K t+

eq �U+
δ �U+

Pd-12-33 0.43 0.42 0.24 0.12 0.00 0.37 0.37 0.31 0.25 0.25
Ro-12-50 0.81 0.80 0.40 0.35 0.00 0.91 0.91 0.34 0.50 0.50
Ps-12-50 0.81 0.80 0.40 0.34 0.00 0.91 0.91 0.51 0.80 0.79
Pd-12-50 0.80 0.80 0.40 0.34 0.00 0.91 0.91 0.77 0.98 0.97
Pd-12-67 1.23 1.58 0.55 0.51 0.02 2.03 2.02 1.86 5.26 5.25
Ro-24-25 0.43 0.43 0.20 0.06 0.00 0.39 0.39 0.22 0.40 0.39
Pd-24-25 0.42 0.43 0.20 0.07 0.00 0.39 0.39 0.38 0.43 0.41
Ro-24-38 0.80 0.80 0.32 0.17 0.00 0.94 0.94 0.51 0.99 1.04
Ps-24-38 0.80 0.81 0.32 0.16 0.00 0.94 0.94 0.72 1.29 1.31
Pd-24-38 0.80 0.81 0.32 0.16 0.00 0.94 0.94 0.93 1.28 1.27
Ro-24-50 1.35 1.41 0.44 0.34 0.02 1.82 1.81 0.94 1.70 1.71
Ps-24-50 1.28 1.49 0.43 0.24 0.02 1.82 1.81 1.35 3.64 3.71
Pd-24-50 1.24 1.52 0.43 0.20 0.02 1.82 1.81 1.75 4.32 4.28
Pd-24-50-HR 1.20 1.45 0.42 0.21 0.01 1.79 1.78 1.72 4.05 4.05
Pd-24-50-VD 1.23 1.53 0.43 0.20 0.02 1.82 1.81 1.80 4.55 4.54
Pd-24-56 1.35 2.03 0.46 0.24 0.03 2.44 2.41 2.40 6.37 6.36
Ro-24-62 1.96 2.33 0.55 0.69 0.05 3.33 3.29 1.64 3.38 3.44
Ps-24-62 1.58 2.56 0.53 0.29 0.06 3.33 3.27 2.33 6.45 6.44
Pd-24-62 1.42 2.66 0.51 0.24 0.06 3.33 3.25 3.23 7.66 7.65
Ro-24-67 2.16 2.77 0.59 0.84 0.08 4.06 3.99 1.95 4.01 4.01
Ro-24-75 2.46 3.69 0.65 0.98 0.14 5.80 5.53 2.54 5.12 5.13
Ps-24-75 2.01 4.31 0.61 0.38 0.16 5.80 5.51 3.68 7.84 7.85
Pd-24-75 1.69 4.53 0.59 0.19 0.18 5.80 5.36 5.30 9.67 9.66
Pd-36-22 0.46 0.46 0.19 0.05 0.00 0.45 0.45 0.45 0.51 0.53
Ps-36-33 0.89 0.92 0.29 0.11 0.01 1.10 1.09 0.96 1.68 1.69
Pd-36-33 0.89 0.92 0.29 0.10 0.01 1.10 1.09 1.09 1.79 1.79
Pd-36-39 1.13 1.30 0.33 0.09 0.01 1.55 1.53 1.52 3.27 3.23
Ro-36-50 1.70 2.17 0.43 0.20 0.04 2.73 2.67 1.60 3.80 3.81
Ps-36-50 1.46 2.25 0.42 0.13 0.04 2.73 2.66 2.25 5.81 5.80
Pd-36-50 1.40 2.27 0.41 0.11 0.04 2.73 2.65 2.64 6.48 6.46
Pd-36-50-HR 1.32 2.11 0.41 0.12 0.02 2.69 2.61 2.61 5.85 5.79
Ro-36-67 2.30 4.13 0.57 0.50 0.15 6.10 5.73 3.21 6.06 6.02
Ps-36-67 1.81 4.39 0.55 0.20 0.18 6.10 5.58 4.44 8.44 8.45
Pd-36-67 1.61 4.44 0.54 0.15 0.20 6.10 5.48 5.46 9.71 9.73
Ro-48-22 0.54 0.54 0.19 0.05 0.00 0.60 0.60 0.46 0.80 0.85
Pd-48-22 0.55 0.55 0.19 0.05 0.00 0.60 0.60 0.60 0.87 0.84
Pd-48-25 0.62 0.63 0.22 0.07 0.00 0.77 0.77 0.77 0.90 0.91
Ro-48-28 0.78 0.79 0.25 0.07 0.01 0.98 0.97 0.73 1.11 1.14
Pd-48-28 0.78 0.80 0.25 0.07 0.01 0.98 0.97 0.97 1.48 1.50
Ro-48-38 1.28 1.49 0.32 0.07 0.02 1.88 1.82 1.27 2.98 3.00
Ps-48-38 1.22 1.54 0.31 0.05 0.02 1.88 1.81 1.66 4.02 4.01
Pd-48-38 1.20 1.55 0.31 0.05 0.02 1.88 1.81 1.81 4.35 4.36
Pd-48-38-HR 1.14 1.54 0.31 0.05 0.01 1.85 1.78 1.78 4.43 4.44
Ro-48-44 1.57 2.10 0.37 0.08 0.03 2.66 2.53 1.70 4.24 4.26
Pd-48-44 1.37 2.15 0.36 0.06 0.04 2.66 2.53 2.52 5.82 5.81
Ro-48-50 1.82 2.78 0.42 0.12 0.06 3.64 3.41 2.23 4.96 4.97
Ps-48-50 1.52 2.80 0.41 0.10 0.07 3.64 3.42 3.09 6.99 7.01
Pd-48-50 1.46 2.80 0.40 0.11 0.07 3.64 3.44 3.44 7.34 7.32
Pd-48-50-HHR 1.39 2.76 0.40 0.10 0.02 3.66 3.43 3.43 7.16 7.10
Ro-48-61 2.16 4.37 0.50 0.24 0.15 6.28 5.62 3.55 6.71 6.71
Ps-48-61 1.72 4.46 0.49 0.14 0.19 6.28 5.51 4.85 8.80 8.81
Pd-48-61 1.57 4.44 0.49 0.11 0.22 6.28 5.42 5.42 9.94 9.98
Ro-48-62 2.19 4.53 0.52 0.26 0.17 6.66 5.94 3.74 6.77 6.75

Table 2. For caption see next page.
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Case U+
s �+

U rsh rν U+
Da

√
K +

√
K s+

eq

√
K t+

eq �U+
δ �U+

Ps-48-62 1.72 4.64 0.50 0.14 0.21 6.66 5.78 5.07 8.96 8.97
Pd-48-62 1.57 4.59 0.50 0.12 0.24 6.66 5.68 5.68 9.93 9.97
Pd-48-62-HR 1.58 4.79 0.50 0.11 0.12 6.56 5.56 5.56 9.59 9.60
Pd-48-62-HHR 1.58 5.00 0.50 0.10 0.08 6.69 5.58 5.58 9.72 9.75
Ro-48-67 2.35 5.40 0.55 0.27 0.21 8.13 6.81 4.15 7.31 7.33
MPd-36-78 2.55 7.78 0.68 0.30 0.16 5.34 5.11 5.11 8.74 8.73
MRo-48-56 2.18 4.11 0.48 0.09 0.05 3.30 3.08 1.97 6.05 6.03
MPs-48-56 2.16 4.11 0.48 0.10 0.06 3.30 3.13 2.84 6.37 6.37
MPd-48-56 2.02 4.10 0.48 0.09 0.06 3.30 3.12 3.12 7.30 7.30
MPd-48-72 2.55 7.97 0.62 0.23 0.19 5.94 5.54 5.54 8.74 8.76
MPd-48-78 2.62 9.91 0.67 0.27 0.28 7.12 6.53 6.53 9.52 9.55

Table 2. (cntd). Substrate properties obtained from DNS. Us and �U are the mean slip velocity and slip length;
rsh is the inner/outer shear ratio across the interface and rν the effective viscosity ratio (see Appendix D); K s

eq

and K t
eq are the shear- and transpiration-based equivalent permeabilities; �U+

δ is the velocity deficit at the
channel centre, and �U+ that obtained with a zero-plane displacement and optimal outer-layer matching.

Similarly, we define the slip velocity U+
s as

U+
s = U+|0 − U+

Da, (2.3)

where U+|0 is the mean velocity at the interface. For a sufficiently deep substrate,
the Darcy velocity is UDa ≈ −ν-1K ∂x P , while for a finite-depth substrate it can be
approximated by (D3a) evaluated at y = 0 – note that both results converge for h � √

K .
In any event, table 2 indicates that U+

Da is essentially negligible compared with �U+
or U+

s .

3. Effect of substrate parameters on turbulence
In this section, we report the dependence of flow properties on the substrate geometry.
Research exploring the parameter space of the substrate properties, e.g. permeability,
porosity, depth and grain size, is typically limited in which variations are possible. A sweep
through Reynolds number for a fixed substrate, for instance, would vary

√
K +, but in doing

so would also vary L+ proportionately. The present set of simulations has been designed
so that the effect of parameter pairs such as

√
K + and L+ could be analised separately. We

therefore discuss the isolated effect of one parameter at a time: the grain spacing, or pitch,
L+, the porosity ε or, equivalently, the gap-to-pitch ratio, g/L , and the relative depth,
h/D.

3.1. Effect of porosity under fixed grain spacing

First, let us consider deep porous (Pd) substrates with fixed L+ but varying
√

K +
by varying g/L . Figure 4 shows instantaneous velocity fields on the x–y plane for
six deep porous substrates with identical L+ ≈ 24 but varying g/L from 1/4 to 3/4,
corresponding to

√
K + from 0.4 to 5.8. For increasing g/L , the streamwise velocity u+ of

the subsurface flow generally increases, while regions of relatively low speed become more
prevalent immediately above the interface. The changes in u+ and v+ suggest a gradually
intensified penetration of the overlying flow into the substrate. There is strong impedance
to the overlying turbulent eddies, which typically span multiple grains, penetrating into
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Figure 4. Instantaneous fields of velocity components u+ (a) and v+ (b) on an x-y plane for deep-porous
substrates with identical pitch L+ ≈ 24 but different gap-to-pitch ratio g/L = 0.25–0.75, from top to bottom
substrates Pd-24-25/38/50/56/62/75. Colours from blue to red correspond for u+ to [0 : 5] and for v+ to
[−0.8 : 0.8].

the substrate, and their footprint below the interface is much attenuated, and dispersed
lengthscale-wise, by the presence of the individual grains.

The profiles of mean velocity U+, Reynolds shear stress u+′v+′ and root-mean-square
(RMS) velocity fluctuations u+′

rms , v+′
rms and w+′

rms for the above six substrates are portrayed
in figure 5. For each case, the U+ profile below the interface in figure 5(b) shows a near-
interface region with strong shear, i.e. the Brinkman layer. Further below is a plateau
where U+ essentially results from the mean pressure gradient, i.e. the Darcy region. The
Brinkman layer is thicker for larger g/L , indicating a deepened penetration of shear of
the overlying flow. This also results in a slight increase of the slip velocity, U+

s , but
generally decreases U+ above the interface, as shown in figure 5(a), which leads to an
increase of the drag coefficient. Of the configurations discussed here, only those with
smaller permeability,

√
K + � 1, exhibit a smooth-wall-like character. Those with greater

permeability experience significant departures from smooth-wall turbulence, exhibiting
the usual decrease of u′ and increase in v′ and w′ near the wall, with all three converging
towards similar peak values, together with an increase in near-wall Reynolds shear stress
and the corresponding increase in �U+ and drag. Given that similar intense departures
from the smooth-wall-like regime occur across the whole set of configurations studied, the
virtual-origin framework proposed in Ibrahim et al. (2021) will not be used here, as it only
applies to smooth-wall-like turbulence.

The drag increase with increasing g/L is directly associated with the changes in the
u+′v+′ profiles (see Gómez-de-Segura & García-Mayoral 2019, § 5.3), shown in figure 5(c)
for y+ ≈ 0–30. Their magnitude increases significantly relative to smooth-wall values for
g/L � 0.4 or

√
K + � 1. These profiles of u+′v+′, together with u+′

rms , v+′
rms and w+′

rms
in figure 5(d,e,f ), illustrate the gradually enhanced penetration of turbulence into the
substrates as g/L increases. The penetration of u+′

rms is accompanied by a drop of its
peak value above the interface, while such a drop is not observed for v+′

rms or w+′
rms .
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Figure 5. (a,b) Mean velocity profile, (c) Reynolds shear stress and (d– f ) RMS velocity fluctuations for deep
porous substrates with identical L+≈24 but different g/L = 0.25–0.75. Colours from blue to red are for cases
Pd-24-25/38/50/56/62/75, and dash-dotted lines for smooth-wall data. The dotted lines in panel (b) are Darcy–
Brinkman analytical solutions (D3) for the mean velocity within the substrate, and the dashed lines mark the
location of the free-flow/substrate interface.

Similar trends have been observed not only for porous substrates (Breugem et al. 2006)
but also for rough surfaces (Ligrani & Moffat 1986; Abderrahaman-Elena et al. 2019) and
canopies (Sharma & García-Mayoral 2020b). These trends have been interpreted by some
authors (Jiménez 2004; Flores & Jimenez 2006) as the flow losing some of the anisotropic
characters of the near-wall cycle. It is also notable that for all cases studied, v+′

rms decays
with the depth into the substrate more slowly than u+′

rms and w+′
rms , a feature consistent with

the study for dense canopies by Sharma & García-Mayoral (2020b). This implies that, for
a finite-depth porous substrate, the wall-normal velocity fluctuations in the subsurface
flow are more likely to perceive the presence of the substrate floor than the tangential (i.e.
wall-parallel) fluctuations. This is further discussed in § 5.

3.2. Effect of grain spacing under fixed porosity
Next, we consider the deep porous (Pd) substrates with the same gap-to-pitch ratio
g/L = 1/2 but different pitch L+. Figure 6 displays the changes in flow statistics as
the pitch L+ increases from 12 to 48, which corresponds to

√
K + increasing from 0.9

to 3.6. The changes in terms of drag, subsurface mean flow and turbulence penetration
are qualitatively similar to those changes with g/L increasing illustrated in figure 5. The
dominant factor that underlies both the g/L-induced changes and the L+-induced changes
is discussed in § 4.2. In both instances, we note that the differences in the value of the
mean velocity at the interface is small, while the differences far above the substrate are
significant. This can be traced to the increase in the shear Reynolds stress profile, as
discussed above. The latter shows a good correlation with the fluctuating transpiration
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Figure 6. (a,b) Mean velocity profile, (c) Reynolds shear stress and (d–f ) RMS velocity fluctuations for deep
porous substrates with identical g/L = 0.50 but different L+ = 12–48. Colours from blue to red are for cases
Pd-12/24/36/48-50, and dash-dotted lines for smooth-wall data. The dashed lines mark the location of the
free-flow/substrate interface.

v+′
rms at the interface (Abderrahaman-Elena et al. 2019), which, in turn, has been shown to

correlate well with �U+ for rough surfaces (Orlandi et al. 2006; Orlandi & Leonardi 2006,
2008). This suggests that the increase in drag is more closely connected to the transpiration
than to the tangential velocity at the interface.

In contrast to the cases with identical L+ in figure 5, the four cases with identical
g/L = 1/2 in figure 6 share a similarity in substrate geometry, and thus exhibit some
degree of similarity in the decay of subsurface flow properties. In figure 7, where the
flow statistics are normalised by the corresponding interfacial values and the wall-normal
coordinate is normalised by D, the four cases have a similar decaying trend for v′

rms in
most of the subsurface region with y < 0, while for u′

rms and w′
rms the similarity occurs

only for y �−1D. This suggests that nonlinear inertial effects, which break the similarity
of the subsurface flow, are largely limited to the near-interface region, and mainly influence
tangential motions only. This would thus yield the difference in the decaying rate of
near-interface U among the four cases, shown in figure 7(b).

3.3. Effect of substrate depth
Lastly, for a fixed pitch L+ ≈ 24 and gap-to-pitch ratio g/L = 1/2, we compare four cases
with varying depths h/D = 1, 2, 5, and 9, which are respectively labelled as Ro-24-50, Ps-
24-50, Pd-24-50 and Pd-24-50-VD. As shown in figure 8, as the depth h increases from
1D to 5D, we observe an increase in drag and a deeper penetration of turbulence, which
are qualitatively similar to the changes with increasing g/L in figure 5 or with increasing
L+ in figure 6. However, the present four cases demonstrate no substantial differences in
U+, u+′

rms and w+′
rms in the range y ≈ −1–0D, indicating that the change of h has little
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Figure 7. (a) Shear-driven component of the mean velocity, (b) Reynolds shear stress and (c–e) RMS velocity
fluctuations for the flow within the substrate, normalised by the corresponding interfacial values and the
thickness of one layer of cubes, D, for the same cases of figure 6. Colours are as in figure 6.

influence on the penetration of tangential velocity components. Quantitative discussion on
this phenomenon is presented in § 4.1.

The changes in flow statistics caused by the increase in h diminish gradually. Eventually,
for h = 5D and 9D, all the statistics become essentially indistinguishable except for
v+′

rms deep inside the substrate, where the wall-normal fluctuations seem always able to
penetrate to the floor, as discussed in Sharma & García-Mayoral (2020b). Nevertheless,
v+′

rms becomes ultimately negligible below y ≈ −4D even for the substrate with depth
h = 9D. Above y ≈ −4D, an asymptotic state is already reached for h ≥ 5D. This suggests
that h = 5D is a depth sufficient for the overlying turbulence to essentially no longer
perceive the floor. This concept of ‘sufficient depth’ is further investigated in § 5.

4. Scaling of turbulence with substrate parameters
This section discusses the scaling of the overlying flow properties with substrate
parameters. We compare the raw collapse of properties such as slip velocity, slip length
and, in particular, roughness function, with different substrate parameters, without making
any a priori assumptions on which parameters will produce a better collapse. This is used
to provide insight into the separate roles in the problem of the macroscale permeability,
the microscale granularity and the substrate depth.

4.1. Slip and shear across the interface
The values of the mean slip velocity U+

s for all the cases in this study are portrayed versus
different substrate parameters in figure 9. No apparent correlations are found between U+

s
and any of the pitch L+, the gap size g+, the inclusion size �+, the porosity ε or the
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Figure 8. (a,b) Mean velocity profile, (c) Reynolds shear stress and (d– f ) RMS velocity fluctuations for
substrates with identical L+ ≈ 24 and g/L = 0.50 but different depth h = 1D - 9D. Colours from blue to red
are for cases Ro-24-50 (h/D = 1), Ps-24-50 (h/D = 2), Pd-24-50 (h/D = 5) and Pd-24-50-VD (h/D = 9), and
dash-dotted lines for smooth-wall data. The dashed lines mark the location of the free-flow/substrate interface.

depth h+. The values of U+
s for deep porous (Pd) substrates, however, tend to correlate

well with
√

K +, as shown in figure 9(f ). This suggests that the slip velocity for deep
substrates is essentially determined by their macroscale permeability, and is not directly
associated with the microscale details of the individual grains. Similar results were also
observed by Efstathiou & Luhar (2018).

For
√

K + � 2, the values of U+
s for rough surfaces in figure 9( f ) agree roughly with

U+
s for their corresponding deep substrates. For

√
K + � 2, however, the former are higher

and more scattered than the latter. This is in spite of the slip length having a strong
correlation with the permeability, as shown in figure 10, with the slip length defined as
�U = Us / ∂yU |0, where ∂yU |0 is the mean shear in the free flow at y = 0. Figure 10( f )

shows that �+
U is roughly proportional to

√
K +, with a constant of proportionality of

order 0.7–1. This is consistent with the analysis (Abderrahaman-Elena & García-Mayoral
2017; Gómez-de-Segura & García-Mayoral 2019) based on a homogenised model for the
subsurface flow, which leads to �+

U ≈ √
K +. The results in figure 10(f ) indicate that under

a fixed value of shear at the interface, the slip length is essentially independent of the
substrate depth, even for depths as shallow as h = 1D = L/2. The different behaviours of
the slip length U+

s and the slip velocity �+
U are caused by different non-zero Reynolds shear

stresses u+′v+′ at the interface plane. In their absence, the shear in viscous units would be
∂y+U+ = 1, and both quantities would have equal value. The comparison of figures 9( f )

and 10( f ) suggests that the substrate depth plays a key role in this difference.
Another feature of our porous and rough substrates in terms of tangential velocities is

the discontinuity of shear ∂yU across the interface, shown in figure 11. A force balance
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Figure 9. Mean slip velocity, U+
s , for all the substrates studied versus (a) pitch L+, (b) gap size g+,

(c) inclusion size �+, (d) porosity ε, (e) depth h+ and ( f ) permeability
√

K +. , L+ ≈ 12; , L+ ≈ 24; ,
L+ ≈ 36; , L+ ≈ 48; •, very deep substrate Pd-24-50-VD; , mesh substrates. Blue, yellow and red colours
are for deep porous (Pd), shallow porous (Ps) and rough (Ro) substrates at Reτ ≈ 180, respectively; magenta
for Reτ ≈ 360; purple for Reτ ≈ 550. Symbols connected by dashed lines have the same gap-to-pitch ratio g/L
and porosity ε.

in a thin volume containing the interface shows that the mean shear stress just above
and below are different, as the shear stress above is partly balanced by the shear force
between the fluid and the flat top surface of the substrate elements. This effect is in our
case concentrated at the element tips, but can be expected to be more diffuse in substrates
composed of rounder grains and with less even interfaces. Figure 12 portrays the ratio of
inner to outer shear, rsh = ∂yU |0− / ∂yU |0, where ∂yU |0− is the mean shear approaching
y = 0 from the substrate side, for all the cases. None of the length scales L+, g+, L+−g+,
h+ and

√
K + scale the ratio rsh . Instead, rsh appears to correlate with the porosity ε,

suggesting that a denser substrate with lower ε tends to have a stronger jump of shear, i.e.
smaller rsh . This is consistent with the above observation that the discontinuity is caused
by the shear absorbed at the exposed flat faces of the grains, as their surface area is a larger
fraction of the interface plane for lower ε. The ratio rsh is roughly linear with ε except for
highly porous cases (ε � 0.9), of which rsh adjusts to approach the no-jump asymptotic
limit, limε→1 rsh = 1.

The observations in this subsection suggest that, for both porous and rough substrates,
the interfacial shear jump and the slip length are mainly influenced by the porosity and the
permeability, respectively, with no significant direct influence of the substrate microscale
details or depth. The scaling of slip length with permeability applies also to slip velocities
only for small permeabilities,

√
K + � 2. For larger ones, the slip velocity also depends

on he substrate depth, as the shear Reynolds stress at the interface becomes increasingly
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Figure 10. Mean slip length, �+
U , versus (a) pitch L+, (b) gap size g+, (c) inclusion size �+, (d) porosity ε,

(e) depth h+ and ( f ) permeability
√

K +. Symbols and colours are as in figure 9. The two dotted lines in ( f ) are
for �+

U = 0.7
√

K + and �+
U = 1.0
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Figure 11. Mean velocity profiles near the interface. (a), (b) and (c) are for the cases in figures 5, 6 and 8,
respectively, with line styles as in the respective figure.

significant for the deeper substrates. In any event, we note that the values of U+
s are

significantly smaller than those of �U+, which implies that the slip plays only a small
role in determining the drag. The effect of substrate granularity and depth are further
investigated in §§ 4.2 and 5.
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Figure 12. Ratio of inner to outer shear across the substrate interface, rsh, versus (a) pitch L+, (b) gap size g+,
(c) inclusion size �+, (d) porosity ε, (e) depth h+ and ( f ) permeability

√
K +. Symbols and colours are as in

figure 9. The dotted line in (d) is for rsh = 0.42 ε + 0.10.

4.2. Drag increase and near-interface flow for deep substrates
Let us now focus on the drag increase of a substrate, given by �U+ as defined in § 2.3.
Figure 13 portrays �U+ for all the cases simulated versus different substrate parameters.
The values of �U+ do not correlate well with any of L+, g+, L+−g+, ε, and h+,
individually. However, �U+ for deep porous substrates shows a good correlation with√

K +, extending to shallow porous (Ps) and rough (Ro) substrates for small permeability,√
K + � 1. Beyond this, �U+ for shallow and rough substrates is lower and exhibits more

scatter than that for deep ones. In general, the discrepancies between deep and shallow
substrates are considerably smaller than those between shallow and rough ones, implying
an asymptotic behaviour of �U+ as the depth h increases, similar to the observations in
§ 3.3. These results suggest that, in essence, permeability alone determines the drag for
sufficiently deep porous substrates.

Focusing for now on deep substrates, we observe that the turbulent statistics in general
also depend essentially on permeability alone. Figure 14 shows that the substrates with
different L+ and ε but similar

√
K + have fairly similar mean velocity profiles, turbulent

shear stress and RMS fluctuations in the overlying flow. Differences in the turbulent stress
and RMS occur below the interface, where cases with larger L+ or lower ε tend to
have larger magnitudes. These differences are likely attributable to the different substrate
geometries causing different dispersive or grain-coherent stresses, although this would
require more in-depth analysis.

Some more details of the structure of turbulence near the interface can be illustrated
by instantaneous flow fields and energy spectral densities. The flow fields portrayed in
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Figure 13. Velocity deficit �U+ versus (a) pitch L+, (b) gap size g+, (c) inclusion size �+, (d) porosity ε,
(e) depth h+ and ( f ) permeability

√
K +. Symbols and colours are as in figure 9.

figure 15 exhibit a signature of the grain-coherent flow with a characteristic length scale
L+. Superimposed with this signature, we can observe the grain-incoherent features of the
background turbulence. Just as the flow statistics in figure 14, the background turbulence
is visually similar for cases with different L+ and ε but similar

√
K +, while the grain-

coherent flow varies greatly with L+. The four cases with
√

K + ≈ 1 exhibit the typical
features of smooth-wall turbulence in the streamwise elongated shapes in u′, shown in
figure 15(a–d), and v′, shown in figure 15(k–n). The streamwise elongation of these
structures is disrupted for

√
K + ≈ 2.5, as shown in figure 15(e–g, o–q), and entirely lost

for
√

K + ≈ 6, figure 15(h– j ,r–t), for which eddies have an x–z aspect ratio closer to unity.
The above discussion is also consistent with the statistical information displayed in the

spectral density maps of figure 16. At y+ ≈ 3, these maps present two distinct features: a
main spectral region attributable to the background turbulence, and smaller lobes centred
about the grain-spacing wavelengths, caused by the grain-coherent flow. These lobes
extend beyond the mere harmonics of the texture because of the amplitude modulation
of the grain-coherent flow by the background turbulence (Abderrahaman-Elena et al.
2019; Khorasani et al. 2024). The cases with similar

√
K + show good agreement for

the background turbulence, but differ in the regions produced by the grain-coherent
flow due to their different L+. The grain-coherent flow quickly decays away from the
interface, as evidenced in the maps at y+ ≈ 11. For the background turbulence, as

√
K +

increases, the spectral densities become lower in x-elongated wavelengths but higher in
wider z-wavelengths.
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Figure 14. (a,b) Mean velocity profile, (c) Reynolds shear stress and (d– f ) RMS velocity fluctuations for deep
porous substrates. Blue to red dotted lines are for substrates with different L+ and ε but similar

√
K + ≈ 1,

cases Pd-12-50, Pd-24-38, Pd-36-33 and Pd-48-28; dashed for similar
√

K + ≈ 2.5, cases Pd-24-56, Pd-36-50
and Pd-48-44; and solid for similar

√
K + ≈ 6, Pd-24-75, Pd-36-67 and Pd-48-61. The dash-dotted lines are for

smooth-wall data, and the vertical dashed lines mark the location of the free-flow/substrate interface.

The discussion in this subsection suggests that the effect of deep porous substrates on
the overlying turbulence is essentially governed by the permeability, a characteristic not
directly associated with the geometric microscale detail of individual grains in a porous
medium. The grain-coherent flow near the interface, in turn, manifests the effect of the
granularity, but decays quickly away from the substrate, at least for the grain pitches here
considered, L+ � 50 and g+ � 30.

5. A unified characterisation from porous to rough substrates
The mean velocity deficit �U+ in figure 13(d) correlates well with permeability K + only
for deep porous substrates, but not for rough surfaces. Unfortunately, a general approach
to determine the scaling of drag for rough surfaces remains elusive (see Chung et al. 2021,
for a review). The substrates in this study have been designed to transition continuously
from deep-porous to rough-but-impermeable geometry as the depth h decreases, while
retaining the same grain and interface topology. In this section, our aim is to identify a
scaling law for �U+ that captures this continuous transition. With this aim, we now focus
on the effect of substrate depth.

5.1. An equivalent permeability incorporating the effect of depth
In §§ 3.3 and 4.1, we have discussed the relatively small influence of depth on the
tangential velocity and interfacial shear and slip, i.e. a porous substrate and a typical
rough surface with identical grain geometry have fairly similar subsurface decay of the
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Figure 15. Instantaneous fields of (a– j) u′ and (k–t) v′ at y+≈3 for the same deep porous substrates of
figure 14. Columns from left to right correspond to substrates with L+ ≈ 12, 24, 36 and 48, respectively.
(a,b,c,d) and (k,l,m,n) substrates with

√
K +≈1; (e,f,g) and (o,p,q) substrates with

√
K +≈2.5; (h,i,j) and (r,s,t)

substrates with
√

K +≈6. Colours from dark to clear are for the value range [−2 : 2] relative to the RMS value
of the variable at that plane.

tangential mean and fluctuating velocities, as shown in figure 8(b,d,f ), and also similar
interfacial slip and shear properties, as shown in figures 10( f ) and 12(d). Therefore, we
can infer that the apparent differences in drag increase between porous and rough surfaces
in figure 13( f ) principally originate from their differences in interfacial transpiration. This
is further supported by figures 17(a) and 17(b), which show that, for all the substrates
studied, the drag increase is highly correlated with the intensity of the interfacial wall-
normal velocity fluctuation, rather than with the tangential one, as is the case also for
rough surfaces (Orlandi et al. 2006; Orlandi & Leonardi 2006, 2008).

The effect of substrate depth on the interfacial slip and transpiration can be observed
in the analytical solution of the homogenised Darcy–Brinkman model for the flow within
the substrate (Gómez-de-Segura et al. 2018a; Gómez-de-Segura & García-Mayoral 2019).
Appendix D presents this model for the case of isotropic substrates and discusses the effect
of depth as deduced from its solution. The model ultimately results in an admittance, linear
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Figure 16. Pre-multiplied spectra αxαzΦ∗∗ at (a,c,e) y+≈3 and (b,d,f ) y+≈11 for the same deep porous
substrates of figure 14. (a,b) Substrates with

√
K +≈1; (c,d) substrates with

√
K +≈2.5; (e,f ) substrates with√

K +≈6. Dashed lines are for L+≈12, shaded contours for L+≈24, solid lines for L+≈36 and dotted lines for
L+≈48. The contours mark values [0.044:0.044:0.264] relative to the corresponding variance or covariance.
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Figure 17. Velocity deficit �U+ for all the cases studied as a function of: (a) the RMS of the interfacial u′;
(b) the RMS of the interfacial v′; (c) the slip-based equivalent permeability K s+

eq ; and (d) the transpiration-
based equivalent permeability K t+

eq (right). Lines and symbols are as in figure 9. In (d), K t+
eq has been

calculated for a characteristic near-wall pressure lengthscale λ+p = 200, and the error bars represent the range
λ+p = 150–250. The values of �U+ versus

√
K + from figure 13( f ) are displayed in grey for comparison.

relationship (D10), which gives the interfacial slip and transpiration velocities in response
to the interfacial shear and normal stresses. This relationship involves five coefficients,
Lsli p, Ksli p, Ntrsp, Ktrsp and L⊥

sli p, which characterise the effect of the substrate on the
overlying free flow. Each coefficient can be written as a product of two parts: a component
that is a function of permeability K and a dimensionless attenuating function f∗(α, h) that
depends on the wavenumber α of the exciting stress and the substrate depth h.

The function f∗(α, h) tends to unity for deep substrates and long exciting waves, and
to vanish for shallow substrates or for small waves, making the substrates effectively
impermeable and smooth in the latter cases. The first component can be thus identified
as the admittance coefficient relating interfacial velocity and stress for large-scale flows
over sufficiently deep substrates. One exception to this, though, is the coefficient Ktrsp =
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K fKt (α, h) relating the transpiration velocity v′ and the pressure fluctuation p′, which also
vanishes for very long waves, and is maximum for an intermediate wavelength comparable
to the depth. The discussion in (D3) highlights that, as h increases, Ktrsp reaches its
asymptotic value significantly more slowly than the other four coefficients for the typical
wavelengths in wall turbulence. This indicates that the principal effect of a finite depth is
to decrease Ktrsp, i.e. to suppress the pressure-excited transpiration at the interface. Given
the strong correlation of this transpiration with �U+ discussed above, we would expect
this suppression effect to play a leading role in determining the effect of substrate depth
on drag.

The above discussion is based on Darcy–Brinkman solutions, which are after all a
mere model for the homogenised subsurface flow: they fail to capture, for instance, the
discontinuity in macroscopic velocity shear across the interface, or the direct effect of
granularity, which grows with the texture size L+. We thus simply use these solutions to
guide us in proposing an empirical “equivalent permeability” K t

eq to incorporate the effect
of substrate depth on transpiration,

K t
eq ≡ K fKt (α̃, h̃), (5.1)

where the attenuating function fKt (α̃, h̃) is calculated from (D12d), and where the
dimensionless wavenumber α̃ and depth h̃ are defined by (D13) and (D4). The value of α in
(5.1) should be chosen to represent the characteristic scale of the typical near-wall pressure
fluctuations that excite transpiration at the interface. Informed by the spectra in figure 16,
we assume a characteristic wavelength λp = 150–250 ν/uτ and, thus, α = αp = 2π/λp.
In addition to K t

eq defined by (5.1), for comparison we also define another ‘equivalent
permeability’ that incorporates the effect of substrate depth on slip,

K s
eq ≡ K fLs(α̃, h̃), (5.2)

where the attenuating function fLs(α̃, h̃) is calculated from (D12a). This K s
eq gives a

measure of the response of the substrate to an overlying shear, and is therefore an inherently
interfacial quantity, while K t

eq gives a measure of the penetration of wall-normal flow
due to pressure fluctuations, and therefore accounts for the properties of the substrate not
just near the interface but deeper within. An alternative set of admittance relationships
to (D10) can be derived from homogenisation (Bottaro & Naqvi 2020; Naqvi & Bottaro
2021). This gives a set of upscaled coefficients that play the same role of K t

eq , K s
eq and the

other coefficients derived from a Darcy–Brinkman model. The scaling of the roughness
function with those upscaled coefficients is portrayed in Appendix E, and the collapse is

generally not as good as the one discussed below with
√

K t+
eq . In the authors’ view, the

reason is likely the lack of separation of scales between turbulence and surface texture,
which is a central assumption in homogenisation.

The values of �U+ against the newly defined
√

K s+
eq and

√
K t+

eq are portrayed in

figure 17 for all porous and rough cases. Figure 17(c) shows that the values of
√

K s+
eq

are close to those of
√

K +. This is consistent with the observations in § 4.1 and the
analysis in Appendix D.3, which suggests that the effect of depth on interfacial slip is

small. As a result,
√

K s+
eq and

√
K + produce a similarly poor collapse for �U+ across

all the substrates studied. Meanwhile, the values of �U+ across all substrates collapse

well with
√

K t+
eq , as shown in figure 17(d). For rough surfaces,

√
K t+

eq is significantly
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Figure 18. (a,b) Mean velocity profile, (c) Reynolds shear stress and (d– f ) RMS velocity fluctuations for

cases with similar
√

K t+
eq . Blue, yellow and red are for deep porous (Pd) substrates (h/D ≥ 5), shallow

porous (Ps) substrates (h/D = 2) and rough surfaces (h/D = 1), respectively. Dotted lines are for the cases

with different L+, ε, and h/D but similar
√

K t+
eq ≈ 1: Pd-48-28 (

√
K + = 0.98,

√
K t+

eq = 0.97), Ps-36-33

(
√

K + = 1.10,
√

K t+
eq = 0.96) and Ro-24-50 (

√
K + = 1.82,

√
K t+

eq = 0.94). Dashed lines are for the cases

with similar
√

K t+
eq ≈ 1.7: Pd-24-50 (

√
K + = 1.82,

√
K t+

eq = 1.75), Ps-48-38 (
√

K + = 1.88,
√

K t+
eq = 1.66)

and Ro-48-44 (
√

K + = 2.66,
√

K t+
eq = 1.70). Solid lines are for the cases with similar

√
K t+

eq ≈ 3.5: Pd-

48-50 (
√

K + = 3.64,
√

K t+
eq = 3.44), Ps-24-75 (

√
K + = 5.80,

√
K t+

eq = 3.68) and Ro-48-61 (
√

K + = 6.28,√
K t+

eq = 3.55). The dash-dotted lines are for smooth-wall data, and the vertical dashed lines mark the location
of the free-flow/substrate interface.

smaller than the original
√

K +, indicating that their small depths suppress significantly
the interfacial transpiration. For deep porous substrates, such suppression tends to vanish

and the differences between
√

K t+
eq and

√
K + are small.

The transpiration-based equivalent permeability,
√

K t+
eq , also characterises well the

turbulence for substrates with different depths. In figures 18, 19 and 20, we consider three
groups of substrates, each including a deep porous (Pd), a shallow porous (Ps) and a rough

(Ro) case with different depth h/D but similar
√

K t+
eq . Figure 18 shows that substrates with

similar
√

K t+
eq also share similarity in their free-flow mean velocity profiles, RMS velocity

fluctuations and Reynolds stress, in spite of their differences in subsurface flow, to be
expected given the different depths and granularities. This similarity can also be observed
in instantaneous realisations for the flow just above the interface, as illustrated in figure 19.
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Figure 19. Instantaneous fields of (a–i) u′ and ( j–r ) v′ at y+≈3 for the same substrates of figure 18. Columns
from left to right correspond to deep porous (Pd), shallow porous (Ps) and rough (Ro) substrates, respectively.

(a,b,c) and (j,k,l) Substrates with
√

K t+
eq ≈1; (d,e,f ) and (m,n,o) substrates with

√
K t+

eq ≈1.7; (g,h,i) and (p,q,r)

substrates with
√

K t+
eq ≈3.5. Colours from dark to clear are for the value range [−2 : 2] relative to the RMS

value of the variable at that plane.

The flows with similar
√

K t+
eq exhibit similar features for the background turbulence,

but differences in the grain-coherent flow, directly attributable to the different grain
topologies. The same effects can be observed in the spectral density maps of figure 20,
which quantify statistically the similarities in the fluctuations at different lengthscales for
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Figure 20. Premultiplied spectra αxαzΦ∗∗ at (a,c,e) y+≈3 and (b,d,f ) y+≈11 for the same deep porous

substrates of figure 18. (a,b) Substrates with
√

K t+
eq ≈1; (c,d) substrates with

√
K t+

eq ≈1.7; (e,f ) substrates with√
K t+

eq ≈3.5. Shaded contours are for deep porous (Pd) substrates, yellow dotted lines for shallow porous (Ps)
substrates and red solid lines for rough (Ro) surfaces. The contours mark values [0.044:0.044:0.264] relative
to the corresponding variance or covariance.

1008 A1-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

55
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.55


Journal of Fluid Mechanics

the background turbulence, and also display the different intensities and lengthscales of
the grain-coherent flow for different topologies.

The collapse observed for
√

K t+
eq , and the comparatively lack of collapse observed for√

K s+
eq , suggest that effect of the substrate on the overlying turbulence is mainly governed

by the wall-normal transpiration triggered by overlying pressure fluctuations. The effect

of the interfacial slip, which is characterised by
√

K s+
eq , plays in contrast a minor role.

The good collapse with
√

K t+
eq may also suggest that the Darcy–Brinkman model captures

reasonably well the fluctuating transpiration induced by overlying pressure waves, even
if it fails to capture other features of the flow such as the tangential shear and velocity
near the interface (Sanchez-Palencia 1982). It is somewhat surprising that this is the case
even for substrates with one or two layers of grains, for which the lack of sufficient
depth would in principle preclude the type of homogenisation in y implicit in Darcy–
Brinkman. An answer to this is, however, out of the scope of the present paper, where
we limit ourselves, as stated above, to using the Darcy–Brinkman solutions to guide us
in proposing an otherwise empirical coefficient to collapse the DNS results. We note
that the present analysis extends to substrates that exhibit a rough interface due to their
intrinsic granularity, and leaves out surfaces that are rough but would not have an obvious
permeable substrate counterpart, e.g. wavy walls or smoothly curved surfaces. For those
surfaces, we could expect the slip dynamics to play a more dominant role, as occurs also
for drag-reducing textures (Gómez-de-Segura et al. 2018b; Ibrahim et al. 2021). For porous
substrates such as the present ones, the interfacial roughness can potentially be eliminated
by making the surface artificially flat, which would partially suppress the resulting increase
in drag (see Kim et al. (2020), or figure 1 and the corresponding discussion in Rosti et al.
(2015)). It is also possible to generate an interfacial roughness completely unrelated to
the substrate topology and decouple their effects, as in Wangsawijaya et al. (2023). Both
cases are beyond the scope of this study. Likewise, we have also only considered isotropic
substrates. Anisotropic substrates such as those of Khorasani et al. (2024) would be beyond
the present scope. In the latter, the permeability is tensorial, and the expression in (5.1) for

an effective
√

K t+
eq would not be valid. It is possible, however, to find an analogous solution

for the anisotropic Darcy–Brinkman equations. We have done so in the past for the case of
principal directions aligned with x , y and z (Sharma et al. 2017; Gómez-de-Segura et al.
2018a; Gómez-de-Segura & García-Mayoral 2019); the solution presented in Appendix D
is actually a particularisation of such solutions. A simple explicit expression is not possible
in that case, but from our previous work we would expect that the role of K in (5.1) was
played by Ky for streamwise preferential substrates (Gómez-de-Segura & García-Mayoral
2019), and by

√
Kx Ky for wall normal preferential ones (Sharma et al. 2017). Here, Kx

and Ky are the streamwise and the wall-normal permeability, respectively.
The reader may wonder if the present findings apply only to the regular staggered-cube

and mesh topologies for which DNSs have been conducted in this paper, with relatively
small grain pitch L+ � 50. In Appendix F we compare our results with data compiled
for different substrate layouts and from previous studies, namely the randomly packed
spheres of Zippe & Graf (1983) and Karra et al. (2023), the staggered cubes of Kuwata
& Suga (2016a), the collocated spheres of Kim et al. (2020), the reticulated foams of
Esteban et al. (2022), and the isotropic mesh lattices of Habibi Khorasani et al. (2024). The
substrates in those studies have generally larger grain and, therefore, larger K +, and data
for the roughness function was sometimes obtained indirectly, especially for experimental
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Figure 21. Substrate regime diagram for a staggered-cube topology with g/L = 1/2. The shaded contours

are for the transpiration-based equivalent permeability
√

K t+
eq , taken as a surrogate for the drag increase. The

dashed and solid contour lines are for fLs and fKt , respectively, for values [0.1 : 0.1 : 0.9] from red to blue. The
results have been obtained for a characteristic wavelength for the overlying turbulence λ+p = 200. The dotted
straight line represents impermeable rough surfaces with h = L/2. The dashed lines represent boundaries
between regimes. The markers represent the present twelve DNSs with this topology, g/L = 1/2.

works, but the agreement is generally good. We note that some of those studies were for
irregular substrate topologies. We expect our conclusions to hold beyond the homogeneous
substrates of our DNSs, so long as the heterogeneity occurs on a scale small enough not to
interact with individual turbulent eddies. If heterogeneities were present over lengthscales
of ∼100 viscous units or larger, they would need to be accounted for and would probably
require a unique ad hoc analysis for each instance.

5.2. A conceptual regime diagram for finite-depth substrates
The above results and discussion suggest that, for any given substrate topology, its effect
on the overlying turbulence can be essentially characterised by K t+

eq alone. This coefficient
is proportional to the substrate permeability K +, which encodes the relevant information
on the grain topology, but also depends on the substrate depth through fKt . Based on this,
we propose a regime diagram to conceptually illustrate the relationship between porous
and rough surfaces for a given grain topology. As an example, in figure 21 we consider our
staggered-cube topology with gap-to-pitch ratio g/L = 1/2, corresponding to a constant√

K ≈ 0.076L . For other topologies, the regime diagram would be qualitatively similar.
The diagram portrays, as a function of

√
K + and h+, the equivalent permeability K t+

eq ,
taken as a surrogate for the roughness function �U+. To illustrate the effect of substrate
depth on slip and transpiration, we also portray the corresponding values of the attenuation
coefficients fLs and fKt . To construct the diagram, these have been calculated for a
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characteristic exciting wavelength λ+p ≈ 200, as discussed in § 5.1. Note that this would
be valid so long as the signature of the overlying pressure fluctuations at the interface
plane retained roughly its characteristic size for smooth-wall flows. This is the case for the
texture sizes studied here, L+ � 50, as shown in figures 16 and 20, but would eventually
break down for larger sizes. Therefore, in the following, we only consider substrates with√

K + � 10 or L+ � 100, which are the scope of the present study and for which we would
expect the diagram to be representative.

In the diagram, a dotted line marks rough surfaces with cubic roughness elements of
pitch L and height h = L/2, which includes our four rough DNSs with the topology under
consideration, g/L = 1/2. Following this line for increasing L+ is equivalent to increasing
the Reynolds number for a fixed surface, thus increasing its dimensions in viscous units,
and its roughness function accordingly, as if following a Moody chart (Moody 1944).
Substrates to the right of this line would also be rough, featuring roughness elements with
the same pitch and element width and gap but smaller depth, h < L/2. The isocontours for
fLs indicate that, in terms of depth, the slip properties of the surfaces with h = L/2 would
already be maxed out, i.e. beyond the line labelled ‘slip saturated’: no further increases
would take place when increasing h further. Meanwhile, the shallower rough substrates
with h < L/2 would experience comparatively reduced slip.

As discussed in § 5.1, however, the effect of slip through K s+
eq is secondary, and the drag

is mainly governed by K t+
eq , for which the relevant attenuating function is the transpiration

one, fKt . The latter is a continuous, smooth function of the substrate depth, which tends
to zero for vanishing depth and to unity for deep substrates. Its isocontours show that,
while fLs saturates at much shallower depths h, i.e. already for simply rough, impermeable
surfaces, fKt saturates only for deeper substrates. Its isocontours indicate that, for the
present textures with

√
K + � 10, the saturation depth is essentially independent of K +

or L+, and is roughly h+ ≈ 50. This can be traced to the fact that h is scaled by λp in
the expression for fKt , and that λ+p ≈ 200 independently of the substrate, as discussed
above. Whether a substrate is shallow or sufficiently deep is governed by whether pressure
fluctuations of this wavelength would penetrate deeper in the absence of an impermeable
floor at a finite depth y+ = −h+. Perhaps counterintuitively, this depends on the depth in
viscous units, rather than in permeability lengths or number of inclusion layers.

From this, we can distinguish a series of regions in the diagram which are characterised
by different flow regimes. For substrates deeper than h+ ≈ 50, the flow would perceive
the substrate as deep enough to exhibit its permeable character fully. We refer to
these as ‘sufficiently deep porous substrates’, for which any further increase in depth
would not result in any significant changes to the flow. For substrates shallower than
this but deeper than the rough surfaces with cubic inclusions, h = L/2, the substrate
would exhibit an intermediate character, where the transpiration is partially suppressed
compared to a deeper substrate with the same K +. We refer to these as ‘shallow porous
substrates’. Substrates with h = L/2 would be so shallow that they are conventional rough,
impermeable surfaces. Substrates even shallower than h = L/2 would likewise be rough,
but with shorter-height roughness elements, further suppression of transpiration and, in
addition, suppression of slip.

6. Conclusions
This study has focused on understanding the effect of different characteristics of a porous
substrate on the properties of the overlying turbulent flow. Specifically, we have aimed
to investigate the effects of three characteristics: (i) the permeability of a porous medium,
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characterised by the bulk permeability K , (ii) the granularity of the porous medium, whose
length scale is characterised by the grain pitch L and (iii) the depth of the substrate
h. To this object, we have systematically explored the parameter space of K , L and
h for porous substrates using DNSs. We have used staggered-cube arrays with various
porosities ε = 0.23–0.97 and permeabilities

√
K/L = 0.013–0.243, and studied substrate

depths ranging from h = 1D = L/2 to h ≥ 5D = 5L/2, corresponding to the transition
from typical impermeable rough surfaces to deep porous substrates. The values of grain
pitch we have considered are in the range 10 � L+ � 50. For this range, the overlying
turbulence soon deviates from smooth-wall-like behaviour, but the grains remain small
enough that the grain-coherent flow is not sufficiently intense to directly interact with the
background, grain-incoherent turbulence, other than perhaps for the largest L+ ≈ 50.

Through the discussion on the scaling of flow properties with substrate parameters, two
major insights have been provided on the effect of the above three. First, the permeability
of a porous medium has significantly greater relevance than its granularity to most of the
main properties of the overlying turbulence. For all substrates with h ≥ 1D, the mean-
flow slip length �+

U is essentially proportional to
√

K +, and the inner/outer shear ratio
across the interface rsh correlates well with ε. For deep substrates with h ≥ 5D, the mean
velocity deficit �U+ and the statistics and energy spectra of the background turbulence
are essentially determined by

√
K + alone. In contrast, the effect of L+ on the overlying

turbulence is essentially not significant, and can only be observed in flow realisations
and spectral density maps very near the interface. This implies that, at least for grain
pitch values L+ � 50, a porous substrate can be reasonably approximated as a continuum
represented only by macroscale parameters like K , h and ε.

Second, the principal mechanism that distinguishes porous substrates from surfaces
with analogous topology that are rough, but are otherwise impermeable, is the effect
of the substrate depth on the interfacial transpiration excited by the overlying pressure
fluctuations. We propose an empirical ‘equivalent permeability’, K t

eq , with some
theoretical support based on Darcy–Brinkman models, that incorporates this effect of

depth on transpiration. For substrates with different depths, the values of
√

K t+
eq alone

collapse �U+ well, and different substrates with similar
√

K t+
eq exhibit similar properties

for the overlying turbulence in general. A conceptual h+–
√

K + diagram illustrates the
regime transition between sufficiently deep porous substrates, with h+ � 50, and typical
impermeable rough surfaces with h = O(L).

The scope of this study is substrates composed of relatively small grains, L+ � 50.
In the fully-rough regime, where L+ � 70, the flow coherent with individual grains
could be energetic enough to generate grain-coherent eddies that interacted strongly with
and modify directly the overlying turbulence. In that situation, the effects of substrate
permeability and granularity may be intrinsically indistinguishable. Understanding the
relationship between the substrate parameters and the overlying turbulence in the fully
rough regime may thus require a different framework. The present work covers sizes just
up to the onset of that regime.
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Appendix A. Comparison of the flow in interconnected and frozen-suspension
substrates

Here we present evidence supporting the use of idealised substrates made up of ‘frozen-
suspensions’ of inclusions to study the effect of substrates with higher permeability. These
would not be realisable as solid permeable surfaces in the real world. Such is the case
of our staggered-cube arrangements with gap size g > L/2. The reader may wonder if
this would not give rise to fundamental differences in the interstitial flow, compared with
interconnected topologies. Figure 22 shows that this is not the case. The figure portrays
the detail of the microscale flow as the gap size changes and the topology shifts from
the substrate being just interconnected to just disconnected. The figure shows that the flow
evolves smoothly from one case to the other, with no intrinsic difference or abrupt changes
in its structure.

The results presented in this paper suggest that the overlying turbulence depends
essentially on the macroscopic properties of substrates, and not on their microscopic detail,
regardless of whether substrate inclusions are interconnected or not. Figure 23 shows the
same data of figure 17(d), but highlighting which substrates are interconnected and which
are frozen suspensions. Data from both groups spans with substantial overlap the full range
of permeabilities studied, showing that there is indeed no essential difference.

Integral quantities like the roughness function can conceal more subtle differences in
the flow, but the similarity across the two topology groups extends also to more detailed
flow properties. Figure 24 compares turbulent statistics for interconnected and frozen-
suspension substrates for similar values of K t+

eq , and shows again that there is good
agreement in the results across different substrates, regardless of their microstructure
topology, for similar values of the macroscopic effective permeability.

Appendix B. Spatial resolution and grid convergence
Section 2.2 details the grid resolution used for the various DNSs conducted in this work.
The grid convergence study in Sharma & García-Mayoral (2020b) concluded that, for
the present DNS code and discretisation, 13–15 fluid points were sufficient to resolve the
gaps in-between obstacles through which the fluid would flow, and that when a lower
resolution of 7–8 fluid points per gap was used, errors of up to ∼ 20 % were observed in
the fluctuating velocity within the substrate, mainly in the wall-normal velocity, although
the error in the fluctuating flow above was reduced to ∼ 4 %. Sharma & García-Mayoral
(2020b) argued that the latter marginal resolutions were acceptable for small gaps g+ � 5,
where the flow would be predominantly viscous and instantaneously unidirectional. The
present DNSs follow these general criteria, with 13 points or more per gap except for
simulations Pd-12-33, Ro/Pd-24-25, Pd-36-22, Ro/Pd-48-22, Pd-48-25 and Ro/Pd-48-
28, with 9–11 points per gap. Of these, the most critical case is Pd-48-25, since it has
the largest gap g+ ≈ 12 with the lowest resolution, 9 points per gap and �z+ ≈ 1.5.

1008 A1-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

55
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.55


Z. Hao and R. García-Mayoral

2

1

2

1

0

z/L

(a) (b)

(c) (d )

(e) (  f  )

2

1z/L

2

1

0 1 2

z/L

x/L
0 1 2

0 0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

1

2

0

1

2

0

2

4

3

x/L
1 2

x/L
0 1 2

0

2

1

2

1

0

01 2 0 1 2 1 2 0 1 2

0 1 2 1 2

x/L

Figure 22. Detail of the interstitial microscale flow in substrates made up of interconnected and disconnected
staggered cubes. Results are shown for the velocity magnitude, normalised by the Darcy velocity, in x–z
sections; through the middle of a row of cubes in (a,c,e), and through a plane at the half-height between
centres of consecutive rows in (b,d,f ). The location of the cubes is marked in white, with dashed lines for cubes
not intersected by the section. In (a,c,e), streamlines of the locally two-dimensional flow are also portrayed in
black. (a,b) Overlapping cubes with g/L = 7/16; (c,d) just-touching cubes with g/L = 1/2; (e,f ) suspended
cubes with g/L = 9/16. For each panel pair, results on the left are for Stokes-flow simulations, and results on
the right for ensemble averages from DNSs with L+ ≈ 24, when available (cases Pd-24-50 and Pd-24-56).

To quantify the effect of this marginal resolution, we have run an additional simulation
doubling the resolution in x and z, i.e. 64 points per pitch L and 17 points per gap.

The flow statistics from the DNSs with the coarser and finer resolutions are compared
in figure 25, and are consistent with the resolution analysis of Sharma & García-Mayoral
(2020b). The results are very close in the free flow region, with somewhat larger deviations
for the mean velocity U+ and the RMS velocity fluctuations u+′

rms , v+′
rms and w+′

rms below
the interface, with the lower resolution resulting in slightly underpredicted values. Among
them, the differences for U+ and v+′

rms seem more apparent than the others, and can
be directly linked to the difference in a posteriori

√
K + for the two simulations, of

order ∼ 8 %.
In order to avoid grid-related discrepancies between the a posteriori and a priori values

of
√

K +, as mentioned in § 2.2 we have computed both with the same resolution. This
is the same strategy we followed in García-Mayoral & Jiménez (2011),Fairhall & García-
Mayoral (2018) and Sharma & García-Mayoral (2020b) to compute macroscopic surface
parameters such as protrusion heights, slip lengths and permeabilities consistent with
the DNSs. The deviation from the grid-converged values of

√
K + is in any event small,
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Figure 23. Results from figure 17(d) for the roughness function �U+ as a function of the transpiration
equivalent permeability K t+

eq . Black symbols, interconnected substrates of staggered cubes or mesh-like lattices.
White symbols, frozen suspensions of staggered cubes.

with underpredictions �10 % for the topologies with narrowest gaps, g ≤ L/4, and � 5 %
for the topologies with g ≥ L/3. These deviations are estimated from the values kindly
provided by a reviewer and the grid-convergence results portrayed in figure 2. For the
grid-convergence study, we have computed the a priori

√
K + for the staggered-cube

configuration with g = L/4, the topology of Pd-48-25, for our baseline resolution of
36 points per L plus for 64, 96, 144 and 192 points per L . The results are shown in
figure 26, and are consistent with a ground-truth value

√
K + ≈ 0.0177, to which they tend

asymptotically: we note that this entails an overprediction of ∼ 2 % in the reviewer’s value
of 0.0181. Relative to the asymptotic value, the values of

√
K corresponding to 32 and 64

points per pitch have errors of ∼ 9 % and ∼ 5 %, respectively.

Appendix C. Effect of the Reynolds number
Most of the analysis on the scaling of flow properties in this paper is for the non-
dimensionalisation in wall units. This is based on the assumption that these flow properties
are dominated by the dynamics of near-wall turbulence in the buffer layer (García-Mayoral
& Jiménez 2012). In this section, to check the dependence of the analysis on Reynolds
number, we compare some results of simulations run at different Reτ ≈ 180, 360 and 550,
while matching the substrate dimensions in wall units. Five sets of cases are considered,
in each set the cases sharing the same L+, g/L and h/D: Pd-24-50(-HR), Pd-36-50(-
HR), Pd-48-38(-HR), Pd-48-50(-HHR) and Pd-48-62(-HR,-HHR). Near the interface, the
visual similarity between the cases in a set can be observed in the instantaneous flow fields
in figure 27.
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Figure 24. Comparison of turbulent statistics for interconnected and frozen-suspension substrate topologies.
(a,b) Mean velocity profile, (c) Reynolds shear stress and (d–f ) RMS velocity fluctuations. Dashed lines,

substrates with
√

K t+
eq ≈ 2; blue, Pd-12-67 (

√
K + = 2.03,

√
K t+

eq = 1.86); yellow, Ps-36-50 (
√

K + = 2.73,√
K t+

eq = 2.25); red, MRo-48-56 (
√

K + = 3.30,
√

K t+
eq = 1.98). Solid lines, substrates with

√
K t+

eq ≈ 5;

blue, Pd-24-75 (
√

K + = 5.80,
√

K t+
eq = 5.30); magenta, MPd-36-78 (

√
K + = 5.34,

√
K t+

eq = 5.11); purple,

MPd-48-72 (
√

K + = 5.94,
√

K t+
eq = 5.54).

Figure 28 shows the profiles of the mean velocity U+ and the RMS fluctuations of
the wall-normal velocity v+′

rms for the five sets of cases, together with the corresponding
smooth-wall results for reference, with figure 29 showing the corresponding spectral
energy densities. For each set, above the interface, the profiles of U+ for substrates show
good agreement, with small discrepancies in the wake region similar to those observed
for smooth walls. Such an agreement extends below the interface until the Darcy regions
are reached, below where the U+ ratio is proportional to 1/Reτ . This is a result of the
mean pressure gradient being different in wall units. The cases in a set have similar
profiles of v+′

rms for y+ � 15, above which the values gradually approach the corresponding
smooth-wall results at each given Reτ . Although not shown, the profiles of the RMS
fluctuations u+′

rms and w+′
rms and the Reynolds shear stress u+′v+′ exhibit similar trends

to those of v+′
rms , as in Sharma & García-Mayoral (2020a,b). The spectral energy densities

of the velocity fluctuations and the Reynolds shear stress show the same agreement in
figure 29, with further information at larger wavelengths available for the higher-Reτ

cases due to their larger domain in viscous units. In summary, the comparison in this
section indicates that the scaling of flow properties presented in this study is essentially
Reynolds-number-independent.
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Figure 25. (a,b) Mean velocity profile, (c) Reynolds shear stress and (d, f ) RMS velocity fluctuations for case
Pd-48-25 with different resolutions. Blue and red lines are for the coarser and finer resolutions, 32 and 64
points per pitch L , respectively. The dashed lines mark the location of the free-flow/substrate interface.

Appendix D. Analytical solutions of the Darcy–Brinkman equation for isotropic
permeable substrates

As in Taylor (1971), we interpret the Darcy–Brinkman equation as a constitutive model
for the volume-averaged (i.e. homogenised) flow in permeable media, rather than an
empirical remedy to the Darcy equation near interfaces to satisfy boundary conditions.
Compared with the classic Darcy model (Darcy 1856), which accounts for the effect of
pressure gradients, the Darcy–Brinkman model (Brinkman 1949) also incorporates the
stresses that are induced by gradients of the volume-averaged velocity over length scales
larger than the pore size. A formal derivation of the Darcy–Brinkman equation for the
case of isotropic highly porous media can be found in Sanchez-Palencia (1982) and Lévy
(1983). Gómez-de-Segura et al. (2018a) and Gómez-de-Segura & García-Mayoral (2019)
derived analytical solutions to the Darcy–Brinkman equation for permeable substrates
with anisotropic permeability tensors whose principal orientations coincide with x , y
and z. For isotropic substrates, these solutions are considerably simplified and provide
direct insight into how the substrate characteristics can affect the overlying flow. This
section presents these analytical solutions with specific emphasis on their particularisation
at the interface, which then serves as a boundary condition for the overlying free flow. This
is complemented by a brief discussion on the role of substrate depth in these solutions.

The Darcy–Brinkman equation in an isotropic permeable substrate with permeability K
and depth h reads

∇ p = −νK -1u + νeff∇2u, y ∈ [−h, 0], (D1)

where p is the fluid-volume-average (‘intrinsic average’) pressure and u is the total-
volume-average (‘superficial average’) velocity. Here νeff = ν/rν is an effective viscosity
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Figure 26. A priori values of
√

K for the staggered-cube configuration with g/L = 1/4, obtained from Stokes-
flow simulations with different grid resolutions. The blue and red makers represent the resolutions compared
in DNSs for case Pd-48-25. The dashed line marks the asymtotic value

√
K + ≈ 0.0177, used in (b) to estimate

the relative error.

perceived by the macroscale shear of the substrate flow, where the viscosity ratio rν is
usually regarded as a constant.

D.1. Solution for the mean flow
Let us first consider the mean flow field Φ(y) averaged in x and z. Assume a constant
pressure gradient ∂x P , a mean velocity shear at the interface ∂yU |0 (approaching from
below) and a no-slip condition on the floor U |-h = 0. Then the mean-flow solution to (D1)
can be directly obtained as the sum of a pressure-driven and a shear-driven part,

U (ỹ) = UPr (ỹ) + USh(ỹ), (D2)

UPr (ỹ) = (−∂x P) ν-1K

(
1 − cosh(ỹ)

cosh(h̃)

)
, (D3a)

USh(ỹ) = (∂yU |0)
√

K/rν

(
sinh(ỹ + h̃)

cosh(h̃)

)
, (D3b)

where the dimensionless coordinate ỹ and depth h̃ are

ỹ ≡ y/
√

K/rν, h̃ ≡ h/
√

K/rν . (D4)

For the DNS cases in this study, UPr is significantly smaller than USh , so U ≈ USh .
In addition, if the depth h is large enough, h̃ � 1 , we can approximate (D3b) by an
exponential decay

USh(ỹ) ∝ eỹ = ey/
√

K/rν (D5)

in the region not too close to the floor. The decaying exponent in (D5) can thus be used
to estimate the viscosity ratio rν . In this paper, rν is estimated by fitting the mean velocity
profile from DNSs between y = 0 and the location where U ≈ 0.1U |0, while ensuring (D3)
roughly holds. The resulting values of rν in this study are in the range 0.05–0.98, and the
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Figure 27. Instantaneous fields u′ (a,d,g,j,m), v′ (b,e,h,k,n) and p′ (c,f ,i,l,o) at y+≈3 for cases with different
Reτ . From top to bottom: Pd-24-50(-HR), Pd-36-50(-HR), Pd-48-38(-HR), Pd-48-50(-HHR) and Pd-48-62
(-HR,-HHR). The subplot at the bottom-left corner of each panel is for the case with lower Reτ than the
corresponding case with higher Reτ in the remainder of the panel. Colour range black–red–yellow–white
corresponds to [−2 : 2] times the RMS of the variable on the plane.

corresponding Darcy–Brinkman solutions are shown for comparison with the DNS mean
velocity profiles in figures 5, 6, 7, 8, 14 and 18.

D.2. Solutions for the fluctuations at the interface
With the mean-flow part subtracted, a zero-mean field φ(x, z, y) can be represented by
a Fourier series in x and z such that φ(x, z, y) =∑

α �=0 φ̂(αx , αz, y)ei(αx x+αz z) where
αx and αz are the x- and z-components of the planar wavevector α. Each Fourier mode
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Figure 28. Mean velocity profile and wall-normal velocity RMS fluctuation at different Reτ . From top to
bottom, cases Pd-24-50(-HR), Pd-36-50(-HR), Pd-48-38(-HR), Pd-48-50(-HHR) and Pd-48-62(-HR,-HHR).
Blue lines are for Reτ ≈180, magenta lines for Reτ ≈360 and purple lines for Reτ ≈550.
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Figure 29. Premultiplied spectra αxαzΦ∗∗ at y+ ≈ 3 for the cases with different Reτ . Blue shades
are for Reτ ≈ 180, magenta lines for Reτ ≈ 360 and purple lines for Reτ ≈ 550. From top to bottom:
Pd-24-50(-HR), Pd-36-50(-HR), Pd-48-38(-HR), Pd-48-50(-HHR) and Pd-48-62(-HR,-HHR). Contours
represent six equidistant levels (0.044, 0.088, 0.132, 0.176, 0.220 and 0.264) relative to the corresponding
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φ̂(αx , αz, y) follows the transform of (D1),

iαx p̂ = r -1
ν ν

(
∂2

yy − α2 − rν K -1
)

û , (D6a)

∂y p̂ = r -1
ν ν

(
∂2

yy − α2 − rν K -1
)
v̂ , (D6b)

iαz p̂ = r -1
ν ν

(
∂2

yy − α2 − rν K -1
)
ŵ, (D6c)

where α ≡
√

α2
x + α2

z .
We define a wavevector-aligned coordinate system, of which the column basis vectors

e//, ey , and e⊥ are obtained by the rotation transform

[
e// ey e⊥

]= Q · [ ex ey ez
]
, Q ≡

⎡
⎣αx/α 0 −αz/α

0 1 0
αz/α 0 αx/α

⎤
⎦ , (D7)

where ex , ey and ez are the unit vectors in x , y and z. Equation (D6) can then be
written as

iα p̂ = r -1
ν ν

(
∂2

yy − α2 − rν K -1
)

û//, (D8a)

∂y p̂ = r -1
ν ν

(
∂2

yy − α2 − rν K -1
)
v̂ , (D8b)

0 = r -1
ν ν

(
∂2

yy − α2 − rν K -1
)

û⊥, (D8c)

where [ û// v̂ û⊥]T = QT · [ û v̂ ŵ ]T. The equation for û⊥, (D8 c), decouples from
the rest of the problem and can be solved by itself under appropriate boundary conditions.
Separately, (D8 a,b) combined with the continuity equation,

iα û// + ∂y v̂ = 0, (D9)

form the equation system for û//, v̂, and p̂.
At the free-flow interface, y = 0, let us assume that the values of velocity shear rates

∂yû//|0 and ∂yû⊥|0 and pressure p̂|0 are given. At the floor boundary, y = −h, no-slip, no-
penetration conditions, û//|-h = v̂|-h = û⊥|-h = 0, are imposed. The solutions to (D8) and
(D9) yield then a constitutive relationship between velocity and stress at the interface,

⎡
⎣ û//|0

i v̂ |0
û⊥|0

⎤
⎦= HBr ·

⎡
⎣ ∂yû//|0

−i ν-1 p̂ |0
∂yû⊥|0

⎤
⎦ , HBr ≡

⎡
⎣ Lsli p αKsli p 0

αNtrsp αKtrsp 0
0 0 L⊥

sli p

⎤
⎦ , (D10)

in which HBr is a real-valued matrix with dimension of length, and is an inherent
characteristic of a substrate. It contains five independent coefficients, which are functions
of α and h,
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Lsli p =
√

(K/rν) fLs(α̃, h̃), (D11a)

Ksli p = K fKs(α̃, h̃), (D11b)

Ntrsp = (K/rν) fN t (α̃, h̃), (D11c)

Ktrsp = K fKt (α̃, h̃), (D11d)

L⊥
sli p =

√
(K/rν) f ⊥

Ls(α̃, h̃), (D11e)

where

fLs =
(

tanh(α̃K h̃) − (α̃/α̃K ) tanh(α̃h̃)
)2

α̃2
K ξ2

, (D12a)

fKs =
(
1+(α̃/α̃K)

2)(1−sech(α̃h̃)sech(α̃K h̃)
)

− 2(α̃/α̃K) tanh(α̃h̃) tanh(α̃K h̃)

ξ
,

(D12b)

fN t = 1 − sech(α̃h̃)sech(α̃K h̃) − (α̃/α̃K ) tanh(α̃h̃) tanh(α̃K h̃)

α̃2
K ξ

, (D12c)

fKt = tanh(α̃h̃) − (α̃/α̃K ) tanh(α̃K h̃)

α̃2
K ξ

, (D12d)

f ⊥
Ls = tanh2(α̃K h̃)

α̃2
K

, (D12e)

and where α̃ is the dimensionless wavenumber defined by

α̃ ≡ α
√

K/rν, (D13)

α̃K =
√

1 + α̃2, (D14)

ξ = 1 − (α̃/α̃K ) tanh(α̃h̃) tanh(α̃K h̃) − (α̃/α̃K )2sech(α̃h̃)sech(α̃K h̃). (D15)

The five attenuating functions f∗(α̃, h̃) in (D12) have values in the range of 0 – 1 and
account for the effect of substrate depth in (D11).

D.3. On the effect of depth

Figure 30 shows the values of the five attenuating functions f∗ against h̃ and the
dimensionless wavelength λ̃= 2π/α̃. For fLs , fKs , fN t and f ⊥

Ls , a threshold h̃ ≈ 2–3
can be established, beyond which f∗ becomes essentially depth-independent and, thus, the
substrate can be seen as “sufficiently deep” with regards to Lsli p, Ksli p, Ntrsp and L⊥

sli p.
Such a threshold, however, cannot be established for fKt . The contour lines of fKt for
large waves follow λ̃∼ h̃, with λ̃≈ 5h̃ for fKt = 0.9. This scaling behaviour indicates that
pressure fluctuations with wavelength λ̃� 5h̃ will always perceive the presence of the floor
impeding them from inducing any significant transpiration across the interface, regardless
of how deep the substrate may be relative to

√
K . Therefore, ‘sufficiently deep’ for Ktrsp

is not a property exclusively inherent to the substrate, but instead depends on the typical
length scales of the overlying pressure fluctuations, λp.
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Figure 30. Darcy–Brinkman-based attenuating coefficients f∗ as functions of dimensionless wavelength
λ̃≡ 2π/α̃ and depth h̃.

For near-wall turbulence, the scale λp in wall units is typically λ+p ≈ 200 for active
eddies (see the figures of spectra in §§ 4.2 and 5.1), so for a permeable substrate with√

K + � 10, we have λ̃p = λp/
√

K/rν � 10. In such a scenario, figure 30 shows that, for
fKt , a sufficiently deep substrate must have at least h̃ � 5. Consequently, as an initially
deep substrate becomes gradually shallower, the overlying turbulence will first perceive
the suppression of pressure-induced transpiration, i.e. Ktrsp decreasing at large scales,
whereas the effect of the substrate depth on the other coefficients will only be perceived
later, when h̃ ≈ 2–3.

Appendix E. Roughness function versus upscaled coefficients from homogenisation
Here we report the scaling of the roughness function obtained in our DNSs with the
admittance coefficients for our substrate geometries obtained following the second-
order homogenisation model of Bottaro & Naqvi (2020) and Naqvi & Bottaro (2021).
The coefficients are obtained a priori from a series of simple auxiliary problems on
the substrate geometry based on a Stokes-flow assumption. The first coefficient is the
conventional slip length, Ls , which essentially gives the u-∂u/∂y admittance. The second
is the ‘interfacial permeability’, Kint f , which gives the u–p admittance, and from the
problem symmetries also the v–∂u/∂y admittance. The final coefficient is the intrinsic
permeability, Ky , which gives the v–p admittance, and is thus analogue to the K t

eq of (5.1).
Results for the DNS-measured roughness function �U+ as a function of the precomputed
Ls , Kint f and Ky are shown in figure 31. Overall, the collapse is generally better with
K t

eq , as shown in figure 17(d). We note that the methods used to obtain the coefficients in
Bottaro & Naqvi (2020) and Naqvi & Bottaro (2021) differ for rough and porous substrates.
For rough substrates, it is assumed that there is a bottom impermeable wall blocking the
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Figure 31. Velocity deficit �U+ for the present DNS substrates as a function of their upscaled coefficients
derived from homogenisation (Bottaro & Naqvi 2020; Naqvi & Bottaro 2021): (a) slip length, Ls ; (b) interface
permeability, Kint f ; (c) intrinsic permeability, Ky . Symbols are as in figure 9.
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Figure 32. Velocity deficit �U+ as a function of (a) the permeability K + and (b) the equivalent permeability
K t+

eq for the present DNSs and other substrates in the literature. • and lines faded in the background, present
staggered cubes; , meshes of cases MPd; , meshes of cases MFPd; , meshes of cases MTPd; , randomly
packed spheres from Zippe & Graf (1983); , staggered cubes from Kuwata & Suga (2016a); +, collocated
spheres from Kim et al. (2020); , reticulated foams from Esteban et al. (2022); ×, randomly packed spheres
from Karra et al. (2023); , mesh lattices from Habibi Khorasani et al. (2024).

flow, and this results in Ky = 0 (Bottaro & Naqvi 2020). For permeable substrates, the
auxiliary problems are solved in a mesoscale domain that penetrates into the substrate a
few grains, typically of order ∼ 5L . A Darcy-like transpiration boundary condition is set
at the bottom of the mesoscale domain. As a result, this Darcy transpiration is transferred
to the solution, yielding Ky = K . For our present substrates, we would assume that at least
for substrate depths h = 1D–2D, if not for h = 5D–7D, the rough-wall framework is more
appropriate, and thus Ky = 0, as portrayed in figure 31(c). If we overlooked the presence
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Case Reτ L+ g/L h/L ε
√

K +
√

K t+
eq �U+

MFPd-36-78 182.7 35.9 7/9 5 0.87 5.34 5.33 8.24
MFPd-48-56 182.7 47.8 5/9 5 0.58 3.30 3.29 3.64
MFPd-48-72 182.7 47.8 13/18 5 0.81 5.94 5.94 8.20
MFPd-48-78 182.7 47.8 7/9 5 0.87 7.12 7.11 9.48
MTPd-48-72 182.7 47.8 13/18 5 0.81 5.94 5.09 9.77
MTPd-48-78 182.7 47.8 7/9 5 0.87 7.12 6.05 9.50

Table 3. Parameters for mesh substrates with flat interfaces (MFPd) and tall interfacial protrusions (MTPd).
Here L is the grain pitch, g the gap size, h the substrate depth, ε the porosity, K the permeability, K t

eq the
transpiration equivalent permeability and �U+ the resulting roughness function. The ‘+’ superscripts indicate
viscous scaling.

of a bottom wall in our substrates and assumed Ky = K for all of them, the result would
be as shown in figure 13( f ).

Appendix F. Roughness function for other substrate topologies
In this final appendix we compile roughness function results for other substrate topologies
from both experimental and numerical literature. Most of these have larger permeabilities
K + than the scope of the present work. As a result, we would expect some of our
underlying assumptions to fail, such as assuming Stokes flow for the microscale flow
when deriving expression (5.1) for K t

eq , or that the direct effect of texture granularity
on the overlying turbulence is small. The collapse of roughness function data with K t+

eq ,
and with K + for reference, is portrayed in figure 32, showing reasonably good agreement
even at these larger K + values. We note that the substrates of Habibi Khorasani et al.
(2024) appear to follow a lower �U+ trend, especially for small K t+

eq . These mesh
substrates are different from the rest in that their exposed interface is perfectly flat. This
implies an absence of interfacial roughness, probably suppressing partially the increase
in drag compared with substrates with roughness. Following this, we have conducted an
additional set of simulations for our mesh topologies, where we made the interface flat
as in Khorasani et al. (2024) or, conversely, extended the protruding ligaments from their
original height �/2 to �. The parameters of these simulations are summarised in table 3.
The flat-interface cases follow the same trend of the substrates of Khorasani et al. (2024),
while the taller-protrusion cases show a trend similar to all the other substrates with rough
interfaces. We note that this figure includes results for various irregular grain topologies
(Zippe & Graf 1983; Esteban et al. 2022; Karra et al. 2023), and they follow the same
trend of regular ones.
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