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Abstract

We show that if G is a finitely generated profinite group such that Ui, Jt2,... ,xk] is Engel for any
X\,X2, •.. ,xk e G, then y*(G) is locally nilpotent, and if [x[,X2, • • • ,xk] has finite order for any
X[, X2, • • . , xk € G then, under some additional assumptions, yk(G) is locally finite.
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1. Introduction

The positive solution of the Restricted Burnside Problem [15, 16] had led to many
remarkable results on profinite groups. In particular, using Wilson's reduction theorem
[12], Zel'manov has been able to prove local finiteness of periodic compact groups
[17], thus answering positively a major problem. Another result of this nature is that
any profinite Engel group is locally nilpotent [14]. In the present paper we obtain
some further corollaries to the solution of the Restricted Burnside Problem. Our main
results generalize, fully or partially, the above cited ones.

Let ̂  be a class of groups. A pro-^" group is a topological group that is isomorphic
to an inverse limit of groups in <€. Thus, a profinite group is exactly a pro-^ group
with ^ being the class of all finite groups and a pro-p group is that with ^ being
the class of all finite p -groups for a fixed prime p (see [1] for basic properties of
profinite and pio-p groups). For a positive integer h, let J/h denote the class of finite
soluble groups G of Fitting height h(G) at most h. Obviously, a profinite group G
is a pro-o/K'1 group if and only if G/N is soluble with h(G/N) < h for any open
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2 Pavel Shumyatsky [2]

normal subgroup N of G. We will use the term 'pro-(finite nilpotent) group' rather
than 'pvo-jV group'.

Let G be any group and let k, n be positive integers. For x, y e G we use [x, y] to
denote the group-commutator x~xy~lxy. The long commutators [x\,x2,... ,xk] and
[x, ny] are defined inductively by

= X\\ [xuX2, ... ,Xk] = [[xt,X2, • • • ,**- l ] ,**]

and

[x,oy]=x; [x,ny] = [[x,n.iy],y].

An element y e G is called Engel if for any x e G there exists a number n such that
[x, ny] = 1. A group G is Engel if any element of G is Engel. By the mentioned
above result of Wilson and Zel'manov a profinite Engel group is locally nilpotent. In
this paper we prove the following result.

THEOREM 1.1. Let k be a positive integer, G a finitely generated profinite group
such that [x\,X2, • • • ,xk] is Engel for any X\, x2, • • • ,xk € G. Then yk(G) is locally
nilpotent.

A subset X of a topological group G is said to generate a subgroup H if H is the
smallest closed subgroup of G that contains X. As usual, ~/k(G) stands for the smallest
normal closed subgroup N of G such that G/N is nilpotent of class at most k — 1. It
is well known that y*(G) is generated by the set [[x{,... , xk];x\,... , xk € G).

We also investigate profinite groups in which all commutators [xx,... , xk] have
finite order. The following conjecture seems to be plausible.

CONJECTURE. Let k be a positive integer, G a finitely generated profinite group
such that [x\, x2, • • • , xk] is of finite order for any X\, x2, •.. ,xk € G. Then yk(G) is
locally finite.

Our next result is an evidence in favour of the above conjecture.

THEOREM 1.2. Let k and h be positive integers, G a finitely generated pro-jVh

group such that [x,, x2, • •. ,xk] is of finite order for any X\, x2,... ,xk € G. Then
yk(G) is locally finite.

The techniques used in this paper are, by and large, the same as in [ 14]. In particular,
we make heavy use of the so called Lie ring methods. For the reader's convenience
we collect in the next section some necessary definitions and facts on Lie algebras
associated with pro-p groups. The most adequate general reference for the subject
is [18].
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2. Associated Lie algebras

Let L be a Lie algebra over a field K. We use the left normed notation: thus if
lx, l2,... , ln are elements of L, then

An element a e L is called ad-nilpotent if there exists a positive integer n such that
[x, na] = 0 for all x e L. If n is the least integer with the above property, then we say
that a is ad-nilpotent of index n. Let X c L be any subset of L. By a commutator in
elements of X we mean any element of L that could be obtained from elements of X
by means of repeated operation of commutation with an arbitrary system of brackets
including the elements of X. Denote by F the free Lie algebra over K on countably
many free generators x \, x2, Let / = / (JC i, x2,... , xn) be a non-zero element of
F. The algebra L is said to satisfy the identity/ = 0 if/ (d, a2,... , an) = 0 for any
«i, a2. •• • . on € L. In this case we say that L is PI. We are now in a position to quote
a theorem of Zel'manov [18,111(0.4)] which has numerous important applications to
group theory.

THEOREM 2.1. Let L be a Lie algebra generated by a\,a2,... , am. Assume that L
is PI and that each commutator in the generators aua2,... ,am is ad-nilpotent. Then
L is nilpotent.

Let G be a group. We call an element x e G a simple commutator of weight k if
there exist xlt... ,xk e G such that x = [X],... , **]. Let us note that if x e G is
a simple commutators of weight k, then so is [x, y] for any y e G. This elementary
observation will play an important role in the paper.

Fixed a prime p, we denote by D, = Di(G) the i-th dimension subgroup of G in
characteristic p. These subgroups form a central series of G known as the Zassenhaus-
Jennings-Lazard series. Set L(G) = ©D;/D,+1. Then L(G) can naturally be viewed
as a Lie algebra over the field &p with p elements. The subalgebra of L generated by
Di/D2 will be denoted by LP{G). The following lemma is implicit in [18, page 71].

LEMMA 2.2. Let G be a pro-p group generated by gu g2,... , gm. For a positive
integer c let p\, fa,... , pr be the list of all simple commutators in gt, g2,... ,gm of
weight at most c (so r obviously is bounded by a function of m and c). If LP(G) is
nilpotent of class c, then G = (p\){p2) • • • (pr> is the product ofprocyclic subgroups
generated by the pt 's. In particular, if each p, has finite order, then G is finite.

Another corollary of nilpotency of Lp (G) is the Lazard criterion for a pro-p group
to be p-adic analytic [6].
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THEOREM 2.3. Let G be a finitely generated pro-p group. If LP(G) is nilpotent,
then G is p-adic analytic.

Let x e G, and let i = i(x) be the largest integer such that x e Dt. We denote by
x the element x Di+l e L(G). We now cite two results providing sufficient conditions
for x to be ad-nilpotent. The following lemma is immediate from the proof of [14,
Lemma 3].

LEMMA 2.4. Let x be an Engel element of a profinite group G. Then x is ad-
nilpotent.

LEMMA 2.5 (Lazard, [5, page 131]). For any x e G we have (adx)p — ad (xp).
In particular, ifxq = 1, then x is ad-nilpotent of index at most q.

Let H be a subgroup of G and au ... , an e G. Let w = w(xi,... , xn) be a
nontrivial element of the free group on the set [xu ... ,xn}. Following [14] we say
that the law w = 1 is satisfied on the cosets a\H,... , anH if w{a\h\,... , anhn) — 1
forany h\,... , hn e H. In [14] Wilson and Zel'manov proved the following theorem.

THEOREM 2.6. IfG is a group which has a subgroup H of finite index and elements
« ! , . . . , an such that a law w = 1 is satisfied on the cosets a\H,... , anH, then for
each prime p the Lie algebra LP(G) is PI.

3. A Hartley type result

In this section we prove that if G is a finitely generated pro-^ / A group, then every
element of %(G) can be expressed as a product of finitely many simple commutators
of weight k. This result was obtained by Hartley for k = 2 [2] and the general case
actually follows from the argument in [2]. For the reader's convenience we describe
the proof.

LEMMA 3.1. Let n > 1 and k > 2. Let G be a group, a , , . . . , an, g € G and

assume that each at is a simple commutator of weight k — 1. Then [a\- • • an, g] can
be expressed as a product of at most 2n — 1 simple commutators of weight k.

PROOF. This is quite straightforward by induction on n. If n = 1 the result is
obvious. If n > 2 we write

[ax •••an,g] = [au g][au g, a2 • • • an][a2 • • • an, g]

and use the induction hypothesis. •
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THEOREM 3.2. Let G be an m-generated finite soluble group of Fitting height I.
There exists a constant N(m, k, I) depending only on m, k and I such that each element
ofyk(G) can be expressed as a product of at most N(m, k, I) simple commutators of
weight k.

PROOF. It is sufficient to deal only with the case k > 2. Assume first that G is
nilpotent and suppose by induction that the number N(m, k — 1, 1) has already been
found. Set H = yk^i(G). Obviously there exists a number u = u(k, m) depending
only on k and m such that H = (yf,... , y°) for suitably chosen yu . . . , yu e H.
Therefore, by [2, Lemma 3], every element* of Yk(G) = [H, G] can be written in the
form

x = [hugi]---[hm+u,gm+u],

where ft; 6 H,gt e G. By the induction hypothesis each ft, can be written as a product
of at most N(m,k — l, 1) simple commutators of weight & — 1. Now Lemma 3.1 says
that each commutator [hi, £,] can be written as a product of boundedly many simple
commutators of weight k. This establishes the claim in the case / = 1.

Suppose now that / > 2 and the number N(m,k,l — 1) has been found. Let
R be the intersection of all normal subgroups N of G such that h(G/N) = 1—1.
Then, of course, R is nilpotent, h(G/R) = / — 1 and R = [R, G]. In particular,
R < Yj(G) for any j' > 1- Arguing like Hartley in the proof of [2, Theorem 2]
we conclude that there exist a number t = t(jn,l) depending only on m and / and
elements r, r, e R such that R = ( r f , . . . , r°). Therefore, by [2, Lemma 3],
every element x of [/?, G] = R can be written in the form

(*) x = [hugx]---[hm+t,gm+l],

where ft, e R, g, e G. Since each ft, e y*-i(G), by the induction hypothesis we can
write hi—an--- ain, where n = N(m,k — 1,1) and an,... , ain are simple commu-

tators of weight k — 1. Substituting now in (*) each ft, by an - • • ain and applying
Lemma 3.1 we obtain that any element in R can be expressed as a product of boundedly
many simple commutators of weight k. Taking into account that h(G/R) — I — 1 and
applying the induction hypothesis to G/R, the result follows. •

The next corollary is now immediate.

COROLLARY 3.3. Let k,h > 1 and let G be a finitely generated pro-jVh group.
Then every element of Yk.(G) can be expressed as a product of finitely many simple
commutators of weight k.
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4. Proof of the main results

We establish Theorem 1.1 and Theorem 1.2 using the following related results on
residually finite groups (see [8, 9, 10]).

THEOREM 4.1. Let k,n > 1. Let G be a residually finite group such that [y, n[xu

x2,... , xk]] = 1 for any y,X\, X2,... , xk £ G. Then Yk{G) is locally nilpotent.

THEOREM 4.2. Let q be a prime-power and k > 1. Let G be a residually finite
group such that [x\, x2, •.. ,xk]

q = 1 for any x\,x2, . • . ,xk e G. Then yk(G) is
locally finite.

It is convenient to prove first Theorem 1.1 and Theorem 1.2 under the hypothesis
that G is pro-(finite nilpotent) and then extend the results to the general case.

PROPOSITION 4.3. Let G be a finitely generated pro-(finite nilpotent) group such
that [x\, x2,... ,xk] is Engel for any xu x2, • • • , xk e G. Then yk(G) is locally
nilpotent.

PROOF. Set G — G x G x • • • x G (k + 1 factors). For each integer n we set

S n = { { b , a u . . . , a k ) 6 G ; [ b , H [ a l t . . . , a * ] ] = l } .

Since the sets Sn are closed in G and cover G, by Baire's category theorem [4, page 200]
there exist an open subgroup H of G, elements b,au... ,ak e G and an integer n
such that the cosets bH, a\H,... , akH satisfy the law [y, n [ x i , . . . , xk]] — 1. Let
| G : H | = m and write K for the product of the Sylow subgroups P i , . . . , Pr of G
corresponding to the primes dividing m. Since G = P, x P2 x • • • x Pr x G/K and
since G = Pi • • • PrH, it follows that G/K satisfies the law [y, n[x{,... , xk]] = 1.
Hence yk(G/K) is locally nilpotent by Theorem 4.1. It therefore suffices to show that
yk(Pd is locally nilpotent for any i = I,... , r and so we assume that G is a pro-p
group. Since any element of yk(G) can be expressed as a product of finitely many
simple commutators weight k, it is sufficient to show that any abstract subgroup Q
generated by finitely many simple commutators ai,... ,as of weight k, is nilpotent.
Let Q be the closure of Q. By Theorem 2.6 L = LP{Q) is PI. Let au ... ,as

be the homogeneous elements of L corresponding to au ... , as. Since any group
commutator in a, . . . , as is Engel, Lemma 2.4 shows that any Lie commutator in
au ... , as is ad-nilpotent. Zel'manov's Theorem 2.1 now tells us that L is nilpotent.
Therefore, Q is p-adic analytic (Lemma 2.3). Obviously Q cannot contain a subgroup
isomorphic to the free discrete group of rank two, so by the Tits' Alternative [11] Q
has a soluble subgroup of finite index. The claim now follows from a result of Plotkin
[7, Theorem 7.14]. •
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PROOF OF THEOREM 1.1. Since all Engel elements of a finite group lie in the Fitting
subgroup [3, III, 6.14], it follows that yk(K) is nilpotent for any finite quotient K of
G. Hence yk(G) is pro-(finite nilpotent) and by Corollary 3.3 each element of yk(G)
can be expressed as a product of finitely many simple commutators [x\,x2,... ,xk]
of weight k. It is therefore sufficient to show that any abstract subgroup H generated
by finitely many simple commutators of a i , . . . ,as of weight k is nilpotent. Let H be
the closure of H. We already know that H is pro-(finite nilpotent) and so the above
proposition shows that yk(H) is locally nilpotent. Obviously this implies that yk(H)
is locally nilpotent and the claim follows from a result of Plotkin [7, Theorem 7.14]
because H is generated by Engel elements. •

To prove Theorem 1.2 some more preparatory work is required. The following
lemma is due to Wilson [13].

LEMMA 4.4. Let G be a finitely generated residually finite-nilpotent group. For
each prime p let Jp denote the intersection of all normal subgroups of G having finite
p-power index. Assume that G/Jp is nilpotent for any p. Then G is nilpotent.

LEMMA 4.5. Let G be a residually finite group such that [x\, x2, • • • ,xk]
n = 1.

Assume that there exists h > 1 such that any finite quotient of G is soluble and has
Fitting height at most h. If G is generated by finitely many elements of finite order,
then G is finite.

PROOF. If G is residually-p for some prime p, then, by Theorem 4.2, yk(G) is
locally finite and we are done. If G is residually nilpotent Lemma 4.4 allows us to
reduce the problem to the 'residually-p' case.

Hence, we can assume that h > 2 and use induction on h. Let R be the intersection
of all normal subgroup N of G such that G/N is nilpotent and finite. By the previous
paragraph R has finite index in G and therefore ys(G) < R for some s. Without any
loss of generality we can assume that s > k. Obviously ys(G) has finite index in G and
therefore ys{G) is generated by finitely many elements of finite order. Furthermore,
since ys(G) < R, it follows that ys(G) is residually of Fitting height at most h — 1.
By the induction hypothesis we now derive that ys(G) is finite, whence the lemma
follows. •

LEMMA 4.6. Letn > 1, G a residually finite-nilpotent group such that [x{,x2,... ,
xk]

n = \for any X\,x2,... ,xk e G. Then yk(G) is locally finite.

PROOF. Let Jp have the same meaning as in Lemma 4.4. Let T denote the direct
product f] G/Jp, where p ranges through the set of prime divisors of n. If p is not
a divisor of n then yk(G) < Jp. Therefore, yk(G) can be embedded in yk(T). By
Theorem 4.2 yk(G/Jp) is locally finite for any prime p and the result follows. •
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PROPOSITION 4.7. Let G be a finitely generated pro-(finite nilpotent) group such
that [xi, x2,... ,**] is of finite order for any xux2, •. • ,xk € G. Then yk(G) is
locally finite.

PROOF. Set G = GxGx--xG(k factors). For each integer n we set

Sn = { (a , , . . . ,ak) e G; [ a , , . . . , ak]
n = l } .

Since the sets Sn are closed in G and cover G, by Baire's category theorem there
exist an open subgroup H of G, elements ai,... , ak € G and an integer n such that
the cosets axH,... , akH satisfy the law [xu •-• . •**]" = 1- Let |G : / / | = m and
write Jf for the product of the Sylow subgroups P i , . . . , Pr of G corresponding to
the primes dividing m. Since G = Pi x • • • x Pr x G / £ and since G = Pi--- PrH,
it follows that G/K satisfies the law [xu ... ,xk]

n = 1. Hence yk(G/K) is locally
finite by Lemma 4.6. It therefore suffices to show that yk(Pt) is locally finite for
any i — 1 , . . . , r and so we assume that G is a pro-p group. Since any element
of yk(G) can be expressed as a product of finitely many commutators of the form
[jti, x2, . . . , xk], it is sufficient to show that any abstract subgroup Q generated by
finitely many simple commutators of ai,... , as of weight k is finite. Let Q be the
closure of Q. By Theorem 2.6 L = Lp (Q) is PI. Let a\,... , as be the homogeneous
elements of L corresponding to ax,... , as. Since any group-commutator in ax,... ,as

is of finite order, it follows from Lemma 2.5 that any Lie commutator in au ... ,as

is ad-nilpotent. Zel'manov's Theorem 2.1 now tells us that L is nilpotent. Using
Lemma 2.2 we therefore conclude that Q is finite. •

LEMMA 4.8. Let Gbea soluble profinite group generated by finitely many elements
of finite order. If{xi,x2,... , xk] is of finite order for any xi, x2, •.. , xk e G, then G
is finite.

PROOF. The lemma is obvious if it = 1 so assume that k > 2. We remark that
yk(G) has finite index in G and therefore, by Corollary 3.3, yk(G) is generated by
finitely many elements of finite order. Arguing by induction on the derived length
of G and applying the induction hypothesis to yk(G) in place of G we conclude that
yk(G) is finite and the lemma follows. •

PROOF OF THEOREM 1.2. By Proposition 4.7 we can assume that h > 2. Since, by
Corollary 3.3, each element of yk(G) can be expressed as a product of finitely many
commutators of the form [xi,x2, • • • ,xk], it is sufficient to show that any abstract
subgroup H generated by finitely many simple commutators au ... , as of weight k
is finite. Let H be the closure of H and F a closed normal pronilpotent subgroup of
G such that G/F is a pro-Af*"1 group. Arguing by induction on h we can assume that
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Yk(G/F) is locally finite. Therefore, Fo = F n H has finite index in H. Hence Fo is
finitely generated and Proposition 4.7 shows that yk(F0) is locally finite. Obviously
Yk(F0) is closed in H. The above lemma shows that H/Yk(Fo) is finite and this
concludes the proof. •
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