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1Wroc�law University of Science and Technology, Faculty of Pure and Applied
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Abstract We study the quasi-ergodicity of compact strong Feller semigroups Ut, t > 0, on L2(M,μ);
we assume that M is a locally compact Polish space equipped with a locally finite Borel measue μ. The
operators Ut are ultracontractive and positivity preserving, but not necessarily self-adjoint or normal. We
are mainly interested in those cases where the measure μ is infinite and the semigroup is not intrinsically
ultracontractive. We relate quasi-ergodicity on Lp(M,μ) and uniqueness of the quasi-stationary measure
with the finiteness of the heat content of the semigroup (for large values of t) and with the progressive
uniform ground state domination property. The latter property is equivalent to a variant of quasi-
ergodicity which progressively propagates in space as t ↑ ∞; the propagation rate is determined by
the decay of Ut1M (x). We discuss several applications and illustrate our results with examples. This
includes a complete description of quasi-ergodicity for a large class of semigroups corresponding to non-
local Schrödinger operators with confining potentials.

1. Introduction

Let (M,d,μ) be a metric measure space. The central theme of our contribution is the
question whether a semigroup of compact operators {Ut : t � 0} acting on the scale of

Lebesgue spaces Lp(μ) = Lp(M,μ) admits some ‘ergodic’ measure. More precisely, we
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look at expressions of the from

lim
t→∞

∣∣∣∣ σ(Utf)

σ(Ut1M )
−m(f)

∣∣∣∣= 0 where m(f) :=

∫
f dm, σ(g) :=

∫
gdσ, (1.1)

and we establish conditions on {Ut : t � 0} such that the limit in (1.1) i) exists, ii) exists
uniformly for certain families of measures σ and functions f, iii) converges with a certain

rate (in time and space), and iv) that m is the unique quasi-stationary measure. In many

situations, the rate can be explicitly given, and it is even exponential in time t. The
measure m, which is sometimes called a quasi-ergodic, has a very concrete form

m(E) =

∫
E
ψ0 dμ∫

M
ψ0 dμ

,

where ψ0 is the eigenfunction of the L2(μ)-adjoint semigroup {U∗
t : t � 0} for the

eigenvalue e−λ0t. In the context of Schrödinger operators and their semigroups, λ0 is

the ground state eigenvalue, and ψ0 is the corresponding eigenfunction (for the adjoint).
If ψ0 ∈ L1(μ), the measure m is a finite measure, and it is a quasi-stationary (or quasi-

invariant) measure of the semigroup {Ut : t � 0}.
Since we do not assume that Ut1M ≡ 1M – that is, we do not assume conservativeness

– we can expect only some kind of quasi-ergodic behavior. This is reflected in the

structure of (1.1) where we normalize σ(Utf) by the total mass σ(Ut1M ); if Ut

is the transition semigroup of some non-conservative stochastic process with initial
distribution σ, this can be seen as conditioning on survival, – that is, σ(Utf)/σ(Ut1M ) =∫
Ex [f(Xt) | ζ > t)] σ(dx), ζ = inf{s > 0 :Xs /∈M} being the life-time.

Large time evolution phenomena occur in various areas of mathematics and science

(e.g., in PDEs, dynamical systems, stochastic processes, statistical and quantum physics),
and they are often modeled by semigroups of operators. These applications require quite

different state spaces, ranging from discrete spaces (lattices, graphs, . . .) to manifolds,

fractals and, of course, classical Euclidean spaces. In order to cover these situations, we
work in a rather general setting, on a locally compact Polish space N and μ is a locally

finite Borel measure on the Borel sets B(M), and we consider sufficiently regular (but not

necessarily self-adjoint or normal) operator semigroups acting (initially) on L2(M,μ) This
includes the most interesting case when M is unbounded and/or μ is an infinite measure.

We consider semigroups of compact integral operators which are positivity improving

and ultracontractive, and have the strong Feller property – see (A0)–(A3) and (A4) in

Section 2 for a precise statement. This framework accomodates many situations which
are typically discussed in the literature.

We focus on Schrödinger semigroups – with confining potentials, based both on local

(second order differential operators) [16, 15, 58, 57, 56, 42, 43] and non-local kinetic term
operators (Lévy operators, fractional and relativistic Laplacians, etc.) [6, 22, 36, 39, 8,

25, 26] – and on Feynman–Kac semigroups of Markov processes whose state spaces are

general locally compact Polish spaces; this includes processes on fractals [19, 37] and
Markov chains on graphs and discrete spaces [4, 14, 46, 47]. Some specific cases and

various examples are discussed in Section 7. There are many other examples that fit into

our framework, but which we do not discuss here in detail (e.g., evolution semigroups
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of non-homogeneous second order differential operators (generating diffusion processes)

and non-local Lévy-type operators (generating jump Lévy-type processes) with confining

coefficients [1, 45, 44, 64, 55] or Markov processes killed upon exiting an unbounded
domain [3, 38, 8, 9]).

We are aware of only a few papers that work in a similar direction: Takeda [62],

Knobloch and Partzsch [31] and Zhang, Li and Song [65]. Takeda uses a Dirichlet form
approach, his processes and semigroups are symmetric and his main objective is the

existence and uniqueness of the quasi-invariant measure. The key technical assumption

is a tightness condition on the resolvent (kernel) of the semigroup; this is, essentially,
a compactness condition which is weaker than IUC (intrinsic ultracontractivity). The

contributions by Knobloch and Partzsch and Zhang et al. are, in some sense, extremes:

Knobloch and Partzsch strive for a high level of generality in the basic setup, starting

from a general Markov kernel assuming what they call ‘compact domination’. In the
end, they prove that intrinsic ultracontractivity (IUC) implies uniform quasi-ergodicity

at an exponential rate. One should mention that the only known examples satisfying the

compact dominaton property are IUC kernels and semigroups. However, Zhang, Li and
Song consider Markov processes; they are topologically quite general, but assume that

the underlying measure is finite.

From the point of view of applications, both IUC and the finiteness of the underlying
measure are rather restrictive conditions; for Schrödinger semigroups with confining

potentials, IUC requires very fast growth of the potential at infinity; see [16, 2, 25, 10].

For non-self-adjoint operators, IUC was first studied by Kim and Song [29, 30].

Recently, we introduced in [26] the notion of progressive intrinsic ultracontractivity in
order to obtain sharp two-sided heat kernel estimates for non-IUC or not necessarily IUC

semigroups; see also Definition 4.2 and Remark 4.3 further down. As it turns out, it is

this notion that helps us to avoid IUC as well as the finiteness of the underlying base
measure. Consequently, we are able to characterize the quasi-ergodic regularity for a fairly

general class of compact semigroups and underlying state spaces, including necessary and

sufficient conditions for the existence and uniqueness of a quasi-stationary measure.
Let us briefly summarize the main contributions of this paper. Recall that the heat

content is defined as Z(t) = ‖Ut1M‖L1(μ) = ‖U∗
t 1M‖L1(μ).

Finite heat content and exponential quasi-ergodicity

We begin with a fairly general, yet easily verified, sufficient condition on the semigroup
{Ut : t � 0} such that the convergence in (1.1) is exponential in time, uniform for f ∈ Lp,

‖f‖p � 1, for any fixed p ∈ [1,∞], and it holds for any finite measure σ. In fact (cf.

Theorem 3.4), if the heat content of the semigroup is finite for some t1 > 0, then ψ0 is
integrable, the measure m is the unique quasi-stationary measure of the semigroup and

the first term appearing in (1.1) is dominated by c1e
−c2tσ(Ut11M )/σ(φ0)‖f‖p – here,

t� 1 is large, the constants c1,c2 > 0 do not depend on σ or f ∈Lp, and φ0 is the ground
state of {Ut : t � 0}. A similar reasoning applies to the adjoint semigroup {U∗

t : t � 0}.
Taking σ(dy) = δx(dy) as the Dirac-delta measure concentrated in x ∈ M , we obtain

pointwise convergence with an explicit space-rate which is uniform on compact sets;
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see Corollary 3.5. We will see in Section 7.1 that for a very general class of Feynman–
Kac semigroups with potential V (x), the heat content Z(t1) is finite if the function

exp(−t1V (x)) is integrable ‘at infinity’; this condition is often also a necessary condition.

This means that the finiteness of the heat content is independent of the underlying
Markov process. Since our proof relies only on the Feynman–Kac formula (see Demuth

and van Casteren [17]), it also applies to evolution semigroups of very general Schrödinger

operators H =−L+V – in this case, the finiteness of the heat content is determined solely

by the behavior of the potential V at infinity, and it is independent of the kinetic term
(i.e., the free Feller operator L).

By definition, the heat content is finite if Ut1M is integrable. The latter is guaranteed

by the asymptotic ground state domination (aGSD) of the semigroup (that is, Ut1M �
ce−tλ0φ0 for some t > 0) and the integrability of the ground state φ0. In [26], we defined

the notion of progressive ground state domination (pGSD), which requires only that

1Kt
Ut1M � ce−tλ0φ0 for some increasing family of compact sets Kt ↑M . In [26], pGSD

was obtained as a necessary condition of sharp two-sided heat kernel estimates for

Schrödinger semigroups; we will now see that pGSD is closely related to quasi-ergodicity.

Equivalence of aGSD/pGSD and quasi-ergodicity

If pGSD holds for some family of compact sets Kt ↑ M , one can show that (1.1) is
dominated by some rate κ(t) which is essentially given by decay of Ut1M (x) and U∗

t 1M (x)

for x /∈Kbt (for some fixed b∈ (0,1/2)). In fact, the bound κ(t) is uniform for all f ∈Lp(μ),

‖f‖p � 1, and all measures σ with support in Kat (where a ∈ (0,1) such that a+2b= 1);

see Theorem 5.2. Specializing again to σ = δx with x ∈Kat, we see in Theorem 5.4 that
pGSD is equivalent to the convergence of (1.1) to zero (locally uniformly for x ∈Kt) as

t→∞. The latter property is best described as ‘progressive uniform quasi-ergodicity’. As

a consequence (see Theorem 5.5), we also see that the quasi-ergodic measure is necessarily
given by m, resp., m∗, hence it is unique.

In Section 4, we see that the finiteness of the heat content always implies pGSD,

but without good control on the growth of the family of compact sets Kt ↑ M . In
this connection, it is interesting to compare Theorem 3.4 and Theorems 5.2 and 5.4.

Theorem 3.4 gives an easy-to-check sufficient condition (to wit: finite heat content) for

the exponential (in time) quasi-ergodicity, but we may not be able to control the space

behavior. Theorem 5.2 and 5.4 contain a necessary and sufficient condition (to wit: pGSD)
for a somewhat stronger property, which is progressively uniform in space, and with

a time-rate depending on the semigroup. The examples in Section 7.3 illustrate that

the finiteness of the heat content requires stronger assumptions on the generator – for
instance, for Schrödinger or Feynman–Kac semigroups, one needs that the potential V

grows at infinity at least logarithmically.

Assuming that the heat content is finite, our methods also yield results on the
asymptotics of compact semigroups and the heat content as t → ∞; cf. Section 6. For

example, one can see that Z(t) is exponentially close to e−λ0t‖φ0‖1‖ψ0‖1/μ(ψ0φ0) as

t→∞; see Corollary 6.2.
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The final section (Section 7) contains a number of examples which illustrate the

applicability and the limitations of our results from the previous sections. The examples in

7.1 are related to Theorem 3.4 and Corollary 3.5, and the examples in Sections 7.2 and 7.3
mainly illustrate the pGSD-property from Theorems 5.2 and 5.4. In fact, Section 7.3

contains a complete characterization, giving necessary and sufficient conditions, of quasi-

ergodic regularity of the Schrödinger semigroups corresponding to a large class of non-
local Schrödinger operators with confining potentials; this can be seen as a direct

continuation of our recent work [26].

Notation. Most of our notation is standard or self-explanatory. We use ‘positive’ in the

non-strict sense (e.g., a function f ∈ L2(M,μ) is called positive if f � 0 μ-a.e.), and we

say that f is ‘strictly positive’ if f > 0 μ-a.e. We will frequently use the shorthand m(f)
to denote

∫
f dm. We use a∧ b and a∨ b to indicate min(a,b) and max(a,b), and we write

f � g if c−1f(x) � g(x) � cg(x) for all x (in a given range) and with some fixed constant

c ∈ (0,∞). Finally, we call a strongly continuous contraction semigroup {Ut : t � 0} a

Feller semigroup if it maps the continuous functions vanishing at infinity, C∞(M) into
itself, and a strong Feller semigroup if it maps the bounded Borel measurable functions

Bb(M) (or, sometimes, the set L∞(M)) into the bounded continuous functions Cb(M).

2. Setup and basic assumptions

Topological preliminaries.

For the convenience of our readers, we summarize a few topological preliminaries with
references. We will work in a Polish space M (i.e., a completely metrizable topological

space such that the metric defines the topology, and the topology has a countable base

(second countable)). Being a metric space, M is also first countable (each point has

a countable neighborhood basis), and it is separable (i.e., it contains a countable dense
subset); cf. [18, Corollary 1.3.8, Theorem 4.1.15]. We call M locally compact if each x∈M

has a relatively compact open neighborhood U(x). If a Polish space is locally compact, it

is σ-compact (or countable at infinity) (i.e., there is an increasing sequence of compact
sets Kn such that

⋃
n∈NKn =M); cf. [18, Theorem 4.1.15.iii)]. In a metric space, compact

sets are closed, and σ-compactness allows us to write any closed set as a countable union

of compact sets. Therefore, the Borel σ-algebra B(M) of a locally compact Polish space
is generated by the compact sets. A Borel measure μ is a positive measure defined on

the Borel sets B(M). It is locally finite if each point x ∈M has an open neighborhood

with finite measure. This implies that μ is finite on compact sets. Thus, a locally finite

measure on a locally compact Polish space is σ-finite.

Setting and assumptions.

Throughout, we assume that M is a locally compact Polish space and μ a positive, locally

finite Borel measure with full topological support. We do not assume that the space M is

compact or that the measure μ is finite. On L2(M,μ), we consider a strongly continuous
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semigroup of bounded linear operators, {Ut : t � 0} and its adjoint semigroup {U∗
t : t � 0},

which is given by∫
Utf(x) ·g(x)μ(dx) =

∫
f(x) ·U∗

t g(x)μ(dx), f,g ∈ L2(M,μ), t > 0.

Moreover, we assume that Ut and U∗
t are integral operators, which are given by a real-

valued measurable kernel ut(x,y):

Utf(x) =

∫
ut(x,y)f(y)μ(dy), U∗

t g(y) =

∫
ut(x,y)g(x)μ(dx), t > 0. (2.1)

Moreover, we use the following assumptions:

Assumptions.

The linear operators Ut : L
2(M,μ)→ L2(M,μ),t > 0, are compact; (A0)

For some t0 > 0, the operator Ut0 is positivity improving: for every positive

f ∈ L2(M,μ),f �≡ 0, we have Ut0f(x)> 0 for μ-almost all x ∈M. (A1)

The semigroups {Ut : t � 0} and {U∗
t : t � 0} have the strong Feller property:

for every t > 0 and f ∈ L∞(M,μ), we have Utf,U
∗
t f ∈ Cb(M); (A2)

For some t0 > 0, the operators Ut0,U
∗
t0 : L

2(M,μ)→ L∞(M,μ) are bounded

(i.e., ultracontractive): (A3)∫
u2
t0(·,y)μ(dy) ∈ L∞(M,μ) and

∫
u2
t0(x,·)μ(dx) ∈ L∞(M,μ).

Our results in Sections 4 and 5 need, when considering non-compact spaces M, a further
strong decay condition.

There is some t0 > 0 such that for every t � t0 and ε > 0, there exists a

compact set K ⊂M satisfying (A4)

Ut1M (x) � ε or U∗
t 1M (x) � ε, for every x ∈M \K.

Let us comment on the assumptions (A0)–(A4) and how they are related.

Remark 2.1. (A0) is equivalent to assuming that the adjoint operators U∗
t are compact

on (L2(M,μ))∗ = L2(M,μ).

(A1) is equivalent to assuming that U∗
t0 is positivity improving for some t0 > 0.

Moreover, Ut0 and U∗
t0 are positivity improving if, and only if, the integral kernel ut0(x,y)

is for μ⊗μ almost all (x,y) strictly positive.

(A2) is equivalent to the condition that Ut1M (x) and U∗
t 1M (x) are bounded continuous

functions of x. These functions will play a central role in our investigations.
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(A3) implies, because of the reflexivity of the space L2(M,μ), that (the restrictions of

the second duals to L1(M,μ)⊂
(
L∞(M,μ)

)∗
of) the operators Ut0 and U∗

t0 are bounded
operators from L1(M,μ) to L2(M,μ). Due to the semigroup property, the operators U2t0

and U∗
2t0 are bounded operators from L1(M,μ) to L∞(M,μ); this is equivalent to saying

u2t0(·,·) ∈ L∞(M ×M,μ⊗μ). (2.2)

Using the semigroup property, these boundedness properties extend to all t � t0, resp.

t� 2t0. Conversely, if there is some t0 > 0, for which (2.2) holds, then the condition (A3)

is also satisfied.

Let t > 2t0. From (A2), we know that Ut and U∗
t are continuous operators from

L∞(M,μ)→ L∞(M,μ), and (A3) means that Ut and U∗
t are continuous operators from

L2(M,μ) → L∞(M,μ); by duality, we see that Ut and U∗
t map L1(M,μ) continuously

into L2(M,μ), and using again (A3) and the semigroup property, we conclude that Ut

and U∗
t are continuous from L1(M,μ) into L∞(M,μ). Therefore, a standard interpolation

argument shows that Ut and U∗
t are continuous Lp(M,μ)→ L∞(M,μ) for any p ∈ (1,∞)

and, in view of (A2), we also have

Ut

(
Lp(M,μ)

)
,U∗

t

(
Lp(M,μ)

)
⊆ Cb(M), t > 2t0, p ∈ [1,∞]. (2.3)

Let A, and A∗, denote the generators of semigroups {Ut : t ∈ T}, and {U∗
t : t � 0},

respectively. A version of the Jentzsch theorem (see [50, Theorem V.6.6]) shows that

λ0 := inf Re
(
Spec(−A)

)
= inf Re

(
Spec(−A∗)

)
is common isolated and simple eigenvalue

of −A and −A∗. Moreover, the corresponding normalized eigenfunctions φ0,ψ0 ∈L2(M,μ)
can be assumed to be strictly positive. In particular,

Utφ0 = e−λ0tφ0 and U∗
t ψ0 = e−λ0tψ0, t > 0. (2.4)

The number λ0 is called the ground state eigenvalue, and the functions φ0,ψ0, are the
ground states of −A, and −A∗, respectively.
By (2.3), we have φ0,ψ0 ∈ Cb(M), and both eigenequations in (2.4) are also true in a

pointwise sense. We will frequently use the following constant

Λ :=

∫
φ0(x)ψ0(x)μ(dx)

and set

N := {x ∈M : φ0(x) = 0}∪{x ∈M : ψ0(x) = 0} . (2.5)

As mentioned above, μ(N ) = 0. Due to the continuity of φ0 and ψ0, the set N is a

closed set. If for some t > 0, the kernel ut(x,y) is defined pointwise (e.g., if the map

(x,y) �→ ut(x,y) is continuous) and strictly positive for all x,y ∈M , then N = ∅. We are
mainly interested in examples which come from the theory of stochastic processes, and

for these examples, N = ∅ is always satisfied. Since the original question comes from the

L2-theory, we do not want to assume a priori N = ∅.
The following result is a straightforward adaptation of a Lemma by Zhang, Li and

Song [65, Lemma 2.1]; it is a variant of the estimate which was originally obtained for

intrinsic semigroups by Kim and Song [28, Theorem 2.7]. The very first result in this
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direction is due to Pinsky [48, Theorem 3] for diffusion semigroups on bounded domains

in Rd. The result of Zhang et al. is valid for rather general nonsymmetric semigroups.

These authors use sub-Markovian semigroups of standard Markov processes with strictly
positive kernels of Hilbert-Schmidt type satisfying (A3). A close inspection of their proof

reveals that only the compactness of the operators Ut and U∗
t is needed and that the

result is valid in the more general setting, which is described by our present conditions
(A0)–(A3). Note that Zhang et al. use t0 = 1 and that their proof requires t/2> 1 = t0.

Lemma 2.2 [65, Lemma 2.1]. If (A0)–(A3) hold for some t0 > 0, then there exist C,γ > 0

such that∣∣eλ0tut(x,y)− (1/Λ)φ0(x)ψ0(y)
∣∣� Ce−γt, t > 2t0, for μ⊗μ a.a. x,y ∈M. (2.6)

This estimate leads to a rate of convergence (as t→∞) for compact semigroups, which

can be seen as a variant of the classical result of Chavel and Karp [7]; see also [59, 27].

Unless otherwise stated, we take the same t0 > 0 in (A1), (A3) and (A4).

We will now briefly discuss the relation between (A4) and (A0).

Lemma 2.3. Assume (A2) and (A3), (A4) for some t0 > 0. Then the operators Ut,U
∗
t :

L2(M,μ)→ L2(M,μ) are compact for all t� t0. In particular, if (A3), (A4) are true for
every t0 > 0, then (A0) holds.

Proof. We consider only the operators Ut. The proof for U
∗
t is similar. For a compact set

K ⊂M , we define

UK
t f(x) := 1K(x)Utf(x) =

∫
M

1K(x)ut(x,y)f(y)μ(dy), f ∈ L2(M,μ), t > 0

(i.e., UK
t is an integral operator with the kernel uK

t (x,y) = 1K(x)ut(x,y)). Observe that

by (A3),∫
M

∫
M

uK
t (x,y)2μ(dy)μ(dx) =

∫
K

∫
M

ut(x,y)
2μ(dy)μ(dx)

� μ(K) · ess supx∈M

∫
M

ut(x,y)
2μ(dy)<∞, t � t0,

which means that UK
t , t� t0, are Hilbert–Schmidt operators. Moreover, for f ∈L2(M,μ),

by the Cauchy–Schwarz inequality and the Tonelli theorem,∫
M

∣∣Utf(x)−UK
t f(x)

∣∣2μ(dx) = ∫
M\K

|Utf(x)|2μ(dx)

�
∫
M\K

Ut1M (x)

∫
M

ut(x,y)|f(y)|2μ(dy)μ(dx)

� sup
x∈M\K

Ut1M (x)‖U∗
t 1M‖∞ ‖f‖22 .
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The assumptions (A2) and (A4) yield that for every t > t0 and ε > 0, we can find a

compact set K such that ∥∥Utf −UK
t f

∥∥
2

� ε‖f‖2 .

Letting ε→ 0, we see that every operator Ut, t� t0, is a strong limit of compact operators,
and hence compact. This completes the proof.

If the operators Ut, t > 0, are self-adjoint, then compactness for some t > 0 implies

compactness for every t > 0 – this is due to spectral theorem. In that case, (A4) implies
(A0), even if (A3), (A4) are true for some t0 > 0 only. For non-self-adjoint operators,

this is not clear. Therefore, in Sections 4 and 5, we have to assume both (A0) and (A4).

In unbounded spaces, it is often true that (A0) and (A4) (holding for all t0 > 0) are
equivalent see, for example, [38, Lemma 1] and [23, Lemma 9]. Some general sufficient

conditions for compactness in various settings, including Markov, Schrödinger and

Feynman–Kac semigroups, and more general perturbations can be found in [63, 61, 40].

3. Heat content and exponential quasi-ergodicity of compact semigroups

If φ0,ψ0 ∈ L1(M,μ),1 we can define probability measures on (M,B(M)) by

m(E) =

∫
E
ψ0(x)μ(dx)∫

M
ψ0(x)μ(dx)

and m∗(E) =

∫
E
φ0(x)μ(dx)∫

M
φ0(x)μ(dx)

. (3.1)

It is rather easy to check that the measures m and m∗ are quasi-stationary (probability)

measures of the semigroups {Ut : t � 0} and {U∗
t : t � 0}.

Definition 3.1 (Quasi-stationary measure on L∞). Let (A2) hold. A probability

measure m̄ on (M,B(M)) is said to be a quasi-stationary measure of the semigroup

{Ut : t � 0} (on L∞(M,μ)), if for all t > 0 and f ∈ L∞(M,μ), we have m̄(Ut1M )> 0 and

m̄(Utf)

m̄(Ut1M )
= m̄(f). (3.2)

Because of (2.3) – this follows from (A2), (A3) – we can extend the definition of
quasi-stationarity to Lp(M,μ) for any p ∈ [1,∞), at least for large t.

Lemma 3.2. Assume (A1)–(A3) for t0 > 0 and let p ∈ [1,∞). Let m̄ be a probability

measure on (M,B(M)) and let t > 2t0 be such that m̄(Ut1M )> 0. Then

∀g∈Lp(M,μ)
m̄(Utg)

m̄(Ut1M )
= m̄(g) ⇐⇒ ∀f∈L∞(M,μ)

m̄(Utf)

m̄(Ut1M )
= m̄(f).

Proof. Fix p∈ [1,∞) and t > 2t0. It is enough to show both implications for non-negative
functions.

‘⇐’ Let 0� g ∈ Lp(M,μ) and fn := g∧n ∈ L∞(M,μ), n ∈N. We have fn ↑ g as n→∞,
m̄(Utfn)
m̄(Ut1M ) = m̄(fn), n ∈ N, and the implication follows with the monotone convergence
theorem.

1In general, φ0,ψ0 ∈ L1(M,μ) need not be satisfied since μ can be an infinite measure.
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‘⇒’ Let 0 � f ∈ L∞(M,μ) and set gn := 1Kn
f ∈ Lp(M,μ), n ∈ N, where (Kn) is

an increasing sequence of compact sets such that
⋃

n∈NKn = M ; see the discussion

of topological preliminaries at the beginning of Section 2. We have gn ↑ f as n → ∞,
m̄(Utgn)
m̄(Ut1M ) = m̄(gn), n ∈N, and we use monotone convergence once again.

If (A3) holds for any t0 > 0, then it also makes sense to speak about quasi-stationarity
on Lp, p < ∞, for all t > 0. In particular, the implications in Lemma 3.2 hold true for

every t > 0.

We come back to the measures m,m∗ defined in (3.1). Here, the condition (3.2) reads

m(Utf) = e−λ0tm(f) and m∗(U∗
t f) = e−λ0tm∗(f), t > 0, f ∈ L∞(M,μ). (3.3)

Since we assume that φ0,ψ0 ∈ L∞(M,μ), (3.3) remains valid for f ∈ Lp(M,μ), p ∈ [1,∞].

This can be easily seen without Lemma 3.2. Indeed, it follows from the Hölder inequality

and the fact that φ0,ψ0 ∈ L1(M,μ)∩L∞(M,μ)⊂ Lq(M,μ) for any q ∈ [1,∞].
Our arguments in Sections 3 and 5 are based on the following observation, which is a

direct consequence of the estimate in Lemma 2.2.

Lemma 3.3. Let (A0)–(A3) hold for some t0 > 0 and denote by C,γ the constants
appearing in Lemma 2.2. For every 0 � s,r < t with t−s− r > 2t0∣∣eλ0tut(x,y)− (1/Λ)φ0(x)ψ0(y)

∣∣� Cκ(t,s,r,x,y), μ-a.e. x,y ∈M, (3.4)

holds true with the function

κ(t,s,r,x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e−γt if s= r = 0;

e−γ(t−s)eλ0sUs1M (x) if s > 0,r = 0;

e−γ(t−r)eλ0rU∗
r 1M (y) if s= 0,r > 0;

e−γ(t−s−r)eλ0sUs1M (x)eλ0rU∗
r 1M (y) if s > 0,r > 0.

Proof. If s = r = 0, this is just the estimate from Lemma 2.2. We will only work out

the case s,r > 0. The remaining two cases follow with very similar arguments. Using the

eigenequations

φ0(x) = eλ0s

∫
M

us(x,z)φ0(z)μ(dz) and ψ0(y) = eλ0r

∫
M

ur(w,y)ψ0(w)μ(dw),

and the Chapman-Kolmogorov identities, we see that

eλ0tut(x,y)− (1/Λ)φ0(x)ψ0(y)

= eλ0s

∫
M

us(x,z)
[
eλ0(t−s)ut−s(z,y)− (1/Λ)φ0(z)ψ0(y)

]
μ(dz)

= eλ0s

∫
M

us(x,z)

[
eλ0r

∫
M

[
eλ0(t−s−r)ut−s−r(z,w)

− (1/Λ)φ0(z)ψ0(w)

]
ur(w,y)μ(dw)

]
μ(dz).
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By Lemma 2.2, we have∣∣∣eλ0(t−s−r)ut−s−r(z,w)− (1/Λ)φ0(z)ψ0(w)
∣∣∣� Ce−γ(t−s−r),

which gives∣∣eλ0tut(x,y)− (1/Λ)φ0(x)ψ0(y)
∣∣

� Ce−γ(t−s−r)

(
eλ0s

∫
M

us(x,z)μ(dz)

)(
eλ0r

∫
M

ur(w,y)μ(dw)

)
.

This is the claimed bound.

Our next theorem is the first main result of this section. It relates the exponential quasi-

ergodicity of the semigroups {Ut : t � 0} and {U∗
t : t � 0} with the finiteness of their heat

content. It also shows that the corresponding quasi-stationary probability distributions
are unique. Recall that

Z(t) :=

∫
Ut1M (x)μ(dx) =

∫
U∗
t 1M (y)μ(dy) =

∫∫
ut(x,y)μ(dx)μ(dy), t > 0

is the heat content of {Ut : t � 0} or {U∗
t : t � 0}. In general, Z(t) ∈ (0,∞]. For each

t > 0, the condition Z(t) <∞ is equivalent to the boundedness of the operators Ut,U
∗
t :

L∞(M,μ)→ L1(M,μ).

Unless otherwise stated, we use the value t0 > 0 from Lemma 3.3 in all further

statements as well as for the assumptions (A1), (A3) and (A4), and N denotes

the exceptional set defined in (2.5).

Theorem 3.4. Let M be a locally compact Polish space and assume that (A0)–(A3)
hold. If there exists some t1 � t0 such that the heat content is finite, that is,

Z(t1)<∞,

then we have the following:

a) φ0,ψ0 ∈ L1(M,μ) and both measures m and m∗ in (3.1) are well defined.

b) For every p ∈ [1,∞], there exists C > 0 such that for every finite measure σ on M
with suppσ∩ (M \N ) �= ∅, we have for all t > 6t1 and t1 � s � t/2,

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣ σ(Utf)

σ(Ut1M )
−m(f)

∣∣∣∣� C e−γ(t−s) e
λ0sσ(Us1M )

σ(φ0)
,

and

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣ σ(U∗
t f)

σ(U∗
t 1M )

−m∗(f)

∣∣∣∣� C e−γ(t−s) e
λ0sσ(U∗

s 1M )

σ(ψ0)
.

c) The measures m and m∗ are the unique quasi-stationary probability measures of

{Ut : t � 0} and {U∗
t : t � 0}, respectively, such that m(M \N ) ·m∗(M \N )> 0.

https://doi.org/10.1017/S1474748024000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000410


552 K. Kaleta and R. L. Schilling

Proof. Recall that Ut1M,U∗
t 1M ∈L1(M,μ), t� t1. Thus, a) follows from the inequalities

e−λ0tφ0(x) � ‖φ0‖∞Ut1M (x) and e−λ0tψ0(x) � ‖ψ0‖∞U∗
t 1M (x), x ∈M , t > 0.

We prove b) only for the semigroup {Ut : t � 0}. The proof for {U∗
t : t � 0} is literally

the same. Let p∈ [1,∞] and let σ be a finite measure on M such that suppσ∩(M \N ) �= ∅.
Note that 0 < σ(φ0) � eλ0t ‖φ0‖∞σ(Ut1M ) and 0 < σ(ψ0) � eλ0t ‖ψ0‖∞σ(U∗

t 1M ), t > 0.

For every f ∈ Lp(M,μ) and t > 6t1 (in particular, t− t1−s > 2t0), we may write

σ(Utf)

σ(Ut1M )
−m(f) =

eλ0tσ(Utf)−m(f)eλ0tσ(Ut1M )

eλ0tσ(Ut1M )

=
eλ0tσ(Utf)− (1/Λ)σ(φ0)

∫
M
f(y)ψ0(y)μ(dy)

eλ0tσ(Ut1M )

+m(f)
(1/Λ)σ(φ0)

∫
M
ψ0(y)μ(dy)− eλ0tσ(Ut1M )

eλ0tσ(Ut1M )
.

Since for all x ∈M ,

eλ0tUtf(x)− (1/Λ)φ0(x)

∫
M

f(y)ψ0(y)μ(dy)

=

∫
M

f(y)
(
eλ0tut(x,y)− (1/Λ)φ0(x)ψ0(y)

)
μ(dy),

and

eλ0tUt1M (x)− (1/Λ)φ0(x)

∫
M

ψ0(y)μ(dy)

=

∫
M

(
eλ0tut(x,y)− (1/Λ)φ0(x)ψ0(y)

)
μ(dy),

we can apply Lemma 3.3 (with t1 � s � t/2 and r = t1) and integrate with respect to σ
to get ∣∣∣∣eλ0tσ(Utf)− (1/Λ)σ(φ0)

∫
M

f(y)ψ0(y)μ(dy)

∣∣∣∣
� Ce−γ(t−t1−s)eλ0(t1+s)σ(Us1M )

∫
M

|f(y)|U∗
t11M (y)μ(dy),

and ∣∣∣∣eλ0tσ(Ut1M )− (1/Λ)σ(φ0)

∫
M

ψ0(y)μ(dy)

∣∣∣∣
� Ce−γ(t−t1−s)eλ0(t1+s)σ(Us1M )Z(t1).

Note that

e−λ0tσ(φ0) = σ(Utφ0) � ‖φ0‖∞σ(Ut1M ) =⇒ eλ0tσ(Ut1M ) � σ(φ0)

‖φ0‖∞
. (3.5)

This gives∣∣∣∣ σ(Utf)

σ(Ut1M )
−m(f)

∣∣∣∣� C̃e−γ(t−s)

(∫
M

|f(y)|U∗
t11M (y)μ(dy)+m(|f |)Z(t1)

)
eλ0sσ(Us1M )

σ(φ0)
,
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with C̃ := Ce(λ0+η)t1 ‖φ0‖∞, where C,γ are the constants from Lemma 3.3. Finally, by

the Hölder inequality,∣∣∣∣ σ(Utf)

σ(Ut1M )
−m(f)

∣∣∣∣� C̃

(∥∥U∗
t11M

∥∥
q
+Z(t1)

‖ψ0‖q
‖ψ0‖1

)
e−γ(t−s)σ(Us1M )

σ(φ0)
‖f‖p ,

where q and p are conjugate exponents. Notice that
∥∥U∗

t11M

∥∥
q
< ∞ and ‖ψ0‖q < ∞.

Indeed, if p= 1, then q =∞, and the claim follows from (A2) and (A3) combined with
(2.4). If p=∞ and q=1, then the claim follows from the fact that

∥∥U∗
t11M

∥∥
1
=Z(t1)<∞

and from a). If 1< p <∞, then also 1< q <∞, and we have∥∥U∗
t11M

∥∥q
q
=

∫
M

U∗
t11M (x)(U∗

t11M (x))q−1μ(dx) �
∥∥U∗

t11M

∥∥q−1

∞ Z(t1)<∞

and

‖ψ0‖qq =
∫
M

ψ0(x)ψ
q−1
0 (x)μ(dx) � ‖ψ0‖q−1

∞ ‖ψ0‖1 <∞.

This completes the proof of b).

In order to show c), assume that both m and m̄ are quasi-stationary probability

measures and suppm̄∩ (M \N ) �= ∅. Since m̄ is finite, we can use m̄ = σ in Part b)
and we get, because of the quasi-stationary property (3.2),

0 = lim
t→∞

∣∣∣∣ m̄(Utf)

m̄(Ut1M )
−m(f)

∣∣∣∣= |m̄(f)−m(f)|

(uniformly) for all f ∈ L∞(M,μ) with ‖f‖∞ � 1. By our assumptions, μ has full

topological support, it is locally finite – hence finite on all compact sets – and the compact
sets generate the Borel σ-algebra on M. Moreover, M is σ-compact (i.e., there is an

increasing sequence of compact sets Kn such that M =
⋃

n�1Kn). Taking f = 1K for any

compact set K, we conclude that m= m̄ first on the compact sets and, using the standard
uniqueness theorem for measures, on all Borel sets. The proof of the uniqueness of m∗ is

similar.

Corollary 3.5. Let M be a locally compact Polish space and assume that (A0)–(A3)
hold, and assume that there exists some t1 � t0 such that Z(t1)<∞.

Both semigroups {Ut : t � 0} and {U∗
t : t � 0} are quasi-ergodic with exponential time

rate e−γt and space rates Ut11M (x)/φ0(x) and U∗
t11M (x)/ψ0(x), respectively. More

precisely, for every p ∈ [1,∞], there is a constant C > 0 such that for every f ∈ Lp(M,μ)

with ‖f‖p � 1,∣∣∣∣ Utf(x)

Ut1M (x)
−m(f)

∣∣∣∣� C e−γt Ut11M (x)

φ0(x)
, t > 6t1, x ∈M \N ,

and ∣∣∣∣ U∗
t f(x)

U∗
t 1M (x)

−m∗(f)

∣∣∣∣� C e−γt U
∗
t11M (x)

ψ0(x)
, t > 6t1, x ∈M \N .
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Moreover, the measures m, and m∗, are the only quasi-stationary measures of {Ut : t � 0},
and {U∗

t : t � 0}, respectively, such that m(M \N ) ·m∗(M \N )> 0.

Note that, since Ut1M,U∗
t 1M ∈ Cb(M) and φ0, ψ0 are continuous and strictly positive

on M, the exponential quasi-ergodicity in Corollary 3.5 is uniform for all x in compact

subsets of M \N .
If μ(M) < ∞, then the heat content is automatically finite for large times, and we

recover some of the results from [65].

4. Progressive ground state domination and heat content

In this section, we will need the notions of hemi-compact space and exhausting family of
sets.

Definition 4.1. Let M be a topological space. An exhausting family of compact sets is

a family of compact sets {Kt ⊂M : t � t1} (defined for some t1 � 0) such that Kt ⊂Ks,
for every t1 � t < s and

⋃
t�t1

Kt =M .

The space M is called hemi-compact if there is an exhausting family of compact sets

{Kt : t� t1}, and for every compact set K ⊂M , there exists some t� t1 such that K ⊂Kt.

Since M is a locally compact Polish space, M is hemi-compact; moreover, the concepts

of σ-compactness and hemi-compactness coincide in such spaces; see, for example, [18, p.

195]. IfM is compact, it is also hemi-compact with a trivial exhausting family {Kt : t � t1}
such that Kt =M for all t� t1. Assume now that (A0)–(A3) hold with some t0 > 0. The

following properties will be central to our investigations in this section.

Definition 4.2 (aGSD and pGSD). Let {Ut : t � 0} be a semigroup of operators on

L2(M,μ) satisfying the conditions (A0)–(A3) and let λ0 and φ0 be the corresponding

ground state eigenvalue and normalized eigenfunction.

a) The semigroup {Ut : t � 0} is said to be asymptotically ground state dominated

(aGSD, for short) if there exist constants C,t1 > 0 such that

Ut1M (x) � Ce−λ0tφ0(x), t � t1, x ∈M. (4.1)

b) The semigroup {Ut : t � 0} is said to be progressively ground state dominated (pGSD,

for short) if there exist constants C,t1 > 0 and an exhausting family of compact sets
{Kt : t � t1} such that

1Kt
(x) ·Ut1M (x) � Ce−λ0tφ0(x), t � t1, x ∈M. (4.2)

Remark 4.3.

a) Because of the eigenequation e−λ0tφ0 =Utφ0, there is some kind of reverse inequality

to (4.1): e−λ0tφ0(x) � ‖φ0‖∞Ut1M (x), x ∈M , t > 0.

b) Notice that both Ut1M (x) and φ0(x) are continuous functions. Since μ(N ) = 0 and

since μ charges every open set, the interior of N is empty and M \N = M . This

means that we can replace in (4.1) and (4.2) the condition ‘x ∈M ’ by ‘x ∈M \N ’.
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c) aGSD was studied in the papers [25, 24] in relation to intrinsic ultracontractivity

and hypercontractivity. It is shown in [26] that aGSD is a much more restrictive

condition than the finiteness of heat content for large times. It follows directly from
Lemma 3.3 that aGSD of {Ut : t � 0} implies φ0 ∈ L1(M,μ) as well as the finiteness

of the heat content for large times; this is also true for {U∗
t : t � 0} and ψ0.

d) pGSD was recently introduced in [26] as a direct consequence of the concept of
progressive intrinsic ultracontractivity (pIUC) for Schrödinger semigroups. In this

and the next section, we will explain the impact of pGSD on the quasi-ergodic

behavior of compact semigroups and discuss the relation between pGSD and the

finiteness of the heat content.

e) From the definition, we see that aGSD always implies pGSD. Recall that Ut1M ,

U∗
t 1M , φ0, ψ0 ∈ Cb(M). If the space M is compact and φ0, ψ0 are strictly positive

everywhere (i.e., N = ∅), then infM φ0 > 0 and infM ψ0 > 0; therefore, aGSD always
holds. In particular, pGSD holds with an exhausting family {Kt : t � t1} such that

Kt =M for all t � t1.

We first show that aGSD of {Ut : t � 0} implies the exponential uniform (for the whole

space M ) quasi-ergodicity of this semigroup on every Lp(M,μ), p� 1; as before, this also
holds for {U∗

t : t � 0}. In particular, this gives a relatively short and elementary proof of

the main results of [31, Theorem 1, Corollary 2] in our framework. We also have some

converse statement.

Corollary 4.4. Let M be a general locally compact (but not necessarily compact) Polish
space and assume that (A0)–(A3) hold. Then we have the following assertions.

a) If the semigroup {Ut : t � 0} is aGSD for some t1 � t0, then there is for every p ∈
[1,∞] a constant C > 0, such that for every f ∈ Lp(M,μ) with ‖f‖p � 1,

sup
x∈M\N

∣∣∣∣ Utf(x)

Ut1M (x)
−m(f)

∣∣∣∣� C e−γt, t > 6t1. (4.3)

b) If there is a constant C > 0 such that

sup
x∈M\N

∣∣∣∣ Utφ0(x)

Ut1M (x)
−C

∣∣∣∣→ 0 as t→∞,

then the semigroup {Ut : t � 0} is aGSD.

Both assertions a) and b) are also true for the semigroup {U∗
t : t � 0} and the quasi-

stationary measure m∗. Under aGSD, the measures m, and m∗, are the only quasi-

stationary measures of {Ut : t � 0}, and {U∗
t : t � 0}, respectively, such that m(M \N ) ·

m∗(M \N )> 0.

Proof. Assertion a) follows directly from a combination of Remark 4.3.c) and Corol-

lary 3.5. Let us show b). Because of the eigenequation Utφ0 = e−λ0tφ0, we see that there

is some t1 > 0 such that∣∣∣∣e−λ0tφ0(x)

Ut1M (x)
−C

∣∣∣∣� C

2
, t � t1, x ∈M \N ,
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which implies

e−λ0tφ0(x)

Ut1M (x)
� C

2
, t � t1, x ∈M \N .

Since C > 0 and both functions φ0 and Ut1M are bounded and continuous, this completes

the proof.

As explained in Remark 4.3.e), if the space M is compact (hence, μ(M) < ∞, due

to the local finiteness of μ) and the ground states are everywhere strictly positive,

the semigroups {Ut : t � 0}, {U∗
t : t � 0} are automatically aGSD, and the heat content

is finite for large times. In particular, Corollary 4.4 implies that both semigroups are

exponentially uniformly (on the whole space M ) quasi-ergodic.

If the space M is non-compact, then aGSD is a rather restrictive condition. However,
as illustrated in [26], one should expect that in this case, a wide range of non-aGSD

compact semigroups are still pGSD. From now on, we focus on the quasi-ergodicity of

pGSD semigroups in the setting of non-compact spaces.
We first show that the finiteness of the heat content implies pGSD for both {Ut : t � 0}

and {U∗
t : t � 0}; consequently, we get progressive uniform quasi-ergodicity with an

exponential time-rate. To do so, we need a lemma. To keep the proofs simple, we assume

in Lemma 4.5 and Theorem 4.6 that N = ∅ (i.e., that the ground states are everywhere
strictly positive).

Lemma 4.5. Let M be a locally compact, but not compact, Polish space. Assume that

(A0)–(A4) hold, N = ∅, and let {Kt : t � t0} be an exhausting family of compact sets in

M. Set

h(t) := min

{
inf

x∈Kt

φ0(x), inf
x∈Kt

ψ0(x)

}
, t � t0,

and consider the generalized inverse of h,

h−1(s) := inf {t � t0 : h(t)< s}, s ∈ (0,h(t0)].

Define the function η : [−γ−1 logh(t0),∞)→ [t0,∞) by

η(t) := h−1(s)
∣∣
s=e−γt = h−1(e−γt). (4.4)

Then η is increasing on [−γ−1 logh(t0),∞), η(t)→∞ as t→∞ and

eγtmin

{
inf

x∈Kη(t)

φ0(x), inf
x∈Kη(t)

ψ0(x)

}
= eγth(η(t)) = 1, t � −γ−1 logh(t0).

Proof. Because of the eigenequations, our assumptions (A1)–(A3) and N = ∅, the

ground state eigenfunctions φ0 and ψ0 are continuous and strictly positive on M. Together
with the inequality in Remark 4.3.a) and the assumption (A4), this implies that the

function h is continuous, strictly positive and decreasing on [t0,∞) such that h(t) → 0

as t ↑ ∞. In particular, its generalized inverse function h−1 is decreasing on (0,h(t0)],
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h−1(s)→∞ as s ↓ 0, and we have h(h−1(s)) = s for every s ∈ (0,h(t0)]. Therefore, η is

increasing on [−γ−1 logh(t0),∞) as it is a composition of two decreasing functions h−1

and t �→ e−γt, η(t)→∞ as t→∞, and eγth(η(t)) = eγth(h−1(e−γt)) = eγte−γt = 1. This

completes the proof.

In the following theorem, we will use the notation M1(K) to denote all probability

measures σ on (M,B(M)) such that suppσ ⊂ K. Recall that we already know from

Theorem 3.4 that the finiteness of the heat content for large times implies that φ0,ψ0 ∈
L1(M,μ) and that the measures m, and m∗, defined in (3.1) are the only quasi-stationary
measures on each Lp(M,μ), p ∈ [1,∞], of the semigroups {Ut : t � 0}, and {U∗

t : t � 0},
respectively.

Theorem 4.6. Let M be a locally compact, but not compact, Polish space. Assume that

(A0)–(A4) hold, let {Kt : t � t0} be an exhausting family of compact sets in M, and

assume that N = ∅. Set t̃0 =max
{
0,−γ−1 logh(t0)

}
and let η be the function defined in

(4.4). If there is some t1 � t0 such that the heat content Z(t1) < ∞, then the following

assertions hold.

a) Both semigroups {Ut : t � 0} and {U∗
t : t � 0} are pGSD for the exhausting family of

sets
{
Kη(t) : t � t̃0

}
.

b) Both semigroups {Ut : t � 0} and {U∗
t : t � 0} are exponentially progressively uni-

formly quasi-ergodic; that is, for every p ∈ [1,∞], there exists some C > 0, such that

sup
σ∈M1(Kη(t/2))

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣ σ(Utf)

σ(Ut1M )
−m(f)

∣∣∣∣� C e−(γ/2)t, t > 6t1,

and

sup
σ∈M1(Kη(t/2))

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣ σ(U∗
t f)

σ(U∗
t 1M )

−m∗(f)

∣∣∣∣� C e−(γ/2)t, t > 6t1.

Proof. Recall that ψ0(x) � ‖ψ0‖∞ eλ0tU∗
t 1M (x) and φ0(x) � ‖φ0‖∞ eλ0tUt1M (x). Since

Z(t1) <∞, this yields φ0,ψ0 ∈ L1(M,μ). Therefore, Lemma 3.3 (with s = 0 and r = t1)

and Lemma 4.5 give∣∣eλ0tUt1M (x)− (1/Λ)φ0(x)‖ψ0‖1
∣∣� ∫

M

∣∣eλ0tut(x,y)− (1/Λ)φ0(x)ψ0(y)
∣∣μ(dy)

� Ce−γ(t−t1)Z(t1)

� Ceγt1Z(t1)
φ0(x)

eγt infx∈Kη(t)
φ0(x)

� c1φ0(x),
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for every x∈Kη(t) and sufficiently large t ; since the function η is increasing and η(t)→∞
as t→∞, the family

{
Kη(t) : t � t̃0

}
is indeed exhausting. This gives

Ut1M (x) � (c1+(1/Λ)‖ψ0‖1)e−λ0tφ0(x), x ∈Kη(t),

for sufficiently large t, showing that the semigroup {Ut : t � 0} is pGSD. The pGSD

property for the semigroup {U∗
t : t � 0} follows with exactly the same argument. This

completes the proof of a).

Part b) follows from Theorem 3.4.b) with s= t/2 and probability measures σ supported

in Kη(t/2), by an application of the pGSD property which we have already established in

Part a).

5. Progressive ground state domination and quasi-ergodicity

As we have already noticed in the previous section, in a non-compact space M, aGSD
is stronger than the finiteness of heat content for large times. However, the finiteness of

the heat content for large times implies pGSD with a certain exhausting family of sets.

Recall that these properties – aGSD, pGSD, finite heat content – automatically hold in
compact spaces. Consequently, we also have uniform quasi-ergodicity at an exponential

time-rate; see Remark 4.3.e), Corollary 4.4, and the comments following the corollary.

On the other hand, see [26], pGSD is a general regularity property for compact non-
aGSD semigroups, which can be studied on its own; in particular, pGSD is still true

for a wide range of compact semigroups having infinite heat content for large times. In

the present section, we follow this path, introducing the concept of progressive uniform

quasi-ergodicity and studying its relation to pGSD.
Let a,b ∈ (0,1) be arbitrary numbers such that a+2b = 1. We show first that in a

noncompact space M and under (A4), pGSD for the exhausting family {Kt : t � t0}
implies progressive uniform quasi-ergodicity for the exhausting family {Kat : t � t0/a};
the time-rate is given by

κb(t) := e−γbt+ sup
x∈Kc

bt

Ut01M (x)+ sup
x∈Kc

bt

U∗
t01M (x). (5.1)

Note that κb(t) ↓ 0 as t ↑ ∞. Quite often (see the examples), κb decays exponentially at
infinity.

We have to make sure that φ0,ψ0 ∈ L1(M,μ), which means that both measures m and

m∗ in (3.1) are well defined. If the space M is compact, this follows from μ(M)<∞ and
φ0,ψ0 ∈ L∞(M,μ) due to (A3). For locally compact (but non-compact) Polish spaces M,

this is still true under aGSD; see Remark 4.3.c). Now we show that φ0,ψ0 ∈ L1(M,μ)

holds if both semigroups {Ut : t � 0} and {U∗
t : t � 0} enjoy the pGSD property.

Lemma 5.1. Let M be a locally compact, but not compact, Polish space and assume

(A0)–(A3). If the semigroups {Ut : t � 0} and {U∗
t : t � 0} are pGSD, then φ0,ψ0 ∈

L1(M,μ).

Proof. Suppose that pGSD holds for the exhausting family of compact sets {Kt : t � t0}.
We only show that φ0 ∈ L1(M,μ). The proof for ψ0 is similar. By Lemma 3.3 (with
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t0 < s< t such that t−s > 2t0 and r = 0) and pGSD of {Ut : t � 0}, we have for μ-almost

all x ∈Ks and y ∈Ks \N

eλ0tut(x,y) � (1/Λ)φ0(x)ψ0(y)−Ce−γ(t−s)Us1M (x)

�
(
(1/Λ)ψ0(y)− c1e

−γ(t−s)−λ0s
)
φ0(x).

We integrate on both sides of the inequality in x ∈Ks and use pGSD of {U∗
t : t � 0} to

get ∫
Ks

φ0(x)μ(dx) � eλ0tU∗
t 1M (y)

(1/Λ)ψ0(y)− c1e−γ(t−s)−λ0s
� c2ψ0(y)

(1/Λ)ψ0(y)− c1e−γ(t−s)−λ0s
,

for sufficiently large t. Letting t→∞, we obtain∫
Ks

φ0(x)μ(dx) � c2Λ for all s > t0,

and monotone convergence finally proves φ0 ∈ L1(M,μ).

Theorem 5.2. Let M be a locally compact, but not compact, Polish space. Assume that

(A0)–(A4) hold and that both semigroups {Ut : t � 0} and {U∗
t : t � 0} are pGSD for the

exhausting family of compact sets {Kt : t � t0}. Then we have φ0,ψ0 ∈ L1(M,μ) and, for

every a,b ∈ (0,1) such that a+2b = 1, both semigroups {Ut : t � 0} and {U∗
t : t � 0} are

progressively uniformly quasi-ergodic for the exhausting family {Kat : t � t0/a} with time-

rate κb(t) given by (5.1); that is, for every p ∈ [1,∞], there exists some C > 0 such that

for all t > (4/(a∧ b))t0,

sup
σ∈M1(Kat)

suppσ∩(M\N) �=∅

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣ σ(Utf)

σ(Ut1M )
−m(f)

∣∣∣∣� Cκb(t),

and

sup
σ∈M1(Kat)

suppσ∩(M\N) �=∅

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣ σ(U∗
t f)

σ(U∗
t 1M )

−m∗(f)

∣∣∣∣� Cκb(t).

Proof. In view of Lemma 5.1 we have φ0,ψ0 ∈ L1(M,μ). We proceed as in the proof of
Theorem 3.4. Since the proof for the dual semigroup is similar, we restrict our attention to

{Ut : t � 0}. Fix p ∈ [1,∞]. For every f ∈ Lp(M,μ), all t > (4/(a∧ b))t0 and σ ∈M1(Kat)

such that suppσ∩ (M \N ) �= ∅, we have

σ(Utf)

σ(Ut1M )
−m(f) =

eλ0tσ(Utf)−m(f)eλ0tσ(Ut1M )

eλ0tσ(Ut1M )

=
eλ0tσ(Utf)− (1/Λ)σ(φ0)

∫
M
f(y)ψ0(y)μ(dy)

eλ0tσ(Ut1M )

+m(f)
(1/Λ)σ(φ0)

∫
M
ψ0(y)μ(dy)− eλ0tσ(Ut1M )

eλ0tσ(Ut1M )

(5.2)
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as well as

eλ0tUtf(x)− (1/Λ)φ0(x)

∫
M

f(y)ψ0(y)μ(dy)

=

∫
M

(
eλ0tut(x,y)− (1/Λ)φ0(x)ψ0(y)

)
f(y)μ(dy),

(5.3)

and

eλ0tUt1M (x)− (1/Λ)φ0(x)

∫
M

ψ0(y)μ(dy)

=

∫
M

(
eλ0tut(x,y)− (1/Λ)φ0(x)ψ0(y)

)
μ(dy).

(5.4)

We first estimate (5.3). With the Chapman–Kolmogorov equation and the eigenequation,

we get

eλ0tUtf(x)− (1/Λ)φ0(x)

∫
M

f(y)ψ0(y)μ(dy)

=

∫
M

[(
eλ0(t−2t0)ut−2t0(x,w)− (1/Λ)φ0(x)ψ0(w)

)
e2λ0t0

∫
M

u2t0(w,y)f(y)μ(dy)

]
μ(dw)

=

∫
Kbt

(
. . .
)
e2λ0t0U2t0f(w)μ(dw)+

∫
Kc

bt

(
. . .
)
e2λ0t0U2t0f(w)μ(dw).

Since

|U2t0f(x)| � ‖Ut0‖p,∞ ‖f‖pUt01M (x), x ∈M,

we obtain∣∣∣∣eλ0tUtf(x)− (1/Λ)φ0(x)

∫
M

f(y)ψ0(y)μ(dy)

∣∣∣∣
� e2λ0t0 ‖Ut0‖p,∞ ‖f‖p

(
‖Ut01M‖∞ I1(t,x)+ sup

w∈Kc
bt

Ut01M (w)I2(t,x)

)
,

where

I1(t,x) :=

∫
Kbt

∣∣∣eλ0(t−2t0)ut−2t0(x,w)− (1/Λ)φ0(x)ψ0(w)
∣∣∣μ(dw),

and

I2(t,x) :=

∫
Kc

bt

∣∣∣eλ0(t−2t0)ut−2t0(x,w)− (1/Λ)φ0(x)ψ0(w)
∣∣∣μ(dw).

By Lemma 3.3 (with s = at and r = bt; in particular t−2t0− s− r = bt−2t0 > 2t0) and

pGSD, we see that for all x ∈Kat,

I1(t,x) � e−γ(bt−2t0)eλ0atUat1M (x)eλ0bt

∫
Kbt

U∗
bt1M (w)μ(dw) � c1(t0)e

−γbtφ0(x)‖ψ0‖1 .
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Again by pGSD, we get for x ∈Kat ⊂Kt−2t0 ,

I2(t,x) � eλ0(t−2t0)Ut−2t01M (x)+(1/Λ)φ0(x)‖ψ0‖1 � (c2+(1/Λ)‖ψ0‖1)φ0(x).

Together this gives, for any measure σ ∈M1(Kat) with suppσ∩(M \N ) �= ∅, the estimate∣∣∣∣eλ0tσ(Utf)− (1/Λ)σ(φ0)

∫
M

f(y)ψ0(y)μ(dy)

∣∣∣∣
� c3

(
e−γbt+ sup

w∈Kc
bt

Ut01M (w)

)
‖f‖pσ(φ0).

The estimate for (5.4) follows if we apply the above estimate for p = ∞ to f = 1M ∈
L∞(M,μ); that is, we get for all σ ∈M1(Kat), suppσ∩ (M \N ) �= ∅,

∣∣eλ0tσ(Ut1M )− (1/Λ)σ(φ0)‖ψ0‖1
∣∣� c4

(
e−γbt+ sup

w∈Kc
bt

Ut01M (w)

)
σ(φ0).

It is important that the constants c3 and c4 do not depend on σ. Finally, using (5.2),
(3.5) and the above estimates, we arrive at∣∣∣∣ σ(Utf)

σ(Ut1M )
−m(f)

∣∣∣∣� c4

(
e−γbt+ sup

w∈Kc
bt

Ut01M (w)

)
‖f‖p ,

which is valid for all measures σ ∈M1(Kat) such that suppσ∩(M \N ) �= ∅. This completes

the proof.

Remark 5.3. In Theorem 5.2, we prove that pGSD with the exhausting family

{Kt : t � t0} implies progressive quasi-ergodicity with {Kat : t � t0/a}, for an arbitrary

a ∈ (0,1). We will see in Section 7.2 that this result is sharp in the sense that one cannot
expect progressive quasi-ergodicity which is uniform for the original exhausting family

{Kt : t � t0}.

Our next theorem shows that pGSD is, in fact, equivalent to a version of progressive

uniform quasi-ergodicity; cf. Corollary 4.4.

Theorem 5.4. Let M be a locally compact, but not compact, Polish space. Assume that

(A0)–(A4) hold. Then the following conditions are equivalent:

a) Both semigroups {Ut : t � 0} and {U∗
t : t � 0} are pGSD.

b) There exist probability measures ρ,ρ∗ ∈ M1(M) such that suppρ∩ (M \ N ) �= ∅,
suppρ∗ ∩ (M \N ) �= ∅, and an exhausting family of sets {Kt : t � t0} in M such
that

sup
x∈Kt\N

sup
f∈L∞(M,μ)

‖f‖∞�1

∣∣∣∣ Utf(x)

Ut1M (x)
−ρ(f)

∣∣∣∣→ 0 as t→∞,
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and

sup
y∈Kt\N

sup
f∈L∞(M,μ)

‖f‖∞�1

∣∣∣∣ U∗
t f(y)

U∗
t 1M (y)

−ρ∗(f)

∣∣∣∣→ 0 as t→∞.

Proof. The implication ‘a) ⇒ b)’ follows directly from the previous theorem. In order

to show the converse direction, we check that the semigroup {Ut : t � 0} is pGSD. The
argument for {U∗

t : t � 0} is similar.

Since suppρ∩ (M \N ) �= ∅, we have ρ(φ0)> 0. Recall that φ0 ∈ L∞(M,μ). Because of

b), there exists some t1 > t0 such that∣∣∣∣ρ(φ0)−
Utφ0(x)

Ut1M (x)

∣∣∣∣� 1

2
ρ(φ0), t � t1, x ∈Kt.

Hence, we have

Ut1M (x) � 2

ρ(φ0)
Utφ0(x) =

2

ρ(φ0)
e−λ0tφ0(x), t � t1, x ∈Kt.

This gives pGSD for the semigroup {Ut : t � 0}, and the proof is complete.

We already know that the finiteness of the heat content for large t implies the

uniqueness of the quasi-stationary probability measures for both semigroups {Ut : t � 0}
and {U∗

t : t � 0}; see Theorem 3.4.c). We will now show a much stronger result, which

says that the pGSD property and some additional information on the operator norm of

Ut and U∗
t for large times, also imply the uniqueness of the quasi-stationary measures.

The additional condition can be expressed as follows: there exists t2 > 0 such that

sup
t�t2

(
eλ0t sup

x∈M

(
Ut1(x)+U∗

t 1(x)
))

<∞. (5.5)

Since

sup
x∈M

Ut1(x) = ‖Ut‖∞,∞ and sup
x∈M

U∗
t 1(x) = ‖U∗

t ‖∞,∞ ,

(5.5) is equivalent to the combination of the following two conditions (5.6) and (5.7):

sup
t�t2

‖Ut‖∞,∞
‖Ut‖2,2

<∞, sup
t�t2

‖U∗
t ‖∞,∞

‖U∗
t ‖2,2

<∞; (5.6)

sup
t�t2

eλ0t ‖Ut‖2,2 <∞ (or, equivalently, sup
t�t2

eλ0t ‖U∗
t ‖2,2 <∞). (5.7)

If the semigroups {Ut : t � 0} and {U∗
t : t � 0} are pGSD for the exhausting family of

compact sets {Kt : t � t2}, the condition (5.5) is equivalent to

sup
t�t2

(
eλ0t sup

x∈Kc
t

(
Ut1(x)+U∗

t 1(x)
))

<∞. (5.8)

The next theorem shows that the uniqueness of the quasi-stationary measures extends to

a large class of compact semigroups with infinite heat content.
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Theorem 5.5. Let M be a locally compact, but not compact, Polish space. Assume that
(A0)–(A4) hold and that both semigroups {Ut : t � 0} and {U∗

t : t � 0} are pGSD and

satisfy (5.5). Then the measures m and m∗ defined in (3.1) are the unique quasi-stationary

probability measures of {Ut : t � 0} and {U∗
t : t � 0}, respectively, such that m(M \N ) ·

m∗(M \N )> 0.

Proof. We give a proof for the measure m only; the argument for m∗ is similar.

Suppose that m̄ is a quasi-stationary probability measure of {Ut : t � 0} such that
suppm̄∩ (M \N ) �= ∅. Following the argument from the proof of Theorem 3.4.c), it is

enough to show that m(f) = m̄(f) for f ∈ L∞(M,μ).

For a compact set K ⊂M such that m̄(1Kφ0)> 0 (in particular, m̄(K)> 0), we define

σK(dx) =
1K(x)m̄(dx)

m̄(K)
.

Fix f ∈ L∞(M,μ). We have

|m(f)− m̄(f)| �
∣∣∣∣m(f)− σK(Utf)

σK(Ut1M )

∣∣∣∣+ ∣∣∣∣ σK(Utf)

σK(Ut1M )
− m̄(f)

∣∣∣∣ .
Using the convergence assertion from Theorem 5.2 with the probability measure σ = σK ,
we see that the first term on the right-hand side vanishes as t→∞. We will now show

that for every ε ∈ (0,1), there exists a compact set K ⊂M such that the second term is

less than ε, uniformly for large t.

Fix ε ∈ (0,1). By (5.5),

c := sup
t�t2

(
eλ0t sup

x∈M
Ut1(x)

)
<∞.

Since m̄ is a finite measure, there exists a compact set K =K(ε)⊂M as above such that

m̄(Kc) � m̄(φ0)

c‖φ0‖∞ (1+ m̄(f)+‖f‖∞)

ε

1+ ε
. (5.9)

The existence of such a set is a consequence of the σ-compactness of the space M. By the
quasi-stationarity property of m̄, cf. (3.2), we have

m̄(1KUtf)+ m̄(1KcUtf) = m̄(f)
(
m̄(1KUt1M )+ m̄(1KcUt1M )

)
,

which implies that∣∣∣∣ σK(Utf)

σK(Ut1M )
− m̄(f)

∣∣∣∣= ∣∣∣∣ m̄(1KUtf)

m̄(1KUt1M )
− m̄(f)

∣∣∣∣
=

∣∣∣∣∣m̄(f)
(
m̄(1KUt1M )+ m̄(1KcUt1M )

)
− m̄(1KcUtf)

m̄(1KUt1M )
− m̄(f)

∣∣∣∣∣
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=

∣∣∣∣m̄(f)m̄(1KcUt1M )− m̄(1KcUtf)

m̄(1KUt1M )

∣∣∣∣
� (m̄(f)+‖f‖∞)

m̄(1KcUt1M )

m̄(Ut1M )− m̄(1KcUt1M )

= (m̄(f)+‖f‖∞)

m̄(1KcUt1M )
m̄(Ut1M )

1− m̄(1KcUt1M )
m̄(Ut1M )

.

From (3.5), we infer that

m̄(Ut1M ) � e−λ0t
m̄(φ0)

‖φ0‖∞
, t > 0.

Combining this inequality with the pGSD property and (5.9) yields

m̄(1KcUt1M )

m̄(Ut1M )
� c

‖φ0‖∞
m̄(φ0)

m̄(Kc) � 1

1+ m̄(f)+‖f‖∞
ε

1+ ε
, t � t2.

Since the function (0,1) � x �→ x/(1−x) is increasing, we finally get

|m(f)− m̄(f)| � limsup
t→∞

∣∣∣∣ σK(Utf)

σK(Ut1M )
− m̄(f)

∣∣∣∣� ε,

which completes the proof.

6. Large time asymptotic behavior of compact semigroups

As a by-product of our investigations on quasi-ergodicity, we also obtain some statements

on the asymptotic behavior of compact L2-semigroups on Lp spaces. In this generality,

such results seem to be new.

Corollary 6.1. Let M be a locally compact Polish space and assume that (A0)–(A3)
hold. If there exists some t1 � t0 such that the heat content is finite, that is,

Z(t1)<∞,

then we have the following:

a) For every p ∈ [1,∞], there exists C > 0 such that for every finite measure σ on M,

and for all t > 6t1 and t1 � s � t/2, we have

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣eλ0tσ(Utf)−
1

Λ
σ(φ0)

∫
M

f(y)ψ0(y)μ(dy)

∣∣∣∣� C e−γ(t−s) eλ0sσ(Us1M ),

and

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣eλ0tσ(U∗
t f)−

1

Λ
σ(ψ0)

∫
M

f(x)φ0(x)μ(dx)

∣∣∣∣� C e−γ(t−s) eλ0sσ(U∗
s 1M ).
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In particular, taking σ = δz, z ∈M , and s= t1, we obtain uniform estimates

sup
x∈M

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣eλ0tUtf(x)−
1

Λ
φ0(x)

∫
M

f(y)ψ0(y)μ(dy)

∣∣∣∣� C̃ e−γt,

and

sup
y∈M

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣eλ0tU∗
t f(y)−

1

Λ
ψ0(y)

∫
M

f(x)φ0(x)μ(dx)

∣∣∣∣� C̃ e−γt.

b) For every p,r ∈ [1,∞], there exists C > 0 such that for all t > 6t1, we have

sup
f∈Lp(M,μ)

‖f‖p�1

∥∥∥∥eλ0tUtf −
1

Λ
φ0

∫
M

f(y)ψ0(y)μ(dy)

∥∥∥∥
r

� C e−γt,

and

sup
f∈Lp(M,μ)

‖f‖p�1

∥∥∥∥eλ0tU∗
t f −

1

Λ
ψ0

∫
M

f(x)φ0(x)μ(dx)

∥∥∥∥
r

� C e−γt.

The above bounds follow from direct inspection of the estimates in the proof of
Theorem 3.4. The cases p = 1 in Part a) and p = 1, r = ∞ in in Part b) are special

– they follow directly from (A2), and the finiteness of the heat content is actually needed

in that case.
Let {Kt : t � t0} be an exhausting family of sets in M. By considering the sequence of

measures (σn) such that σn( ·) := μ( · ∩Kn), n ∈N, and using Corollary 6.1.a), we obtain

the following asymptotics of the heat content.

Corollary 6.2. Let M be a locally compact Polish space and assume that (A0)–(A3)
hold. If there exists some t1 � t0 such that the heat content is finite, that is,

Z(t1)<∞,

then there is some C > 0 such that∣∣∣∣eλ0tZ(t)− ‖φ0‖1 ‖ψ0‖1
Λ

∣∣∣∣� Ce−γt, t > 6t1.

If Z(t) =∞ for large t ’s, we cannot expect the asymptotic estimates to be uniform as in

Corollary 6.1.a). Still, we can prove a progressive version which is similar to Theorem 5.2.

The following result can be obtained directly by inspection of the proof of that theorem.

Corollary 6.3. Let M be a locally compact, but not compact, Polish space. Assume that

(A0)–(A4) hold and that both semigroups {Ut : t � 0} and {U∗
t : t � 0} are pGSD for

the exhausting family of compact sets {Kt : t � t0}. Then for every a,b ∈ (0,1) such that
a+2b=1 and for every p∈ [1,∞], there exists some C > 0 such that for all t> (4/(a∧b))t0,

sup
σ∈M1(Kat)

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣eλ0tσ(Utf)−
1

Λ
σ(φ0)

∫
M

f(y)ψ0(y)μ(dy)

∣∣∣∣� Cκb(t),
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and

sup
σ∈M1(Kat)

sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣eλ0tσ(U∗
t f)−

1

Λ
σ(ψ0)

∫
M

f(x)φ0(x)μ(dx)

∣∣∣∣� Cκb(t),

where the time-rate κb(t) is given by (5.1). By considering σ = δz, z ∈ Kat, we obtain

progressive uniform estimate on the sets Kat when t→∞.

7. Examples and applications

7.1. Feynman–Kac semigroups of Feller processes

Suppose that (M,d) is a locally compact Polish space, and μ is a positive, locally finite

measure with full topological support on the Borel sets B(M). We assume that the space

(M,d) is unbounded (in particular, it is not compact) and the measure μ is not finite. Let

(Xt)t�0 and (X̂t)t�0 be Markov processes with values in M and the following transition
semigroups:

Ptf(x) = Exf(Xt) and P̂tf(y) = Êyf(X̂t), f ∈ L2(M,μ);

Throughout this section, we assume that Pt and P̂t are contractions on L2(M,μ) and

that the semigroups {Pt : t � 0}, {P̂t : t � 0} have both the Feller and the strong Feller

property (i.e., they are ‘doubly Feller’ in the sense of Chung [11]). Moreover, we assume

that the corresponding Markov resolvents are in a weak duality relation with respect to
the measure μ; see [12, Definition 13.1]. By [12, Proposition 13.6], we have∫

f(x) ·Ptg(x)μ(dx) =

∫
P̂tf(x) ·g(x)μ(dx), f,g ∈ L2(M,μ), t > 0.

This means that P̂t is the (functional analytic) adjoint operator P ∗
t of Pt in the space

L2(M,μ). Finally, we assume that for every t > 0, the operators Pt and P̂t are positivity
improving and bounded from L2(M,μ) to L∞(M,μ).

In particular, the ‘free’ semigropus {Pt,t � 0} and {P̂t,t � 0} are such that they satisfy

our assumptions (A1)–(A3). We are now going to give sufficient criteria such that the
corresponding Feynman–Kac semigroups {Ut,t � 0} and {U∗

t ,t � 0} satisfy (A0)–(A4).

Let V be a locally bounded potential on M which is bounded below, that is, V =

V+−V− with V+ ∈L∞
loc(M,μ) and V− ∈L∞(M,μ), for which we define the Feynman–Kac

semigroup

Utf(x) = Ex
[
e−

∫ t
0
V (Xs)dsf(Xt)

]
, f ∈ L2(M,μ), t > 0.

By [12, Theorem 13.25], the weak dual or adjoint semigroup consists of operators

Ûtf(x) = U∗
t f(x) = Êx

[
e−

∫ t
0
V (X̂s)dsf(X̂t)

]
, f ∈ L2(M,μ), t > 0.

We first verify the assumptions (A1)–(A3) and show that Ut and U∗
t are integral

operators. If (Xt)t�0 is a stochastic process, we denote by τB := inf {t > 0 : Xt ∈Bc} the

first exit time from the set B.
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Lemma 7.1. The following assertions hold.

a) The operators Ut, t > 0, are positivity improving.

b) Both semigroups {Ut : t � 0} and {U∗
t : t � 0} are Feller and strong Feller.

c) For every t > 0, the operators Ut,U
∗
t : L2(M,μ) → L∞(M,μ) are bounded. In

particular, for every t > 0, there exists a measurable kernel ut(x,y) such that (2.1)
holds, and the semigroups {Ut : t � 0} and {Ût : t � 0} are in duality with respect to

the measure μ.

Proof. a) Let 0 �≡ f ∈ L2(M,μ) be positive and t,r > 0. We have

Utf(x) = Ex
[
e−

∫ t
0
V (Xs)dsf(Xt)

]
� e−t‖1Br(x)V+‖∞Ex

[
f(Xt); t < τBr(x)

]
.

The expectation appearing on the right-hand side tends to Exf(Xt) = Ptf(x) as r→∞.
Since Pt is positivity improving, and V is locally bounded, the expression on the right-

hand side is strictly positive for μ-almost every x and sufficiently large r > 0. To see this,

fix any x such that Ptf(x)> 0. Since Ex
[
f(Xt); t < τBr(x)

]
increases to Ptf(x) =E [f(Xt)]

as r ↑ ∞, there is some r = r(x) such that Ex
[
f(Xt); t < τBr(x)

]
> 0; hence, Utf(x) > 0.

This gives the assertion.

Part b) follows directly from Chung [11, Theorem 2]. The assumptions (a)–(c) of
Chung’s theorem can be easily verified as V is both bounded below and locally bounded.

We still have to prove c). First, observe that for every t > 0, the operators Ut,U
∗
t :

L2(M,μ)→ L∞(M,μ) are bounded. Indeed, for f ∈ L2(M,μ) and t > 0, we have

Utf(x) = Ex
[
e−

∫ t
0
V (Xs)dsf(Xt)

]
� et‖V−‖∞Exf(Xt) = et‖V−‖∞Ptf(x),

implying that ‖Ut‖2,∞ � et‖V−‖∞ ‖Pt‖2,∞. In the same way, we get ‖U∗
t ‖2,∞ �

et‖V−‖∞ ‖P ∗
t ‖2,∞. Combining this with part b) and the semigroup property, we see

that for every t > 0, the operators Ut,U
∗
t map L2(M,μ) {Pt,t � 0},

{
P̂t,t � 0

}
into

L2(M,μ)∩Cb(M), and we can apply [21, Theorem 1.6] to show that Ut,U
∗
t , t > 0, are

integral operators. That is, there exist non-negative measurable kernels ut(x,y) and
u∗
t (x,y) such that

Utf(x) =

∫
M

f(y)ut(x,y)μ(dy), U∗
t f(x) =

∫
M

f(y)u∗
t (x,y)μ(dy), f ∈ L2(M,μ), t > 0.

Since the operators Ut and U∗
t are adjoint, we have u∗

t (x,y) = ut(y,x).

Now we give general sufficient conditions for the compactness of the operators Ut, U
∗
t ,

t > 0 (cf. assumption (A0)) and for the finiteness of the heat content for large times.
Recall that the heat content is defined as

Z(t) =

∫
M

Ut1(x)μ(dx) =

∫
M

U∗
t 1(y)μ(dy), t > 0.

Lemma 7.2. For x ∈M and t > 0, we have

e−t·ess supy(1B1(x)(y)V+(y))Px(t � τB1(x)) � Ut1(x) � 1

t

∫ t

0

Ps(e
−tV (·))(x)ds, (7.1)
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as well as similar estimates for U∗
t 1(x). In particular,

inf
x∈M

Px(t � τB1(x))

∫
M

e−t·ess supy(1B1(x)(y)V+(y))μ(dx) � Z(t) �
∫
M

e−tV (x)μ(dx), (7.2)

for t > 0. Consequently, the following assertions hold.

a) If

lim
d(x,x0)→∞

V (x) =∞, (7.3)

then the operators Ut, U
∗
t , t > 0, are compact; in particular, (A0) holds.

b) Fix t > 0. Then ∫
M

e−tV (x)μ(dx)<∞ =⇒ Z(t)<∞.

However, if infx∈M Px(t � τB1(x))> 0, then

Z(t)<∞ =⇒
∫
M

e−t·ess supy(1B1(x)(y)V+(y))μ(dx)<∞.

Proof. Fix t > 0. For the proof of the upper bound in (7.1), it is enough to use Jensen’s
inequality and Tonelli’s theorem

Ut1(x) = Ex
[
e−

∫ t
0
V (Xs)ds

]
� Ex

[
1

t

∫ t

0

e−tV (Xs) ds

]
=

1

t

∫ t

0

Ps(e
−tV (·))(x)ds,

and the upper estimate in (7.2) follows by integration with respect to μ(dx) and duality.
The lower bounds in (7.1) and (7.2) follow from the definitions. Observe that Part b)

follows directly from the latter inequality.

To get Part a), we show (A4) for every t0 > 0, and then we use Lemma 2.3. By (7.3),

there exists a function g ∈ C∞(M) such that

e−tV (x) � g(x), for μ almost every x ∈M.2 (7.4)

Hence, by (7.1) and (7.4),

0 � Ut1(x) � 1

t

∫ t

0

Psg(x)ds, x ∈M.

By the Feller property, the function x �→ (1/t)
∫ t

0
Psg(x) ds belongs to C∞(M), which

implies that (A4) holds for any t � t0 and any t0 > 0.

The proof of (A4) for adjoint operators U∗
t is similar.

In particular, Lemma 7.2.b) shows that the finiteness of the heat content is completely

independent of the free process.

2Indeed: fix an arbitrary x0 ∈ M , set h(r) := ess inf{x∈M :d(x,x0)�r∨0}V+(x) for r ∈ R, and

use a continuous function φ � 0 with support in [0,1] and
∫ 1

0
φ(s)ds = 1 to get hφ(r) :=

h∗φ(r) � h(r+1), r ∈R. Then V+(x) � h(d(x,x0)) � hφ(d(x,x0)−1), x ∈M . Since t is fixed,
g(x) := exp

(
t
(
‖V−‖∞−hφ(d(x,x0)−1)

))
is a continuous function which vanishes at infinity.
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We will now discuss some concrete classes of Feller processes which are covered by the
framework described above. In order to keep the exposition short, we give in each case

standard references for the notation and further results.

7.1.1. Lévy processes. Standard references: Sato [49], Jacob [20, Vol. 1], Schilling

[51]. Throughout this section, the reference measure μ is d -dimensional Lebesgue measure

and d(·,·) is the Euclidean distance.

A Lévy process (Xt)t�0 is a stochastic process on Rd with càdlàg (right-continuous with
finite left limits) paths and stationary and independent increments. A Lévy process can

be described in terms of its characteristic exponent ψ(ξ) =− logEeiξ·X1 . It is known that

ψ is uniquely determined by the Lévy–Khintchine formula

ψ(ξ) =−iξ · b+ 1

2
ξ ·Qξ+

∫
Rd\{0}

(
1− eiξ·y + iξ ·y1(0,1)(|y|)

)
ν(dy), ξ ∈Rd, (7.5)

or by the corresponding the Lévy triplet (b,Q,ν), which is given by b ∈Rd (drift term),

Q is a symmetric, positive semidefinite d×d matrix (Gaussian covariance matrix ) and ν
is a measure on Rd \{0} such that

∫
Rd\{0}(1∧|x|2)ν(dx)<∞ (Lévy measure).

Lévy processes are Markov processes, which are invariant under translations; that is,

the transition semigroup is a convolution semigroup of the form

Ptf(x) = Ex [f(Xt)] = E0 [f(Xt+x)] = f ∗ μ̃t(x),

where μ̃t(dy) = P0(Xt ∈ −dy) is the law of −Xt. The dual process (X̂t)t�0 of a Lévy

process (Xt)t�0 is given by X̂t =−Xt, and its transition semigroup
{
P̂t : t� 0

}
is defined

accordingly. The convolution structure of Pt shows that (Pt)t�0 is both a Feller semigroup

on C∞(Rd) and an Lp(Rd,dx) Markov semigroup for any p ∈ [1,∞).

The process (Xt)t�0 is a strong Feller process, that is, Pt maps L∞(Rd,dx) into Cb(R
d),

if and only if μt(dy) = pt(y)dy is absolutely continuous w.r.t. Lebesgue measure; cf. Jacob

[20, Vol. 1, Lemma 4.8.19, 4.8.20]. In particular, the dual process is strong Feller, too. A

sufficient condition for the existence of the densities pt(x), t > 0 is that Q �= 0 or that ν
is infinite and absolutely continuous with respect to Lebesgue measure; see, for example,

[49, Theorem 27.7], and see also the discussion in [32]. If, in addition, there is some

t0 > 0 such that
∫
Rd e

−t0Reψ(ξ) dξ < ∞, then supt�t0 supx∈Rd pt(x) < ∞, thanks to the

Fourier inversion formula. Consequently, the operators Pt,P̂t : L
2(Rd,dx) → L∞(Rd,dx)

are bounded for every t� t0. In general, if the integral
∫
Rd e

−t0Reψ(ξ) dξ is finite for every

t0 > 0, then we get the existence of bounded and jointly (in (t,x)) continuous densities

for every t > 0; see [32, Lem. 2.1].
In order to see that Pt and P̂t are positivity improving, it is enough to show that

P0(Xt ∈B) =P0(X̂t ∈−B) =
∫
B
pt(x)dx> 0 for every Borel set B ⊂Rd with Leb(B)> 0.

Let us fix such a Borel set B. Using the Lévy–Khintchine formula, we can decompose a
Lévy process into a sum of independent Lévy processes Xt =Wt+Yt whose triplets are

(b,Q,0) and (0,0,ν). If det(Q) �= 0, then we always have a nondegenerate Gaussian part,

and it is clear that
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P0(Xt ∈B) =

∫
P0(Wt+y ∈B)P0(Yt ∈ dy)> 0

since P0(Wt+y ∈B)> 0 for all y ∈Rd.
Let us assume that det(Q) = 0. If the Lévy measure ν satisfies ν(dy) � h(y)dy with a

density h(y) which is strictly positive in some neighborhood of 0 ∈ Rd, say Bε(0), then

we can decompose Xt = Zt+Ct into two independent Lévy processes whose triplets are
(b,Q,ν(dy)−h(y)dy) and (0,0,h(y)dy). Since Ct is a compound Poisson process, we know

from [51, Cor. 3.5] that

P0(Ct ∈B) = e−htδ0(B)+ e−ht
∞∑
k=1

tk

k!

∫
B

h∗k(x)dx, h=

∫
Rd

h(x)dx.

Since the k -fold convolution h∗k(x) is strictly positive in Bεk(0), we conclude that
P0(Ct ∈B+ z)> 0 for any z ∈Rd; hence, P0(Xt ∈B) =

∫
P0(Ct+z ∈B)P0(Zt ∈ dz)> 0.

With a little more effort, the above argument even shows that the density of Xt satisfies

pt(x)> 0 for all t > 0 and Lebesgue a.a. x ∈Rd.
It remains to check the conditions for compactness and the finiteness of the heat content

stated in Lemma 7.2. Let x0 = 0. Choosing the potential V in such a way that V (x)→∞
as |x| → ∞, we obtain that the Feynman–Kac semigroup operators Ut,Ût, t > 0, are
compact operators on L2(M,μ). Moreover, if we know that

liminf
|x|→∞

V (x)

log |x| > 0,

then there is t > 0 such that Z(t)<∞.

7.1.2. Levy-type processes. Standard references: Jacob [20, Vol. 1], Böttcher et al.

[5]. A Lévy-type or Feller process is a Markov process Xt with values in Rd which behaves

locally like a Lévy process. In particular, the transition semigroup Ptu(x) = Exu(Xt)
is a Feller semigroup, and one can show that the infinitesimal generator is a pseudo-

differential operator of the form Au(x) = −F−1
ξ→x (p(x,ξ)Fu(ξ)) (F denotes the Fourier

transform, u is a sufficiently regular function – for example, a test function u ∈C∞
c (Rd))

whose symbol p(x,ξ) is, for fixed x, the characteristic exponent of a Lévy process.

Therefore, p(x,ξ) is given by a Lévy–Khintchine formula (7.5) where the Lévy-triplet
depends on x (i.e. (b,Q,ν(dy)) = (b(x),Q(x),ν(x,dy))). Thus, A is a ‘Lévy generator

with variable coefficients’. A typical example are stable-like generators of the form

Au(x) = (−Δ)α(x)u(x) where α : Rd → [0,2] is a variable order of differentiability and
the symbol is of the form p(x,ξ) = |ξ|α(x)
It is a major problem to construct a Lévy-type process given an admissible symbol

p(x,ξ) or, which is the same, an x -dependent Lévy triplet. A thorough discussion is in

Jacob [20, Vol. 3] and Böttcher et al. [5]; probably the most general results to-date are
due to Kühn [34] and Knopova et al. [33].

In what follows, we indicate some conditions, under which the assumptions needed in

Section 7.1 are satisfied. Our main intention is not to cover the most general situation,
but to illustrate that within the class of Lévy-type processes, there are many examples

to be found. The following assumptions on the symbol are frequently used:
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C1|ξ|α0 � Rep(x,ξ) ∀x ∈Rd, |ξ| � 1, (minimal growth) (7.6)

|p(x,ξ)−p(y,ξ)| � C2|x−y|γ |ξ|α ∀x ∈Rd, |ξ| � 1, (Hölder condition) (7.7)

|p(x,ξ)| � C3(1+ |x|γ)|ξ|β ∀x ∈Rd, |ξ| � 1, (growth of coefficients) (7.8)

where C1,C2,C3 are constants and α0,α,β ∈ (0,2] and γ ∈ (0,β) are suitable exponents.

Assume that p(x,ξ) is the symbol of a Lévy-type process. If either α�γ> α
α0

(
α−α0+

1
2

)
or α� γ < 2

α 0
− 1

2 , thenXt has a transition density pt(x,y) such that supx
∫
p2t (x,y)dy <∞

(i.e., (A3) holds for the free semigroup Pt; see [34, Thm. 2.14]).

The existence of a Lévy-type process with a given symbol p(x,ξ) is a much more delicate

issue. Here, we content ourselves to mentioning that in the stable-like case p(x,ξ) = |ξ|α(x)
where α :Rd → [a1,a2]⊂ (0,2) is Hölder continuous, the existence of a stable-like process

with a continuous density (t,x,y) �→ pt(x,y) > 0 has been established in [34, Thm. 3.8,

Thm. 3.11] as well as in [33, Section 3]. In particular, we get Feller and strong Feller
processes. It is also clear that stable-like symbols satisfy the assumptions (7.6)–(7.8).

We would like to mention that the methods presented in these papers go way beyond

the stable-like case; [34] covers symbols of the type p(x,ξ) = ψa(x)(|ξ|) where z �→ ψa(z)
has a holomorphic extension on a bow-tie shaped domain of the complex plane (and

satisfies certain polynomial boundedness assumptions), while [33] are mainly interested

in non-rotationally symmetric symbols. Therefore, (A1) and (A2) are also satisfied.

In general, it is very difficult to determine the symbol of the (formal) adjoint
to A. Building on [53], the paper [54] contains the general form of the symbol of

the adjoint operator for a wide class of symbols (Section 3) and a fully-worked out

discussion of the case p(x,ξ) = |ξ|α(x). If α(x) is Hölder, takes values in [a1,a2]⊂ (0,2)
and satisfies (7.6)–(7.8), then so does the adjoint symbol p∗(x,ξ) which is given by

a Lévy–Khintchine formula with triplet (0,0,w(x)|x − y|−d−α(x) dy) for the weight

w(x) = α(x)2α(x)−1Γ
(
1
2α(x)+

1
2d
)/

Γ
(
1− 1

2α(x)
)
. This means that the assumptions

(A1)–(A3) also hold for the adjoint free semigroup P̂t in this case. Of course,

other symbols require case-by-case investigations (e.g., based on the above-mentioned

literature).

7.1.3. Continuous-time Markov chains on a countably infinite uniformly
discrete metric space. Standard references: Murugan and Saloff–Coste [46, 47] and

Cygan, Kaleta and Sliwiński [14]. Let (M,d) be a countably infinite, unbounded, complete

metric space, which is also uniformly discrete; this means that there exists a number a> 0
such for any two distinct points x,y ∈M , one has d(x,y)� a; see [46, 47]. The underlying

measure μ :M → (0,∞) is assumed to be a Frostman measure with exponent dM > 0 (i.e.,

there is a constant c > 0 such that μ(Br(x)) � crdM for any x ∈M and r > 0).

In particular, we have for all γ > dM ,∫
B1(x0)c

d(x,x0)
−γ μ(dx) =

∞∑
n=0

∫
2n�d(x,x0)<2n+1

d(x,x0)
−γ μ(dx)

�
∞∑

n=0

2−γnμ(B2n+1(x0)) � c2dM

∞∑
n=0

2−(γ−dM )n <∞.
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Under these assumptions, we can give a sufficient condition for the integrability of
the function x �→ e−tV (x) which is needed for the finiteness of the heat content; see

Lemma 7.2.b). Indeed, if there exist c0,R > 0 and x0 ∈M such that

V (x)

logd(x,x0)
� c0 > 0, d(x,x0) � R,

then for every t > dM/c0, we have∫
M

e−tV (x)μ(dx) � e‖V−‖∞μ(BR(x0))+

∫
BR(x0)c

d(x,x0)
−c0tμ(dx)<∞.

Consider two probability kernels Q,Q̂ : M × M → [0,1],
∑

y∈M Q(x,y) = 1 =∑
y∈M Q̂(x,y), x ∈ M , which are connected via the duality relation with respect to

the measure μ – that is,

μ(x)Q(x,y) = μ(y)Q̂(y,x), x,y ∈M. (7.9)

Thus, there are two time-homogeneous Markov chains {Zn : n ∈N0}, {Ẑn : n ∈N0} with
values in M and one-step transition probabilities given by Q and Q̂, respectively. We

denote by Px, P̂x the laws of the chains starting at x ∈M – that is,

Px(Zn = y) = P(Zn = y | Z0 = x) and P̂x(Ẑn = y) = P(Ẑn = y | Ẑ0 = x).

We have

Px(Zn = y) =Qn(x,y) and P̂x(Ẑn = y) = Q̂n(x,y),

where Q0(x,y) = 1{x}(y), Q1(x,y) = Q(x,y) and Qn+1(x,y) =
∑

z∈M Qn(x,z)Q1(z,y),

n � 1, and Q̂n’s are defined accordingly. The densities with respect to μ are given by

qn(x,y) =
Px(Zn = y)

μ(y)
=

Qn(x,y)

μ(y)
and q̂n(x,y) =

P̂x(Ẑn = y)

μ(y)
=

Q̂n(x,y)

μ(y)
.

Clearly, (7.9) extends to μ(x)Qn(x,y) = μ(y)Q̂n(y,x), x,y ∈ M , n ∈ N, and we have

q̂n(x,y) = qn(y,x). The corresponding n-step transition operator is

Qnf(x) =
∑
y∈M

Qn(x,y)f(y) =
∑
y∈M

qn(x,y)f(y)μ(y)

whenever the series is finite; Q̂nf is defined in a similar way.

The main objects are the continuous-time chains {Xt : t� 0} and {X̂t : t� 0} defined by
Xt := ZNt

, X̂t := ẐNt
, respectively, where {Nt : t � 0} is an independent Poisson process

with parameter λ= 1. Clearly, we have Px(Xt ∈A) =
∑

y∈APt(x,y), A⊂M , where

Pt(x,y) = e−t
∞∑

n=0

tn

n!
Qn(x,y), t > 0, x ∈M.

https://doi.org/10.1017/S1474748024000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000410


Quasi-ergodicity of compact semigroups 573

The transition semigroup {Pt : t � 0} of this process is defined as

Ptf(x) =
∑
y∈M

f(y)Pt(x,y) =
∑
y∈M

f(y)pt(x,y)μ(y), with pt(x,y) :=
Pt(x,y)

μ(y)
,

for all admissible functions f on M. The transition probabilities P̂t(x,y), kernels p̂t(x,y)

and the transition semigroup {P̂t : t� 0} of the process {X̂t : t� 0} are defined accordingly.

By the Cauchy–Schwarz inequality, we can easily see that all operators Pt and P̂t are
contractions on L2(M,μ); again, we have p̂t(x,y) = pt(y,x), which means that the weak

duality relation, which was described at the beginning of Section 7.1, is in force. Moreover,

it is straightforward to see that both transition semigroups are doubly Feller. In particular,
the strong Feller property follows from the fact that (M,d) is uniformly discrete. One can

also check that the ultracontractivity of these semigroups is equivalent to the boundedness

of the kernel q1(x,y) (e.g., if infx∈M μ(x)> 0). The positivity improving property follows
from the strict positivity of the kernels Pt(x,y) and P̂t(x,y). This is the case if the chains

{Zn :n∈N0}, {Ẑn :n∈N0} are irreducible (i.e., for every x,y ∈M , there is n=n(x,y)∈N

such that Pn(x,y),P̂n(x,y)> 0).

We can now explicitly estimate the space-rates of the quasi-ergodic behavior of the
Feynman–Kac semigroups with confining potentials (see Corollary 3.5). These rates take

the form Ut11M (x)/φ0(x) and U∗
t11M (x)/ψ0(x), for some t1 > 0. The functions Ut11M (x)

and U∗
t11M (x) can be estimated by a constant or by using the upper bound in (7.1).

Sharper estimates for a large class of processes will be provided in [13]. However, sharp

lower estimates for the ground states for a fairly general class of processes and rather

general confining potentials can be found in [14].
If we have good lower estimates for the ground states, then we can apply Lemma 4.5 and

Theorem 4.6 to derive the progressive GSD and progressive exponential quasi-ergodicity

from the finiteness of the heat content for large times. Such estimates can, for example,

be found in [14].

7.1.4. Continuous-time simple random walk on an infinite graph. Standard
reference: Barlow [4]. This is a special case of the example in the previous section: Let

M be a countably infinite set and Γ = (M,E) be a connected and locally finite graph

over M. We equip M with its geodesic metric d :M ×M →N0; the underlying measure
and the transition probability of a simple random walk on the graph is defined in terms

of a conductance network on Γ. The Frostman property of the measure μ= (μx)x∈M is,

for example, guaranteed by the following condition: there is a constant c1 > 0 such that

μx � c1, x∈M , and the cardinality of a geodesic ball Bn(x) is controlled by a power-type
function (i.e., supx∈M supn∈Nn−dM |Bn(x)|<∞ for some dM > 0).

7.1.5. Brownian motion on simple nested fractals. Standard references:

Lindstrøm [41], Kusuoka [37], Fukushima [19], Kumagai [35]. Let M ⊂ Rd, d � 1, be

an (unbounded) simple nested fractal and let (Xt)t�0 be a Brownian motion with the
state space M. We refer the reader to [41, 37, 19] for the definition of a simple nested

fractal and various constructions of Brownian motion thereon. The set M inherits

the Euclidean topology from Rd, and the measure μ is the Hausdorff measure on M (in
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particular, μ is a dM -Frostman measure, where dM is the Hausdorff dimension of M ). It is

known that (Xt)t�0 is a Markov process with symmetric, jointly continuous and bounded

transition densities that satisfy sub-Gaussian estimates [35, Section 5]. Consequently,
the transition semigroup of the process (Xt)t�0 is a doubly Feller, ultracontractive and

positivity improving semigroup.

7.1.6. Sobordinate processes. Standard references: Sato [49], Schilling, Song and

Vondraček [52]. Another class of processes which is covered by our results are subordinate
processes. Recall that a subordinator is an increasing Lévy process with values in [0,∞),

starting at 0. It is uniquely determined by its Laplace transform: we have Ee−λSt =

e−tφ(λ), t > 0, where the exponent φ : (0,∞)→ [0,∞) is a Bernstein function of the form

φ(λ) = bλ+

∫ ∞

0

(1− e−λu)ρ(du).

Here, b � 0 is the drift term and ρ is a measure on (0,∞) such that
∫∞
0

(1∧u)ρ(du)<∞
(Lévy measure).

Let {Xt : t� 0} and {X̂t : t� 0} be Markov processes as in Section 7.1, and let {St : t� 0}
be a subordinator which is independent of {Xt : t � 0} and {X̂t : t � 0}. We define the

subordinate processes {Xφ
t : t � 0}, {X̂φ

t : t � 0} by the formulas Xφ
t :=XSt

, X̂φ
t := X̂St

,

respectively. By independence, their transition semigroups {Pφ
t : t � 0} and {P̂φ

t : t � 0}
are given by

Pφ
t f(x) =

∫
[0,∞)

Psf(x)P(St ∈ ds), P̂φ
t f(x) =

∫
[0,∞)

P̂sf(x)P(St ∈ ds),

for f ∈ L2(M,μ) or f ∈ L∞(M,μ). It is obvious that these formulas define contractions

on f ∈ L2(M,μ), and the weak duality relation described in Section 7.1 holds. Moreover,

these semigroups inherit the Feller property, the strong Feller property (provided that

St is not a compound Poisson subordinator), and the positivity improving property from
the semigroups {Pt : t� 0} and {P̂t : t� 0}. The only regularity property that requires an

additional assumption is ultracontractivity: Suppose that Pt,P̂t are bounded operators

from L2(M,μ) to L∞(M,μ) for every t > 0. By Remark 2.1, this is equivalent to the
boundedness from L1(M,μ) to L∞(M,μ), for any t > 0. Therefore, ultracontractivity of

the subordinate semigroup and its dual is ensured by the assumption that∥∥∥Pφ
t

∥∥∥
1,∞

�
∫
[0,∞)

‖Ps‖1,∞P(St ∈ ds)<∞, t > 0.

7.2. Progressive uniform exponential quasi-ergodicity for the harmonic oscil-

lator

Let H = −Δ+ |x|2 be the Schrödinger operator acting in L2(Rd,dx), and denote by
Ut = e−tH , t � 0, the operators of the corresponding Schrödinger semigroup. It is well

known that, for every t > 0, Ut is a compact, self-adjoint and positivity-improving integral

operator with the kernel

ut(x,y) = (2π sinh(2t))−d/2 exp

(
−1

4

(
tanh(t)|x+y|2+coth(t)|x−y|2

))
(7.10)
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(see, for example, [60, (1.4)]. In particular, the assumptions (A0)–(A3) are satisfied. The

ground state eigenfunction and eigenvalue are given by

φ0(x) = π−d/4e−
|x|2
2 and λ0 = d, (7.11)

and (see [60, Proposition 3.3]3)

Ut1Rd(x) = (cosh(2t))−d/2 exp

(
− |x|2
2coth(2t)

)
, t > 0. (7.12)

It is easy to check that the semigroup {Ut : t � 0} is not aGSD; cf. [24, Example 4.4]; in
particular, using Corollary 4.4, it is not uniformly quasi-ergodic (see also the discussion

in [31, Section 4.3]). We will show that our present results can be directly used to describe

the true quasi-ergodic properties of this semigroup.

First of all, observe that (7.12) shows that the heat content Z(t) =
∫
Rd Ut1(x)dx is

finite for every t > 0, so that our results from Section 3 apply. In particular, Theorem 3.4

ensures that the semigroup {Ut : t � 0} is exponentially quasi-ergodic for every finite

initial distribution, and the limiting measure

m(dx) =
φ0(x)

‖φ0‖1
dx=

1

(2π)d/2
e−

|x|2
2 dx

is the only quasi-stationary measure of {Ut : t � 0}. By Corollary 3.5, we also get a

pointwise version with explicit space-rate

U11Rd(x)

φ0(x)
=

( √
π

cosh2

)d/2

exp

(
− |x|2
e4−1

)
,

which is uniform on compact sets.
We will show that the quasi-ergodicity is progressively uniform. Observe that the

semigroup
{
Ut : t � 0

}
is pGSD; cf. Definition 4.2.b).

Proposition 7.3. Let x ∈Rd, t > 0 and C > 0. Then

Ut1Rd(x) � Ce−λ0tφ0(x) ⇐⇒

|x| �
√

(e4t+1)

(
logC− d

2
log(2

√
π)+

d

2
log(1+ e−4t)

)
.

In particular, if C < (2
√
π)d/2, the right-hand side is void for large t, and if C = (2

√
π)d/2,

then the inequality on the right-hand side defines a bounded set of x for large t’s.

Proof. Because of (7.11) and (7.12), the inequality on the left-hand side reads

exp

[
|x|2

(
e−2t

e2t+ e−2t

)]
� Cπ− d

4

(
e2t+ e−2t

2

) d
2

e−dt = C(2
√
π)−

d
2 (1+ e−4t)

d
2 ,

3The statement of the result in this reference contains a minor typographical error: the factor
2π is missing before cosh(2t); the proof is, however, correct.
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which can be equivalently rewritten as

|x|2 �
(
1+ e4t

)(
logC− d

2
log(2

√
π)+

d

2
log(1+ e−4t)

)
.

Assume now that C > (2
√
π)d/2 and write

ρ(t) :=Ke2t

√
(1+ e−4t)

(
1+

d

2K2
log(1+ e−4t)

)
, t � 1,

where K =
√
log

(
C/(2

√
π)d/2

)
. Clearly, we have ρ(t) = Ke2t(1 + o(1)), as t → ∞. It

follows from Proposition 7.3 that the semigroup {Ut : t � 0} is pGSD with the exhausting

family {Kt : t � 1} where Kt =Bρ(t)(0); that is,

Ut1Rd(x) � Ce−λ0tφ0(x), for |x| � ρ(t), t � 1. (7.13)

Therefore, we can apply Theorem 5.2 to show that the progressive exponential uniform

quasi-ergodicity holds on any space Lp; it is easily seen from (7.12) that the assumption
(A4) holds for every t0 > 0. More precisely, for every a ∈ (0,1) and p ∈ [1,∞], there are

constants C1,C2 > 0 such that

sup
σ∈M1

(
Bρ(at)(0)

) sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣ σ(Utf)

σ(Ut1Rd)
−m(f)

∣∣∣∣� C1e
−C2t, (7.14)

for sufficiently large t > 1.

It is interesting to note that one can use (7.10) and (7.12) to verify the following: for a
family of measures

{
σt

}
t�1

given by σt = δxt
with xt = (e2tx0)/2 where x0 ∈Rd is fixed

and for f = 1K where K is a Borel set of finite Lebesgue measure, we have

Utf(xt)

Ut1Rd(xt)
=

σt(Utf)

σt(Ut1Rd)

t→∞−−−→ 1

(2π)d/2

∫
K

e
(y−x0)2

2 dy. (7.15)

This was first noticed in [31, p. 135] for d = 1; the aim was to show that the quasi-
ergodicity property for the harmonic oscillator is not uniform in R (note that the authors

of that paper work with a Schrödinger operator with rescaled kinetic term; that is,

Hf = (1/2)f ′′+ |x|2f).
We can now see more. Indeed, (7.15) shows that the convergence in (7.14) cannot be

uniform in the sets Kt that come from the pGSD property (7.13) – one can choose x0 is

such a way that xt ∈Kt for sufficiently large t. This means that Theorem 5.2 is optimal

in the sense that, in general, the pGSD property with the exhausting family {Kt : t � t0}
implies the progressive exponential quasi-ergodicity with {Kat : t � t0/θ} only for a < 1;

cf. Remark 5.3.

7.3. Semigroups of non-local Schrödinger operators in the DJP setting

One of the main motivations for this paper was to describe the quasi-ergodic properties of

the Schrödinger semigroups studied in a recent paper [26]. These are evolution semigroups

that belong to non-local Schrödinger operators of the form H =−L+V , where L is the
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generator of a symmetric Lévy process {Xt : t � 0} (so-called Lévy operator) with the

direct jump property (DJP in short) in Rd, d� 1, and V is a sufficiently regular confining

potential. Working in that generality, we identified in [26] a new regularity property of
compact semigroups in L2, that we called progressive intrinsic ultracontractivity (pIUC

in short). It means that the regularity of the semigroup improves as t → ∞. We now

want to understand what is the impact of pIUC on the quasi-ergodic properties of the
semigroup.

The class of processes that we consider in this section consists of symmetric (self-dual)

and strong Feller Lévy processes (cf. Section 7.1.1, also for notation). In addition, we have
to impose some extra regularity conditions on the density pt(x) and the Lévy measure

ν (Assumptions (A1)–(A2) in [26]; we do not give details here). The key property is the

following: we assume that the Lévy measure ν(dx) has a density ν(x)dx and that there

exists a decreasing ‘profile’ function f : (0,∞)→ (0,∞) such that ν(x)� f(|x|), x �= 0, and

f1 ∗f1(x) � cf1(x), x ∈Rd, (7.16)

for a constant c > 0, where f1 := f ∧1. This condition has a very suggestive probabilistic
interpretation, and therefore, it is called the direct jump property (DJP). Note that

this class contains many examples of jump Lévy processes and the corresponding Lévy

operators which play an important role in various applications. For example, it includes

the

• fractional Laplace operator L = −(−Δ)α/2, α ∈ (0,2) (being the generator of the
isotropic α-stable process); here, ν(x) = cd,α|x|−d−α;

• relativistic operator L = −(−Δ + m2/α)α/2 + m, α ∈ (0,2), m > 0 (being
the generator of the isotropic relativistic α-stable process); here,

ν(x)� e−m1/α|x|(1∧|x|)− d+α−1
2 |x|− d+α+1

2 .

We assume that V ∈ L∞
loc(R

d,dx) is a confining potential (i.e., V (x)→∞ as |x| →∞)

such that there is a an increasing profile g : [0,∞)→ (0,∞), growing at infinity not faster

than an exponential function, and there are constants c1,c2 � 1 such that c−1
1 g(|x|) �

V (x) � c1g(|x|), for all |x| � c2; see the detailed statement in [26, Assumption (A3)].

The Schrödinger operator H =−L+V is well defined, bounded below and self-adjoint

in L2(Rd,dx). We denote by Ut = e−tH , t � 0, the operators of the corresponding
evolution semigroup. They are known to have the following probabilistic Feynman–Kac

representation:

Utf(x) = Ex
[
e−

∫ t
0
V (Xs)dsf(Xt)

]
, f ∈ L2(Rd,dx), t > 0. (7.17)

The operators Ut are self-adjoint, and by [26, Lemma 2.3] (or Lemma 7.1) and

Lemma 7.2.a), all regularity assumptions (A0)–(A3) are satisfied and (A4) follows from

the proof of Lemma 7.2.a). Our standard reference for self-adjoint Schrödinger operators
and the Feynman–Kac semigroups is the monograph [17].

We will now show how our present results apply to these semigroups. The discussion

will be divided into three parts.

https://doi.org/10.1017/S1474748024000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000410


578 K. Kaleta and R. L. Schilling

(1) Heat content and exponential quasi-ergodicity. First of all, due to Lemma 7.2.b),

we know that

liminf
|x|→∞

V (x)

log |x| > 0 ⇐⇒ ∃ t1 > 0 : Z(t1)<∞, (7.18)

and our results in Section 3 apply. More precisely, by Theorem 3.4, the semigroup

{Ut : t � 0} is exponentially quasi-ergodic for every finite initial distribution, and the

limiting measure

m(dx) =
φ0(x)

‖φ0‖1
dx,

where φ0(x) is the ground state of the operator H, is the only quasi-stationary measure of

{Ut : t � 0}. Furthermore, in Corollary 3.5, we obtain a pointwise version with the space-
rate Ut11Rd(x)/φ0(x) which is uniform on compact sets. By [25, Corollary 2.2], there is

a constant c3 > 0 such that

φ0(x) � c6

(
1∧ ν(x)

V (x)

)
, x ∈Rd

(this remains true for potentials without radial profiles). However, we always have

Ut11Rd(x) � e‖V−‖∞t1, x ∈Rd,

which leads to the following explicit estimate of the rate

Ut11Rd(x)

φ0(x)
� c3

V (x)

ν(x)
, x ∈Rd. (7.19)

The function on the right-hand side tends to infinity as |x| → ∞, but it is bounded on

compact sets. Better estimates for Ut11Rd(x) can be found in [26, Theorem 4.8]. Observe
that the sufficient condition in (7.18) does not depend on ν.

(2) aGSD regime and uniform exponential quasi-ergodicity. By [25, Theorem 2.6],

liminf
|x|→∞

V (x)

| logν(x)| > 0 ⇐⇒ ∃ t1,c4 > 0 ∀x ∈Rd : Ut11Rd(x) � c4φ0(x). (7.20)

Recall that the property on the right-hand side is called aGSD; see Definition 4.2.a).
If we are in the aGSD regime – that is, if the growth of the potential is sufficiently

large with respect to | logν(x)| – then the exponential quasi-ergodicity in Corollary 3.5

discussed above becomes uniform on the full space Rd. This is exactly what we saw in

Corollary 4.4.a). The same conclusion follows from [31, Theorem 1, Corollary 2]. However,
now we get much more. Combining Corollary 4.4 and (7.20), we get that the uniform

quasi-ergodicity of the semigroup {Ut : t � 0} is equivalent to the condition

liminf
|x|→∞

V (x)

| logν(x)| > 0.

If ν(x) has polynomial decay at infinity (as is, for example, the case for the fractional

Laplacian), then | logν(x)| � log |x|, for |x| large enough, and the properties in (7.18) and

(7.20) coincide. However, if ν decays at infinity faster than any polynomial, then (7.20)
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is more restrictive than (7.18). For example, if ν(x) is exponential at infinity (e.g., for

relativistic operators), then | logν(x)| � |x|, for large |x|.
(3) pGSD and progressive uniform quasi-ergodicity. Finally, we characterize the quasi-

ergodic behavior of the Schrödinger semigroups {Ut : t � 0} with confining potentials as

above which do not satisfy (7.20), no matter how slow the potential may grow at infinity;

this brings us out of the aGSD regime. Note that this problem was completely open.
Since we want to be here as sharp as possible, we have to monitor precisely the threshold

between the aGSD and the non-aGSD regime. For this reason, we follow [26, Assumption

(A4)] and impose an additional technical condition on the profile g of the potential V.
More precisely, we require that g depends on the profile f of the Lévy density ν in

a sufficiently regular way: we consider R0 > 0 such that f(R0) < 1 and assume that

g(r) = h(| logf(r)|), r � R0, for an increasing function h : [| logf(R0)|,∞)→ (0,∞) such

that h(s)/s is monotone. Under this assumption, the class of Schrödinger semigroups
{Ut : t � 0} with Lévy densities ν and potentials V is divided into two classes:

a) (aGSD regime): liminf |x|→∞
V (x)

| logν(x)| > 0, i.e. (7.20) holds;

b) (non-aGSD regime): lim|x|→∞
V (x)

| logν(x)| = 0;

cf. [26, Remark 5.1]. We already know from Part (2) that in the aGSD regime, the
Schrödinger semigroup is uniformly exponentially quasi-ergodic, and, in fact, we have the

equivalence of these two properties.

The rest of this section will be devoted to the analysis of the quasi-ergodic behavior

in the non-aGSD regime. Of course, if (7.18) holds, then we know from Part (1) above
that we have the exponential quasi-ergodicity with semi-explicit rate, which is uniform

on compact sets. With [26, Corollary 5.6 b)], we can now give even better estimates for

the rate (7.19)

Ut11Rd(x)

φ0(x)
� c5

(
1∨ e−c5V (x)

ν(x)

)
, x ∈Rd,

for some c4,c5 > 0. Our theorems from Section 5 now yield much stronger results. In

the paper [26], we identify a new large-time regularity property of compact semigroups,

which we call progressive intrinsic ultracontractivity (pIUC). This property holds for
semigroups considered here. In [26, Corollary 5.6 b)], we show that pIUC implies the

following two-sided sharp estimates: there exist θ ∈ (0,1), t2 > 0 and an increasing function

ρ : [t2,∞)→ (0,∞), with limt→∞ ρ(t) =∞, such that

Ut1Rd(x)� e−λ0tφ0(x)� e−λ0t

(
1∧ ν(x)

V (x)

)
, |x| � ρ(θt), t � t2/θ (7.21)

(note that the comparison constants are uniform in x and t !). The function ρ is the

right-continuous generalized inverse function of r �→ | logf(r)|/g(r); see [26, Lemma

5.2]. Note that (7.21) is the progressive ground state domination (pGSD) property; cf.
Definition 4.2.b).

Therefore, we see that {Ut : t � 0} is pGSD with the exhausting family {Kt : t � t2/θ}
whereKt =Bρ(θt)(0), and we can apply Theorem 5.2 to show that the progressive uniform
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quasi-ergodicity on any space Lp holds. We obtain that there exist γ,t0 > 0 such that for
every a,b ∈ (0,1) such that a+2b= 1 and p ∈ [1,∞], there is a constant c6 > 0 such that

sup
σ∈M1

(
Bρ(aθt)(0)

) sup
f∈Lp(M,μ)

‖f‖p�1

∣∣∣∣ σ(Utf)

σ(Ut1Rd)
−m(f)

∣∣∣∣� c6κb(t), t > (4/(a∧ b))t0,

where

κb(t) := e−γbt+ sup
|x|�ρ(bθt)

Ut01Rd(x).

Because of Theorem 5.5, the measure m is the only quasi-stationary distribution of the

Schrödinger semigroup {Ut : t � 0} – no matter how slowly V grows at infinity. We need

to verify only the condition (5.5). To this end, we observe that by [26, Corollary 5.6 b)],

there are constants c7,c8 > 0 such that

eλ0tUt1Rd(x) � c7e
−(c8V (x)−λ0)t, |x| � ρ(θt),

for sufficiently large values of t. Since V (x)→∞ as |x| →∞ and ρ(t)→∞ as t→∞, this

implies (5.8), which is equivalent to (5.5).

Example 7.4. Let us illustrate these results for two specific classes of Lévy measures

and potentials. See Section 7.1.1 for the notation.

a) (polynomial Lévy densities; cf. [26, Section 5.4, Example 5.7]): let

ν(x)� |x|−d−α(e∨|x|)−δ, α ∈ (0,2), δ � 0,

and let V (x) = (1∨ log |x|)β , β > 0. Then we have the following:
• if β � 1, then the corresponding Schrödinger semigroup is in the aGSD regime

and exponential uniform quasi-ergodicity holds; see Part (2) above;
• if β ∈ (0,1), then the semigroup is in the non-aGSD regime; it is pGSD and

progressive uniform quasi-ergodicity holds; see Part (3). We have

ρ(t) = exp
(
t1/(1−β)

)
and κb(t)� exp

(
−c9

(
t∧ t

β
1−β

))
, (7.22)

for large values of t, with different constants c9 in the lower and in the upper
bound. The rate κb(t) is exponential for β � 1/2, and subexponential (stretched-
exponential) for β < 1/2.

b) (exponential Lévy densities; cf. [26, Section 5.5, Example 5.10]): let

ν(x)� e−m|x|(1∧|x|)−d−α(1∨|x|)−δ, m > 0, α ∈ (0,2), δ > (d+1)/2,

and let V (x) = (1∨|x|)β , β > 0. Then we have the following:
• if β � 1, then the corresponding Schrödinger semigroup is in the aGSD regime

and exponential uniform quasi-ergodicity holds; see Part (2) above;
• if β ∈ (0,1), then the semigroup is in the non-aGSD regime; it is pGSD and

progressive uniform quasi-ergodicity holds; see Part (3). We have

ρ(t) = t1/(1−β)

for large values of t, but the rate κb(t) takes the same form as that in (7.22).
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Theorem 4.6 also shows that any semigroup {Ut : t � 0} with finite heat content (for

large times) is automatically pGSD; moreover, progressive uniform quasi-ergodicity holds

with exponential time-rate. For polynomial Lévy densities, this result is not interesting
as we already know that in this case, (7.18) is equivalent to (7.20). However, for faster

decays, the assertions of the theorem are nontrivial. For instance, in the exponential case,

one can check that Theorem 4.6 implies pGSD and progressive uniform quasi-ergodicity
with the exhausting family {Kt : t � t0} where Kt =Bct(0), for a constant c > 0.
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[38] M. Kwaśnicki, Intrinsic ultracontractivity for stable semigroups on unbounded open sets.
Potential Anal. 31 (2009), 57–77.
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