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Abstract

For a maximal coaction S of a discrete group G on a C* -algebra A and a normal subgroup A' of G, there
are at least three natural A Xj G x^ N — A x4| G/N imprimitivity bimodules: Mansfield's bimodule
Y£/N (A); the bimodule assembled by Ng from Green's AxsGxiGx^G/N—AxgGx^N imprimitivity
bimodule X%(A xt G) and Katayama duality; and the bimodule assembled from X^(A xs G) and the
crossed-product Mansfield bimodule Y°/G(A) x G/N. We show that all three of these are isomorphic, so
that the corresponding inducing maps on representations are identical. This can be interpreted as saying
that Mansfield and Green induction are inverses of one another 'modulo Katayama duality*. These results
pass to twisted coactions; dual results starting witrTan action are also given.

2000 Mathematics subject classification: primary 46L55.
Keywords and phrases: C* -algebra, coaction, duality.

1. Introduction

Ng has recently observed [12] that an abstract Morita equivalence between a restricted
coaction crossed product A xS[ G/N and the iterated dual action crossed product
A xs G X| N can be pieced together from Green's imprimitivity theorem [6, Theo-
rem 6] and Katayama duality [9, Theorem 8], thus giving a relatively non-technical,
nonconstructive proof of Mansfield's imprimitivity theorem [11, Theorem 27]. How-
ever, in applications—especially those concerning induced representations—it is often
necessary to work with an explicit bimodule. Because Morita equivalence relations
are composed with one another by tensoring the corresponding imprimitivity bimod-
ules together, Ng's transitivity argument does implicitly provide a bimodule. Thus
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the natural question arises as to whether Ng's bimodule is in fact isomorphic to
Mansfield's.

In more detail: Ng considers a nondegenerate reduced coaction <5 of a locally
compact group G on a C*-algebra A, and a closed normal amenable subgroup N
of G. An application of Green's theorem to the dual action (A xs G, G, 8) gives an
AxsGxgGxJ! G/N — A xs Gxj(N imprimitivitybimoduleX%(A xs G). Moreover,
looking closely at Katayama's duality theorem, one can derive an isomorphism 0 of
A xs G x& G X|! G/N onto (A xS] G/N) ® JT(L2(G)), and this latter algebra is
Morita equivalent to A xS\ G/N via the bimodule (A xS\ G/N) <g> L2(G). Implicitly,
then, Ng's A xs G xj( N — A xi( G/N imprimitivity bimodule is the tensor product

X$(A xs G) <g>@ ((A x,, G/N) ® L\G)).

(Here the tilde denotes the reverse bimodule.) Let Yg,N(A) denote Mansfield's im-
primitivity bimodule. Then the question in question is precisely whether

(1.1) XG
N(A xs G) ( g w * * Yg/N(A) S (A xS] G/N) ® L2(G)

as imprimitivity bimodules. In other words, modulo crossed-product duality, are
Green and Mansfield induction inverses of one another?

This and related questions concerning actions, twisted actions, and twisted coac-
tions are addressed in the present paper in the context of discrete groups and full
coactions. Our approach is to exploit the natural equivariance of the Mansfield and
Green bimodules. For instance, in Section 3, we consider a maximal discrete coaction
(A, G, S) and Mansfield's A xs G x$ G — A imprimitivity bimodule YGfG(A), which

carries a 8 - 8 compatible bimodule coaction Sr. If in addition N is a normal subgroup
of G, Theorem 3.1 states that

(1.2) XG
N(A xs G) ® , x C x , Y°/N(A) = Y°/G{A) x n G/N

asAxsGxgGx^ G/N — A x S] G/N imprimitivity bimodules. The only difference
between (1.1) and (1.2) is the bimodule on the right-hand sides; but these turn out
to be isomorphic (see the proof of Theorem 7.1). Thus Mansfield induction of
representations from Rep A xi( G/N to Rep A xsGx$N via YG/N (A) can be 'undone'
by Green induction via X%(A xs G) followed by Katayama duality to get from
Rep A xs G x$ G xj. G/N back to Rep A x^ G/N. In this sense we can usefully
view Mansfield and Green induction as inverse to one another. In Section 4, we
obtain results dual to those of Section 3, starting with an action instead of a coaction.
In Section 5 we show that the results of Section 3 pass to twisted coactions, and in
Section 6 we round out this square of ideas with a set of results for twisted actions.

In Section 7 we return to the comparison between Ng's bimodule and Mansfield's.
This is done by first establishing (1.1) for full coactions and discrete groups, and
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then dropping it down to reduced coactions. In general, we feel that this approach—
establishing results first for full coactions, and later passing to quotients if results
for reduced coactions are desired—is more efficient and cleaner conceptually than
working with reduced coactions directly. On the other hand, we work with discrete
groups simply to avoid many of the technicalities associated with coactions of general
locally compact groups; also, this is the only context in which we have induced
algebras for coactions, which appear in Section 6. There is no reason to believe that
the other results in this paper will not hold in the general case. In fact, Theorem 3.1
and Theorem 4.1 will appear in [2] for locally compact groups, but only as a product
of the extensive machinery developed therein. The proofs here are considerably more
direct, and more instructive.

2. Preliminaries

In this preliminary section we collect the formulae relevant to crossed products and
imprimitivity theorems involving actions and coactions of discrete groups. Because
the groups are discrete, the theory acquires quite an algebraic flavour, and to take
full advantage of this we translate the standard machinery involving locally compact
groups to our context.

Coactions. Let <5: A -*• A ® C*(G) be*"a coaction of a discrete group G on a C*-
algebra A. Because G is discrete, the spectral subspaces [As : s e G] of S densely
span A, and the union sf := [JS^CAS (more precisely, the disjoint union, but this
abuse will cause no harm, since the spectral subspaces are linearly independent) forms
a Fell bundle over G. As shown in [1], the coaction on A sits 'between' a 'maximal'
coaction on the full cross-sectional algebra C*(s/) and a 'minimal' coaction on the
reduced cross-sectional algebra C*(s/). Although the crossed product A xs G and
the covariant representations of the coaction cannot distinguish among the various
possibilities between the extremes C*{sf) and C*(£/), some other constructions can.
In particular, the imprimitivity theorems we need require the full cross-sectional
algebra. Therefore, we assume throughout that A = C*(si/), and we call the coaction
S maximal in this case.

The crossed product A xs G is densely spanned by the Cartesian product si/ x G,
where As x {t} has the obvious vector space structure for all s, t e G, and the
multiplication and involution are given on the generators by

(ar, s)(b,, u) = (arbt, u) if s = tu (and 0 if not)

Since the coaction S is maximal, A xs G is the enveloping C*-algebra of the linear
span of the generators; that is, any operation-preserving mapping of the generators
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into a C*-algebra C extends uniquely to a homomorphism A x s G —> C. If (B, G, e)
is another coaction and <p: A —> B is an equivariant homomorphism (equivalently,
4>{AS) c Bs for each s e G), then we can 'integrate up' to get a homomorphism
<p x G: A xs G ^- B xf G defined on the generators by

The dual action 8 of G on A xs G is given on the generators by

8,(ar,s) = (ar,srl).

If N is a normal subgroup of G, the coaction S restricts to a maximal coaction <5|
of G/A7 on A, and the crossed product A xS] G/N is densely spanned by si x G/N,
with operations

(ar,sN)(b,,uN) = (arb,,uN) if sN = tuN (and 0 if not),

(as, tN)* = (a;, *fAO,

and maps nondegenerately into M(A xs G) by

(aj, tN) i->- ^ ( f l j , f«) (strictly convergent).

There is a decomposition coaction 5dec of G on the restricted crossed product A xS\
G/N, given on the generators by

A coaction (A, G, 8) is twisted over G/A' (see [13]) if there is an orthogonal family
{p,N : tN e G/N} of projections in M(Ae) which sum strictly to 1 in M(Ae), and
such that

asp,N = ps,Nas f o r a l l s,t € G .

The twisted crossed product A xSG/N G is the quotient of A xs G by the ideal generated
by differences of the form

(as,t) -(asplN,t).

We denote the quotient map by q: A xs G —> A xi-G/N G, and we write

[a,, t] := q(as, t).
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The ideal ketq is invariant under the restriction S\N, and we denote the corresponding
action of N on A X&G/N G by 8. We also define the 'restriction' q\ by the commutative
diagram

G/N • M(A xs G)

and we write [as,tN] := q\(as,tN). It is shown in [13] that [as,tN] i->- asp,N
extends to an isomorphism q(A xSi G/N) = A.

Let e be a maximal coaction of the quotient G/N on A. It is shown in [4] that there
is an induced maximal coaction (Ind A, G, Inde) with spectral subspaces

(IndA)s = AsN x {s},

and where the generators have the coordinate-wise operations

(asN, s)(blN, t) = (asNblN, st) and (asN, s)* = (a*N, s~l).

Actions. Let or: G —> Aut B be an action of the discrete group G on a C* -algebra B.
The crossed product B xa G is densely spanned by the Cartesian product BxG, where
B x {s} has the obvious vector space structure for all s € G, and the multiplication
and involution are given on the generators by

(a, r)(b, s) = (aar(b), rs) and (a, /•)* = (ar-i (a*), r~l).

Again, B xa G is the enveloping C*-algebra of the span of the generators, and if
(C, G, &) is another action and <p '• B -> C is an equivariant homomorphism, then we
can integrate up to get a homomorphism 0 x G: B xa G -»• C xp G defined on the
generators by

The dual coaction a of G on B xa G is given on the generators by

a (a, r) = (a, r) <8> r.

The decomposition action adec of G on the restricted crossed product B xa\ N is
given on the generators by

https://doi.org/10.1017/S1446788700003013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003013


402 S. Kaliszewski and John Quigg [6]

An action (B, G, a) is twisted over N (see [6]) if there is a unitary homomorphism
n H* un: N —*• M(B) such that

as(un) = usns-< and an(b) = unbu*.

The twisted crossed product B xaN Gis the quotient of B xa G by the ideal generated
by differences of the form

(bun,s) - (b,ns).

We denote the quotient map by q: B xa G -> B xa N G, and we write

lb,s]:=q(b,s).

We denote the dual coaction of G/N on B xaN G by a. We also define the 'restriction'
q\ by the commutative diagram

B xa G

and we write [b, n] := q\(b, n). It is shown in [6] that [b, n] i-> bun extends to an
isomorphism q(B xa] N) = B.

Let (i be an action of the normal subgroup N on B. We identify the induced algebra
Ind B as the c0-section algebra of a C*-bundle G xN B over G/N. Specifically, N
acts diagonally on the trivial C*-bundle G x B -> G by n(s, b) := (sn~l, fin(b)), and
the associated orbit space G xN B has a natural C*-bundle structure over G/N: we
denote the orbit of a pair (s, b) by [s, b], and the fiber over sN is [[s, b] : b e B}. The
induced action (Ind B, G, Ind/J) is given on the generators by lndps([t, b\) = [st, b\.

Commutative diagrams of bimodules. Most of this paper concerns imprimitivity
bimodules, but a few times (in Section 5 and Section 6) we will need the following
more general concept: a right-Hilbert A — B bimodule is a Hilbert B-module X
equipped with a left A-module action by adjointable maps (which are automatically
bounded and fl-linear). We will assume throughout that the right inner product is
full and the left action is nondegenerate. For example, a surjective homomorphism
<j>: A -*• B determines a right-Hilbert bimodule ABB with the obvious right B-module
action, left A-module action a • b := <p{a)b, and right inner product (b, c)B '•= b*c.
Moreover, in this situation any right-Hilbert B — C bimodule X can also be regarded
as a right-Hilbert A — C bimodule with left A-module action ax := 0(a) • x.

When X is an A — B imprimitivity bimodule, we use the more-or-less standard
notation X for the reverse bimodule; recall that this is a B — A imprimitivity bimodule
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which coincides with X as a set, although for clarity the element of X corresponding
to an element x € X is denoted by x, and the module actions and inner products are
given by

bx=x~T\ xa = a*~^x, B{x, y) = (x, y)B, and (x, y)A = A{x, y).

We have found it convenient to signify right-Hilbert bimodule isomorphisms using
diagrams: given right-Hilbert bimodules A XB, B Yc, and A Z c , when we say the diagram

commutes, we mean X <g>B Y = Z as right-Hilbert A — B bimodules, and similarly
for rectangular diagrams, etc.

For example, when A X B is an imprimitivity bimodule, the whole point of the reverse
bimodule X is that the diagram

L
commutes.

If^Xfl and CYD are right-Hilbert bimodules and (p: A -> C and \j/\ B -> D a r e C -
homomorphisms, a linear map O: X —>• K is a right-Hilbert bimodule homomorphism
with coefficient maps <f> and i/̂  if it preserves the bimodule actions and the right inner
product, that is,

(i) <D(a-x) = 0(a).<t>(^),
(ii) <i>(x-b) = 4>(JC) • ^ ( * ) , and

(iii) <<t>«, <DO0>D = y«*,;y>B)

for all a e A, b € B, and ;c, y € X. If 0 and Vf are isomorphisms and <t> has dense
range, then $ is also an isomorphism, and if X and Y are imprimitivity bimodules
then <t> is an imprimitivity bimodule map.

An easy modification of [17, Lemma 2.2] shows that the B-linearity condition (ii)
is redundant; in fact, if Xo and Ao are dense subspaces of X and A, respectively, and
if <J>: Xo -*• Y is a linear map satisfying (i) and (iii) above for all x, y € Xo and
a e Ao, then <J> uniquely extends to a right-Hilbert bimodule homomorphism of AXB

into CYD- Indeed, if S c X linearly spans Xo, T c. A linearly spans Ao, * satisfies
(i) and (iii) on 5 and T and extends linearly to Xo, then the same conclusion holds.
We will repeatedly use this fact without comment.
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Given an imprimitivity bimodule homomorphism AXB -*• CYD with dense range
and surjective coefficient maps 0 : A -*• C and f: B -*• D, by [8, Lemma 5.3] the
diagram

C — D

commutes.

Bimodule crossed products. Let Z be an A — B imprimitivity bimodule, and let
r) : Z -*• Z <8> C*(G) be a bimodule coaction which is compatible with coactions
8 on A and e on B (see [5]). Then the spectral subspaces [Zs : s e G} densely
span Z, and the bimodule crossed product Z x , G is densely spanned by the pairs
[(xs, t) : s, t 6 G,xs € Zj}, and is an A xs G — B x( G imprimitivity bimodule with
operations given on the generators by

(ar, s) • (x,, u) = (ar • x,, u) if 5 = tu (and 0 if not),

Axc((.xr,s), (y,,u)) — (A(xr,y,),tit) if s = u (and 0 if not),

(xr, s) • (b,, u) = {xr • b,, u) if s = tu (and 0 if not),

{(xr, s), (y,,u))BxG = ({xr,y,)B, «) i f " = tu (and 0 if not).

The dual action ij of G on Z x , G is given on the generators by

fj,(xr,s) = (xr,st~l).

Similarly, if y is an action of G on Z which is compatible with actions a on A and
fi on B, then the crossed product Z xY G is densely spanned by the Cartesian product
Z x G, and is an A xa G — B xp G imprimitivity bimodule with operations given on
the generators by

(a, r)- (x,s) = (a-ar(x),rs), Axc((x, r), (y,s)) = (A(x,ars->(y)), rs~l),

(x,r) • (b,s) = (x -ar(b),rs), {(x,r), (y,s))BxC = (ar-i((x,y)B), r^s).

The dual coaction y of G on Z x Y G is given on the generators by

y(x,r) = (x,r)®r.

Imprimitivity theorems. Let (A, G, S) be a maximal discrete coaction, and let N
be a normal subgroup of G. By the version of Mansfield's imprimitivity theorem due
to Echterhoff and the second author [3, Theorem 3.1], there exists an A xs G xj(

https://doi.org/10.1017/S1446788700003013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003013


[9] Three bimodules for Mansfield's imprimitivity theorem 405

N - A xSi G/N imprimitivity bimodule Yg/N(A). Mansfield's bimodule is densely
spanned by the Cartesian product srf x G, with operations given on the generators by

(ar, s, n) • (b,, u) = (arb,, un'1) if sn — tu (and 0 if not),

A*G*N((ar,s), (b,,u)) = (arb*,ts, s~lu) ifsN = uN (and 0 if not),

(ar, s) • (b,, uN) = (arb,, rls) if sN = tuN (and 0 if not),

((ar,s), (b,, u))AxG/N = (a*bt, uN) if rs = tu (and 0 if not).

It is easy to see that Y(A) is functorial in the sense that if (B, G, e) is another coaction
and <p: A —• B is an equivariant homomorphism then (as, t) i->- (4>(as), t) extends
to an imprimitivity bimodule homomorphism 4>: Y(A) -*• Y(B) with coefficient
homomorphisms <p x G x N and 0 x G/N. Moreover, <I> is surjective if <f> is, and
a similar comment applies to the imprimitivity bimodules X(B), U(A), and V(B)
described below.

Dually, for an action (B, G, a) and a normal subgroup N of G, Green's imprimi-
tivity theorem [6, Proposition 3] provides a B xa G x^ G/N — B xaiN imprimitivity
bimodule X%(B). Green's bimodule is densely spanned by the Cartesian product
B x G, with operations given on the generators by

(a, r, sN) • (b, t) = (aar(b), rt) if sN = tN (and 0 if not),

BxGxc/N((a,r),(b,s)) = (aars-i(b*), rs~l, sN),

(a, r) • (b, n) = (aar(b), m),

((a, r), (b, s))BxN = (ar-. (a*b), r~ls) if rN = sN (and 0 if not).

X(B) is functorial in the sense that if (C, G, /3) is another action and <f>: B -*• C is
an equivariant homomorphism then (b, s) t-t (<(>(b), s) extends to an imprimitivity
bimodule homomorphism X(B) -> X(C) with coefficient homomorphisms <t> x G x
G/N and <p xN.

If the coaction (A, G, S) is twisted over G/N, then the quotient map q: A xs G ->
A xsc/N G restricts to a surjection q\: A xsl G/N -*• A, giving us an ideal ker#| of
A x G/N. Inducing across Mansfield's bimodule Y via the Rieffel correspondence
gives an ideal K-Ind(ker^l) of A xs G x^ N, and [13, Theorem 4.1] shows that this
ideal is precisely ker(g x N). Rieffel's theory thus gives an A xSG/N G x$ N — A
imprimitivity bimodule

Z$/H(A):=Y/(Y-lxTq\).

Moreover, the diagram \

AxsGx^N—Y—~AxslG/N ,

I
qxNl

A XS,G/N G x-s N • A
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commutes.
Dually, if the action (B, G, a) is twisted over N, by [6, Corollary 5] we have a

B xaN G x&\ G/N - B imprimitivity bimodule Wfi(B) := X/(X • ker^l), and we
get a commutative diagram

B xaG xd, G/N —^— B xo | N

B xa,N G xa G/N — B.

If € is a maximal coaction of the quotient G/N on A, the recent imprimitivity
theorem for induced coactions [4, Theorem 4.1] gives an Ind A xind( G — A x( G/N
imprimitivity bimodule Ug/N(A) densely spanned by the subset

{(asN, t):sN € G/N, asN € A s N , t € G]

of the Cartesian product A x G, with operations given on the generators by

(asN,s, t)(buN,v) = (asNbuN,sv) -- if t = v (and 0 if not),

(asN, t)(buN, vN) = (asNbuN, t) if tN = suvN (and 0 if not),

in*Axc((asN, t), (buN, v)) = (asNb*uN, tv~\ v) if s~xtN = u~lvN (and 0 if not),

{(asN, t), (buN, v)}AxG/N = (a*NbuN, u~lvN) if t = v (andOif not).

U(A) is functorial in the sense that if (B, G/N, rj) is another coaction and (f>: A —> B
is an equivariant homomorphism then (asN, t) H> (4>(asN), t) extends to an imprim-
itivity bimodule homomorphism U(A) -> U(B) with coefficient homomorphisms
Ind<£ x Gand0 x G/N.

Dually, if /J is an action of the normal subgroup N on B, the imprimitivity the-
orem for induced actions (sometimes attributed to Green [6, Theorem 17]) gives an
Indfi xInd/) G — B xp N imprimitivity bimodule Vfi(B) densely spanned by the
Cartesian product B x G, with operations given on the generators by

(\tr, b], t)(c, r) = (be, tr), (b, s)(c, n) = (fl,-. (be), sn),

IndflxG<(fc, S), (C, t)) = ([S, be*], St-1), ((b, S), (c, sh))BxN = (b*Bh(c), k).

V(B) is functorial in the sense that if (C, N, /?) is another action and 0: B -*• C is
an equivariant homomorphism then (b, s) \-* (4>(b), s) extends to an imprimitivity
bimodule homomorphism V(B) -> V(C) with coefficient homomorphisms Ind <(>xG
a n d <j> x N.
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3. The Mansfield-Green triangle

In this section we show a curious duality between the Mansfield and Green imprim-
itivity theorems. Theorem 3.1 will show that, roughly speaking, and modulo crossed
product duality, Mansfield and Green induction are inverse processes.

Let (A, G, 8) be a maximal discrete coaction, and let AT be a normal subgroup of G.
Not only do we have Mansfield's A xs G x^N — A xS\ G/N imprimitivity bimodule
YQ/N(A), but also, replacing N by G, an A xs G xa- G — A imprimitivity bimodule

Yg/G(A). There is a 8 - 8 compatible coaction 8Y of G on Yg/C(A) ([3, Remark 3.2])
determined by

8Y(ar,s) = (ar,s)®s~1.

THEOREM 3.1. Let(A, G, 8) be a maximal coaction and let N be a normal subgroup
of G. Then the diagram

VG ( i \

A x,| G/N

Y<j/c(A)xG/N

., G/N

commutes.

PROOF. There is an imprimitivity bimodule isomorphism

d>: Y{A) x G/N <g> Y\A) -^> X(A x G)

defined on the generators by

<fr((ar, s, tN) <g> (bu, v)) = (arb*u, us, s~lv) if tN = vN (and 0 if not),

since straightforward calculations verify that the above mapping on generators pre-
serves the left action and the right inner product. •

REMARK 3.2. To motivate the formula for O, note that

*((flr, s, tN) <g> (cvTv)) = AxGxc((ar, s), (cu, v)} if tN = vN (and 0 if not),

where (ar, s) and (cu, v) are viewed as elements of Y£/C(A), and the inner product is
viewed as taking values in X%(A xs G).

The next two results will not be needed until Section 5; we include them here
because they don't involve twists, and are of general interest.
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PROPOSITION 3.3. Let (A, G, S) be a coaction, and let N be a normal subgroup
ofG. Then A xs G x j G xj, G/N = A x4 | G/N xs*c G x j s G.

PROOF. Straightforward calculations verify that the mapping

(ar, s, t, uN) )-*• (ar, stuN, s, t)

on the generators preserves the operations, hence extends to a homomorphism <p: Axs

G Xg G X|j G/N -> A xS\ G/N xs*c G x j s G, since the crossed product is the
enveloping C*-algebra of the linear span of the generators. On the other hand, the
mapping (ar, uN, s, t) H* (ar, s, t, t~ls~luN) is the inverse of </> on generators, hence
also preserves operations, and hence extends to a homomorphism \jr: A x S\ G/N Xj*<
G Xj35 G -*• A xsG x-sG xjj G/N. Now rjscxpis the identity map on generators, so
Tjfo<j> = id, by uniqueness of extensions to enveloping algebras. Similarly, <p o \\r = id,
so that xfr = <f>~1. Therefore, <p is an isomorphism of A xf G X J Gx= G/N onto
A Xi, G/N x«*c G X*E G. •

PROPOSITION 3.4. Let (A, G, S) be a coaction and N a normal subgroup of G.

Then the diagram

A xsl G/N
Y°,G(A)xG/N ^

Y<j/c(AxG/N)

AxsGxiG X|, G/N —5— A x4, G/N x i f e G x^ G

commutes, where the isomorphism is that of Proposition 3.3.

PROOF. There is an imprimitivity bimodule isomorphism

0 : Y(A) x G/N —=- Y(A x G/N)

defined on the generators by ®(ar, s, tN) = (ar, tN, s), since straightforward calcu-
lations verify that the above mapping on generators preserves the left action and the
right inner product. D

4. The dual triangle

The results of this section are dual to those of the previous section, in the sense that
actions correspond to coactions, Green bimodules correspond to Mansfield bimodules,
and subgroups correspond to quotient groups. The only additional apparatus we need
is to observe that if (fi, G, at) is a discrete action then there is an a — a compatible
action ax of G on Xf(B) given on the generators by

a?(a,s) = (a, sr'1).
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THEOREM 4.1. Let (B, G,a) be an action an let N be a normal subgroup of G.
Then the diagram

B xaGxaG x4) N

commutes.

PROOF. There is an imprimitivity bimodule isomorphism

4>: (Xf(B) xN)® X°(B) -±> Y<!/N(B x G)

defined on the generators by

i, r, n) ® (b, s)) = (aarns-i(b*), rns'1, sn~l)

since straightforward calculations verify that the above mapping on generators pre-
serves the left action and the right inner product. •

REMARK 4.2. To motivate the formula for 4>, note that

<D((a, r, n) <g> ( M ) ) = BxGxc((a, r), ax
n(b, s)},

where (a, r) and (b, s) are viewed as elements of Xf(B), and the inner product is
viewed as taking values in Y£/N(B xa G).

In analogy with the previous section, the next two results will not be needed until
Section 6; they are presented here for convenience and general interest.

PROPOSITION 4.3. Let(B, G, a) be an action and let N be a normal subgroup ofG.
Then B xa G xa G x^ N = B xo, N xa*» G x^ G.

PROOF. Straightforward calculations verify that the mapping

(a, r, s, n) i-* (a, rsns~lr~l, rsn~xs~l, sn)

on the generators preserves the operations and is invertible on generators, and there-
fore extends to a C*-isomorphism by the same argument used in the proof of Propo-
sition 3.3. •
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PROPOSITION 4.4. Let(B,G,a) be an action and let N be a normal subgroup of G.
Then the diagram

B xaGxaG x«| N

B xa, N

X°(B)xN

a ,
Xf(BxN)

B xa,N

commutes.

PROOF. There is an imprimitivity bimodule isomorphism

0: X(B) x N -^* X(B x N)

defined on the generators by &(a, r, n) = (a, rnr~\ r), since straightforward calcu-
lations verify that the above mapping on generators preserves the left action and the
right inner product. •

5. The twisted Mansfield-Green square

Let (A, G, S) be a maximal discrete coaction, and let N bea. normal subgroup of G.
Combining Theorem 3.1 and Corollary 3.4, we get a commutative rectangle

AxsG X,-, N A xsl G/N

(5.1)

A xsG Xj G xj, G/N —=— A xsl G/N xs*c G " Jidec C j .

Now suppose the coaction S is twisted over G/N. Then the top arrow of Diagram (5.1)
has

A XS.G/N G x j N • A

as a quotient. The imprimitivity bimodules in (5.1) above determine corresponding
ideals of the bottom corners, and we can form a quotient commutative rectangle with
upper right corner A. What happens to the rest of the diagram? We will answer this
question in the present section.

However, we first modify the lower left corner of Diagram (5.1); the action 8 of
N on A XG/N G does not extend to G, so the Green bimodule X% on the left edge
of (5.1) will not pass to a Green bimodule in the quotient. Rather, it will be more
appropriate to use the bimodule arising from the imprimitivity theorem for induced

https://doi.org/10.1017/S1446788700003013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003013


[15] Three bimodules for Mansfield's imprimitivity theorem 411

actions. The action 8 of N on A x G/N G induces to an action Ind 8 of G on the induced
algebra Ind(A xG/N G), and we have an Ind (A xG/N G) xIndj G — (A xG/N G) x$ N
imprimitivity bimodule Vfi(A xG/N G).

It is shown in [15, Theorem 4.4] that

(asp,N,r) H> [r~'f, [as,t]]

extends to an isomorphism A xs G = Ind(A x&iC/N G) which is equivariant for
the actions 8 and Ind 8 of G. Turning this around and integrating up, we get an
isomorphism

Ind(A xs,c/N G) xInda- G = A x&GxhG.

THEOREM 5.1. If (A, G,8) is a maximal discrete coaction which is twisted over
G/N, the diagram

A xiiG/N G x-s N

Ind(A xJ i G / A, G) | G

commutes.

PROOF. The desired diagram is the inner rectangle of the diagram

(5.2)

AxGxAf AxG/N

qxN

V^(AxG)

A x G/N GxN
t

A
t

I I
Ind(AxG/NG)xG—• AxGxG

/" " X
Ind^xG <7lx(

\

Ind(A xG)xG Ax G/N xGxG.

(Here and in Diagram (5.3) the action and coaction symbols have been omitted for

clarity.) We will show how to fill in the bottom arrow so that each of the outer

rectangle and the top, bottom, left, and right quadrilaterals commute. Since Ind qxG

is surjective, the result will then follow from standard bimodule techniques.
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Consider the diagram

AxGxN

(5.3)

X%(AxG)

AxGxGxG/N

AxG/N

Yg/a(AxG/N)

lnd(AxG)xG ^AxG/NxGxG.

Since the action <5| of N extends to G, it follows from standard facts concerning
induced actions that

([s, a,, r], u) !-»• (a,, rs x, u, u~lsN)

extends to an isomorphism Ind(A xs G) xInd^ G = A xs G x$ G xj G/N. Then
an easy check on the generators shows that (as, t, r) K-> (as, tr~l, r) extends to an
isomorphism V(A xs G) = X(A xs G) of lnd(A xs G) x , ^ G — A xs G x^ N
imprimitivity bimodules. This shows the left triangle of Diagram (5.3) commutes.
The inner quadrilateral in (5.3) is the commutative diagram (5.1). We define the
isomorphism Ind(A xs G) xlnd^ G = A xS\ G/N xs^ G x^s G at the bottom arrow
of (5.3) so that the bottom triangle commutes! On the generators, this isomorphism is
given by

([s, a,, r],u)v+ (a,, rN, rs~l, «).

Thus the outer rectangle in Diagram (5.2) commutes.
We noticed in Section 2 that the top quadrilateral in (5.2) commutes.
For the right quadrilateral, Y(B) is functorial in B, so the homomorphism q\ :

A xS\ G/N —• A yields an imprimitivity bimodule homomorphism Y(q\): Y(A xS\
G/N) -*• Y(A) with the desired coefficient homomorphisms. As we mentioned in
Section 2, by [8, Lemma 5.3] this implies the quadrilateral commutes.

Similarly, the left quadrilateral commutes by functoriality of V(B): the homomor-
phism q: A Xj G —> A XS,G/N G yields an imprimitivity bimodule homomorphism
V(q): V(A xs G) —> V(A xS-G/N G) with the desired coefficient homomorphisms.

Finally, the bottom quadrilateral in (5.2) commutes by a routine computation on
the generators. •

6. The twisted dual square

In this section we introduce a twist into Theorem 4.1, just as in the preceding
section we threw a twist into Theorem 3.1; unsurprisingly, the development will
closely parallel that of Section 5.
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Let (B, G, a) be a discrete action which is twisted over a normal subgroup N in the
sense of [6]. Theorem 4.1 and Corollary 4.4 together give a commutative rectangle

(6.1)

B xa G x5, G/N

Y°/lt(BxG)

B xaGxaG x^

B

B xaiN

Xf^BxN)

* G x-35 G.

As in the preceding section, in order to form a suitable quotient diagram we need to
replace the lower left corner by an induced algebra.

The dual coaction a of G/N on the twisted crossed product B xaN G induces
to a coaction Inda of G on the induced algebra Ind(fi xaN G), and we have an
Ind(B xa,N G) xInd5 G — (B xaN G) xa G/N imprimitivitybimodule Ug/N(B xaN G).

It is shown in [4, Theorem 5.6] that

(b,s) h+ ([b, s],s)

extends to an isomorphism B xa G = Ind(# xaN G) which is equivariant for the
coactions a and Inda of G. Turning this around and integrating up, we get an
isomorphism

Ind(B xaN G) xIndi G = B xa G xa G.

THEOREM 6.1. If( B, G,a) is a discrete action which is twisted over N, the diagram
W%(B)

B xa,N G xa G/N • B

Ind(B xa,N G) xind« G —^— B xa G xa G

commutes.

PROOF. The desired diagram is the inner rectangle of the diagram

BxGxG/N — • BxN

qxG/N

(6.2)

-
BxNGxG/N

t
t

I
lnd(BxNG)xG^~ BxGxG

\ndqxG

lnd(BxG)xG

XfABxN)

q\xGxG

\

. BxNxGxG.
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Consider the diagram
Xg(fl)

BxGxG/N -BxN

(6.3) BxGxGxN
T

lnd(BxG)xG • BxNxGxG.

It follows from [3, Remark 3.3] that the map

(b, s, sn, t) i-» (b, s, nt, t~xn~xt)

extends to an isomorphism Ind(fi xo G) xIndi| G = B xa G xa G x^ N, and this
serves as the left-hand coefficient map for an isomorphism U(B xa G) = Y(B xa G),
hence the left triangle of the diagram (6.3) commutes. The inner quadrilateral is the
commutative diagram (6.1). We define the isomorphism Ind(B xa G) xInd(i| G =
B xa| N xo*c G xj£ G at the bottom arrow of (6.3) so that the bottom triangle
commutes. On the generators, this isomorphism is given by

(b, s , t,r) i->- (b, s t ~ x , t , r).

Thus the outer rectangle in the diagram (6.2) commutes.
We noticed in Section 2 that the top quadrilateral in (6.2) commutes.
X(A) is functorial in A, so the homomorphism q\: B xal N -> B yields an

imprimitivity bimodule homomorphism X(q |): X(Bxa[N) -» X(B) with the desired
coefficient homomorphisms, so the right quadrilateral commutes.

Similarly, the left quadrilateral commutes because by functoriality of U(A) the
homomorphism q: B xaG —• B xaN G yields an imprimitivity bimodule homomor-
phism U(q): U(B xa G) -> U(B xaN G) with the desired coefficient homomor-
phisms.

Finally, the bottom quadrilateral in (6.2) commutes by a routine computation on
the generators. •

7. Ng's Bimodule

We now return to the comparison between Ng's bimodule and Mansfield's, be-
ginning with maximal coactions and full crossed products. In this context, by 'Ng's
bimodule' we mean the bimodule gotten from the lower three sides of Diagram (7.1);
the map 0 will be defined in the proof of Theorem 7.1 by a construction parallel to
Ng's.
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THEOREM 7.1. If (A, G, 8) is a maximal coaction of a discrete group G and N is a
normal subgroup of G, then Ng's bimodule is isomorphic to Mansfield's; that is, the
diagram

yG /A \

AxsG XJ, N - • A x,, G/N

(7.1)

AxsGx^G xj, G/N - J - (A xS] G/N) ® X(12(G))

commutes.

PROOF. The desired diagram is the outer rectangle of
Y^ (A)

AxsG XJ, N aJl • A xS[ G/N

Yg/c(A)xG/N UAXG/N)®12(G)

AxsGx&G xj, G/N —^ (A x,, G/N) ® X{12(G)).

The upper left triangle commutes by Theorem 3.1, so we must show the lower right
triangle commutes.

We construct the isomorphism 0 as a composition

(7.2) AxsGxgG X|, G/N -% (A ® X) x(l G/N

Here, e2 is the coaction

) o (S\ ® id)

of G/N on A (g) X, where CT : C*(G/N) ® X -+ X ® C*(G/N) is the flip iso-
morphism. It follows from [14, Lemma 1.16 (b)] (see also [16]) that there is an
isomorphism 0 3 of (A <g> X) xe2 G/N onto (A x^ G/N) <g> X defined on the
generators by

®3{asN ® b, tN) = (asN, tN) ® b.

Perpetuating our perverse numbering scheme, we use e2 to define the coaction

€\ : = Ad w o €2

of G/N on A (8) Jt, where u is the unitary element of A/(A ® X ® C*(G/N)) given
by the strictly convergent series
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where Xs denotes the characteristic function of the singleton [s] and MXi the associated
multiplication operator on 12(G). It is easy to see that u is an e2-cocycle (more
precisely, the obvious analogue for full coactions of the more usual cocycles for
reduced coactions—see [10]). It follows from [10, Theorem 2.9] (also see [15,
Proposition 2.8]) that there is an isomorphism 0 2 of (A <g> X) x€l G/N onto (A ®

x(2 G/N defined by

o 0 2 = Ad(id,4gjr ®XG/N)(u*) O

where n, is the regular representation of (A® Jf) xe. G/N onjff ®12{G)®P{G/N)
for i = 1, 2 (and A is faithfully represented on a Hilbert space Jf).

Finally, from [3, Equation (5.1) and Proposition 5.3] we have the isomorphism
<t>: A xs G x$ G -+ A ® X given on generators by

<&{as, /, r ) = as <g> XsMXipr,

where X and p are the left and right regular representations of G. (4> is the isomorphism
of Katayama's duality theorem [9, Theorem 8], but for maximal coactions rather than
reduced ones.) The arguments of [9] (or in this case an easy calculation with the

ys

generators), adapted to our context, show that <J> is equivariant for the coactions S\ and
€\ of G/N; we define ©i = 4> x G/N to be the corresponding isomorphism of the
crossed products.

Careful study of the isomorphisms 0 ] , 02 , and 0 3 now shows that the composition

0 : A Xj G xj G X| G/N ——>• (A x^ G/N) (g> X is given on the generators by

®(as, t, r, qN) = (as, trqN) (8) XsMx,pr-

Using this, straightforward calculations show that there is an A xs G x j G x = G/N —
A xS[ G/N imprimitivity bimodule isomorphism

T: y«?/G(A) xSr G/N ^ > (A x4| G/N)®t2{G)

defined on the generators by T(as,t,rN) = (as, rN) (g> Xsi- d

REMARK 7.2. Taking N = G in Theorem 7.1 shows that Katayama's bimodule (by
which we mean the bottom and right-hand sides of that rectangle, taken together) is
isomorphic to Mansfield's in this special case. This justifies the idea that Mansfield's
theorem 'reduces to Katayama's' when N = G, a fact which is well known to the
cognoscenti, but to our knowledge has not explicitly appeared in the literature.

To complete the connection with Ng's theorem, we need to pass to reduced coactions
and amenable subgroups in Diagram 7.1. Here we use Y(A, S) to denote the A
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N - A Xj| G/N imprimitivity bimodule provided by the original form of Mansfield's
Imprimitivity Theorem [11, Theorem 27]. The isomorphism ®r: A xs G x j G x^
G/N -+ (A xsi G/N) <g> Xifi) is constructed as in Equation (7.2).

COROLLARY 7.3. If {A, G, S) is a reduced coaction of a discrete group G and N is
an amenable normal subgroup of G, then Ng's bimodule is isomorphic to Mansfield's;
that is, the diagram

AxsG xj | N — • A xsl G/N

X(AxsG)

AxsG Xs G xj, G/N _ ^ - (A x,, G/N) <g>

commutes.

PROOF. Since G is discrete, the coaction S is automatically nondegenerate, so by
[14, Theorem 4.7] there is a unique full coaction Sf of G on A whose reduction coin-
cides with S, and then [14, Proposition 3.8] gives an isomorphism AxsG —^ A x # G;
it is easy to see that this isomorphism is equivariant for the dual actions. Then
[3, Proposition 5.3] applies, giving a maximal coaction (Am, G, Sm) (the 'maximal-
ization' of Sf) and an equivariant surjection * : Am -*• A whose integrated form
* x G: i4m x s . G - > A Xj/ G i s a n isomorphism which is equivariant for the dual
actions. Then 4* is also equivariant for the restricted coactions Sm\ and Sf \, hence
certainly gives a surjection

* x G/N: Am Xi.| G/N -+ A xsfl G/N.

Since Sf is the normalization of 8m, [3, Theorem 3.4] tells us that, if / = ker * x G/N,
then the ideal of Am xs» G xpi N induced from / via the Mansfield imprimitivity
bimodule Y(Am) coincides with the kernel of the regular representation

Am xs. G xp{ N - • Am xs- G xplr N,

so that Y/(Y • / ) is canonically an Am xs* G xpsUr N - A Xj/, G/N imprimitivity
bimodule. But N is amenable, so the regular representation of Am xs* G xp\ N is
faithful. Hence we must have / = {0}, so * x G/N is actually an isomorphism of
Am x j - | G/N onto A x*,, G/N.

It is now clear from the constructions that the identity map on the ordered pairs
{{as, t) : s, t € G) extends to an isomorphism

Y(Am) -^> Y(A,Sf)
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of the Mansfield imprimitivity bimodule Y(An) used in the present paper onto the
version of the Mansfield bimodule associated to the normal coaction Sf in [7]. Thus
the diagram

Am xg- G xp, N - ^ i A" G/N

A xsr G x#, N • A x*/, G/N

commutes. On the other hand, one of the main points of [7] is that the diagram

A Xsr G X£n N —'-— A Xst\ G/N

A xs G xj, N • A xsi G/N

commutes; combining these shows that the top quadrilateral of the diagram

1 ' Amxs-\G/N

commutes. Since the outer rectangle commutes by Theorem 7.1, and the left, right,
and bottom quadrilaterals are easily seen to commute, we conclude that the inner
rectangle commutes as well. •
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