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1. Introduction. The fractional part of the sequence {ank}, where a is an irrational
real number and k is an integer, was first studied early this century, initiated by the work
of Hardy, Littlewood and Weyl. It seems very natural to consider the subsequence {apk},
where p denotes a prime variable. The pioneering work in this direction was conducted by
Vinogradov [13,14]. Improvements have since been made by Vaughan [12], Ghosh [4],
Harman [6,7,8] and Jia [11]. The best results to date have been obtained by Harman for
k = 1 [9], by Baker and Harman for 2 < k < 12 [1], and by Harman for larger k [8]. In the
following work, we shall adopt a sieve technique developed by Harman in [6] to show the
following.

THEOREM. Let a be an irrational real number and write \\x\\ = minneN \x - n\. Then,
for every real /3, and every e > 0, there are infinitely many primes p such that:

where

5/56,
1/21,
(0-815)2-*,

if k = 3,
if k = 4,
if Jt>5.

The above result is an improvement for 3 s & < 12 of that of Baker and Harman in [1],
who obtained (2/3)2~*. The constant 0-815 comes from a calculation which will be
explained later in Section 4.

2. Notations and outline of method. Let £ be a small positive constant and 17 be
another small positive constant, which is small compared to e. The letter p will always
denote a prime. The following notations will be used:

I = 2Np~e/2, 8 = N-p+e/2, a- = 2kp.

Let alq be a convergent to the continued fraction expansion of a such that (LNk)m^
q < (L(N +1)*)"2. Following [1], it suffices to prove that \\apklq + /3|| < 5 with p<N.
Write:

B = {neN:n<N}: A ={n e B :(n,q) = 1, \\ank/q + j3|| <5},

vw=n a -1//>)> p(z)=UP, v^)=rra-i/p),
p<z p<z p<z

where EC (or 2 ' ) here and hereafter means that the product (or sum) is taken over primes
that are coprime to q. For a subset E in N, the sieve function S(E, z) and Ed are defined
as:

Ed = {n:dn e E};

) = \{nsE:(n,P(z)) = l}\;
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« and » are the usual Vinogradov's symbols and m~ M will mean M ̂  m < 2M. As
usual, write e(x) = e2inx. We shall, using estimates for certain exponential sums, establish
asymptotic formulae of the form:

2 amS(Am,z) = 2S 2 amS(Bm,z)(l + R) (1)
m~-Af m—M

where R is an error of suitable size, for various ranges of M and z. Using Buchstab's
identity, we may decompose the sum S(A,Nm) into single sums and double sums. It will
turn out that we may give asymptotic formulae for each of the single sums and certain
subsums of the double sums. The remaining double sums, being nonnegative, are
discarded. Provided we have not discarded too much, this gives a positive lower bound for
S(A,Nm). This establishes the theorem.

3. Lemmas. In this section, we shall establish some lemmas which are essential in
proving the theorem.

LEMMA 1. Let {am} be a sequence of real numbers for m E B, all of the same sign.
Then

m e B meB ^ <J ' \' ^ meB
f 2 \am\).

Proof. This may be established in the same way as [6, identity (4)].

LEMMA 2. Suppose that {ad} is a sequence of real numbers, all of the same sign and
ad«Nv. Then:

\Bd\ + old 2 S ^ S c(-(md)
^ d<D nsL mdeB \ <7

2h 2 ad
d<D d<D ^ d<D nsL mdeB

provided D « N'~e.

Proof. This follows from Lemma 1 by noting that:

d<D me A xd<D,d|m

In bounding the error terms arising in the asymptotic formulae, we shall require bounds
on certain exponential sums, which are given in [1]. The bounds given there remain valid
for the increased value of p we consider here.

LEMMA 3. Let Y « N*, where <& = (k-(2k + l)p)/(2Jt - 2). Then

v v v I an
2J 2J

 m a x
 2J

 e( — i

Proof. This is [1, Lemma 10]. The removal of the condition of coprimality does not
affect the result.
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LEMMA 4. For N2p « M « Nl~", we have

123

y~M

where {by} is any sequence of complex numbers with \by\ ̂  1.

Proof. This is [1, Lemma 11].

We now reach the stage where asymptotic formulae of the form (1) are to be
established. Let 6 be as in Lemma 3 above.

LEMMA 5. Suppose that k>4and M« Nir2+2p, bm « Nv. Then

2 bmS(Am,Ne)= 2 bmS(Bm,Ne)2S(l + R (2)
m~M m-M

whenever the right hand side is »8N1~V. Here R = O(Q(s)) + O(exp(-(log N)m)) where
s = log(N*/M)/\og(Ne) >(•&- (0-5 + 2p))/e and Q(s) < exp(-s log5 + s loglog 3s +

REMARK. For k = 4, from now on, we shall take p(4) = 1/21 - e2, where e2 is a small
positive constant. Of course, e2 can be absorbed into e in the thoerem and so it would not
affect the result.

Proof. Write r(Am, d) = ((p(q)/q)(28N/md) - |/imd|. By the fundamental lemma of
Rosser's sieve [10], we have:

m q

Also, by the Fundamental Lemma ([5, Theorem 2.5]),

S(Bm, N°) = ̂  V(Ne)(l + O(Q(s)) + O(exp(-

o( 2 adr{Am,d)\

It suffices therefore to show that

m~M d<NsIM
adr(Am,d) «8N}-2r>.

Note that for some cm E C, we have

Y bn>m 2 adr(Am,d)
d<N$IM

2 cm E ad\
m~M d<N6IM V

\-—- \Amd\)
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by Lemma 2. The A; are complex numbers with |A;|« Nv. The result now follows from
Lemma 3.

LEMMA 6. Suppose that NZp < M ̂  Nl~", am, bn, cr« Nv with cr = 0 whenever r < Ne.
Then

2 amcr 2 bnSiA^r, r) = 2S 2 amcr 2 bnS(Bmnr, r)(l + R) (3)
mi—M n—X mr—M n—X

whenever the right hand side is »5Nl~v. Here R = O(l/logN).

Proof. By Lemma 1, we have

E amCr E bnS{Amnr, r) = 2 °mCr S bn 2 1 =

mr—M n—X mr—M n—X kmnreA,

28(1+ R) 2 amcr
mr~M n~X

I, amcr 2 bn 2 c(-{wnmr)k)
mr~M n~X wnmreB ^9 '

where R = O(l/logN).
It remains to show that the exponential sum is «N1~2v. To achieve this, we have

recourse to the following result ([3, p. 165]):

I e " a i l r * = A ( f l ' 6 ) + ° ( r ( z > - H ) ) ' where A(fl>6)=x '7 |a|-6j

A(a,6) = 0j/ |a |>fe. (4)

Here T is [ -7 , 7].
The variable tv in the inner sum is a product of at most s distinct primes where

s«l/e. Write

2 amcr 2bn 2 p)
mr~M n~X wmnrEBj>\w=p^r ^9 ' 1 2

where, for J = 1,2,..., s,

2= E V, 2 &« 2
» mr~M n~X Pi-.-pinmrsB

r<p^piS,.. .sp,

To get rid of the inter-dependence of the variables, we apply (4) t times, with T being a
suitable power of M Each application incurs a factor of O(log AO due to the integration.
For example, to get rid of the condition Pi^p,, we let a =p, and b=pt + 111.

2 «VW 2 amcr 2 K 2 4-(Pi • ..p,nmr)k)x(Pl)... \(pt)
I mr~M n~X />j.. .p/nnr&B ^Q '
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where |A(p*)| ^ 1. Therefore:

2 «-cr 2 &„ 2
mr~M n~X wmnrsB

2 amcr 2 bn £ e(-(wmnr)k)
mr~M n~X wmnreB \ Q '

where |« J ^ 1. The sum on the right hand side is

2jnm ^ ^ e ^ W

for some dn and am whose magnitudes are OV(NV) for each n and m. We apply (4) again
to eliminate the dependence between the variables m and n, at the cost of a factor of
0(log N). Bringing in the summation over /, the result now follows from Lemma 4.

The following lemma allows us to control the error that accumulates as we iterate
using the fundamental Buchstab identity, and which was not dealt with accurately in [6].

LEMMA 7. Let E be any subset of B. Let t = [1/e], where [x] denotes the integer part of
x. Then

y. y. S(E Ne)^2'S(E,Ne).
Is/is/ Af»sp,s.. ,sph

Proof. This is Lemma 10 in [2].

We are now in a position to prove our main versions of (1). To simplify the notation,
we write £ = N2p and £ = N1'".

LEMMA &. Suppose that M :£ f, am « Nv, am s 0, and am = 0 if p \m^> p< 1,1 i. Then

m—M m—M

whenever the R.H.S. » SN1'71. Here:

Proof. If M^.N2p, this follows immediately from Lemma 6, so we may assume
M < N2p. Apply Buchstab's identity to obtain

2 amS{Am,Cie>= 2 amS{Am,NE)- 2 «» 2 S(Amp,p).
m~M m~M m~M

We can deal with the first sum using Lemma 5. For the subsum in the second sum with
mp ^ £, we could apply Lemma 6. For the remaining parts, we apply Buchstab's identity:

2 am 2 S(Amp,p)= 2 am 2 (s(Amp,N°)- 2 S(Ampr,r)\

mp<{

The first term can again be handled by Lemma 5. The parts in the second term with
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mpr s £ can be dealt with by Lemma 6. As before, we apply Buchstab's identity to the
remaining parts.

Continuing in this way, we have the result above after O(l/e) steps. The error can be
at most

2 8 2 aam
lshst m~M

where t = [l/s] and s = (6 - (0-5 + p))/e. Kx is an absolute constant while K2 may depend
on £. By Lemma 7, this is

«8 2 am2'
m~M

«8 2 ^ -
m~Af £

Note that 2'g(s)/£-»0 as e-*0. This establishes the result.

Similarly, we may prove the following.

LEMMA 9. For k>4,and£<M<Nm, 0<am<Nri', andam # 0 ^ p >^ /or allp \m.
Then

2 amS(Am,?)= 2 am5(Bm,^)25(l + i?)
m—M m~-M

whenever the R.H.S. is »8Nl-v. Here R = O(21/££-1Q(l/e)) + 0E(l/logN)).

Proof. This is similar to that of Lemma 8. The reason for the value £ is that it is the
maximum value for which M£ s N* with equality possible for k = 4, a condition required
for the application of Lemma 5.

4. Proof of Theorem for k S: 4. We decompose S(A, Nm) as follows:

- 2 S(Ap,p)- 2 S(4»f)+ 2 2 S(Apr,r).
m (<p<Nm gsr<p

Note that the condition pr2 < N is implicit in the last sum. By Lemmas 8 and 9, we can
give asymptotic formulae for the first three terms. In the double sum, we can give an
asymptotic formula for the part with £ < r < £ by Lemma 6. We discard the rest. This
gives an overall lower bound for S(A, Nm):

2 2 HBP,A
p<Nvi c<r<p

 H I

We shall estimate the amount discarded using the prime number theorem and the
asymptotic formula:

^ N
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Here, w(u) is Buchstab's function which satisfies:

b>{u) = \lu forl<u<2,
w{u) = (1 + log(u - l)/u for2<u<3,
co(u)< 0-5644 foru>3.

We can replace the double sums by the double integral (with a negligible error)

-a-p\ dad/3
13 ) a/32

where A :={(a/3): l - < r £ a £ 1/2, 1 - a < 0 < min(a, (1 - a)/2)}.
By a computer calculation, one can show that the amount discarded is <1. Hence the

result is proved. The limit of the value for p(4) is set by the condition that 1/2 + 2p < •&,
which is required in establishing Lemma 5 and Lemma 9. The limit for the other values is
set by the fact that we cannot decompose the double sums into manageable parts with
discardable positive sums.

5. The case of k = 3. For the above to work, we require at least # s 1/2 + 2p. For
k = 3, this leads to p ̂  1/15. Thus, for an improvement, a trick is required to circumvent
this difficulty. With the introduction of this new idea, the restriction can now be relaxed to
•d=zp + 1/2. This gives p ̂  1/11. The following is the consequence of Lemmas 5 and 6
with k = 3. To simplify the notation, write T = Nm~p, v = Nm+P.

LEMMA 10. For M ^ T, am « Nv, we have

m~M m~M

where R is as in Lemma 8.

It is clear that simply using the lemmas obtained so far, we cannot give an asymptotic
formula for the sum ?iS(Ap,N

c) for the range x<p <Nm, for some suitable value c as
before. We decompose the sum S(A,Nm) as follows:

- 2 S(Ap,p)- 2 S{Ap,p)- 2 S(Ap,p)

S(Ap,p)-

- 2 S(Ap,p)+ 2 2 S(Apg,q)+ 2 2 S(Apg,q)
z<p<Nia (l

say. We may give asymptotic formulae for S,, 52, S3, S4 by Lemmas 6 and 10. We may give
asymptotic formulae for the subsums of S6 where pq < £. We may also give an asymptotic
formula for the subsums of 57 with £ / £ < q < £ m using similar methods in establishing
Lemma 8: here, if £ 1 / 2 > p i > p 2 > p 3 > . . . >/>„, pi .../>„_!<£, px...ph>£, then
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pp1...ph-i<Nm+p, also /?,.../?/, <N 1 - 8 p <£. We now deal with Ss. By Buchstab's
identity, we have

55= 2 S(A»N*)- 2
m r<p<Nvi N

The second sum can be written as a sum of four sums Tu T2, T3, T4 where T\ =
with x<p<Nm and Ne<q<£/£, T2 = 1lS(Apq,q) with T<p<Nm and q
T3 = 'SlS(AM,q) with t<p<Nm and £^<?<£, and T4 = 2 5 ( ^ , 9 ) with T<p<Nm

and 9 > £. We shall discard 72 and 7 .̂ T3 can be dealt with using Lemma 6. For Tu since
p<7 < v, we may apply Buchstab's identity:

T, = ^S{Apq,N
E)- 2 S(Apql,t)

By Lemma 5, we may give an asymptotic formula for the first sum. We can also give an
asymptotic formula for subsums in the second sum with qt ̂  f (since it is necessary that
qt < £). For the remainder, we split the sum again:

2 S(Apqt,t)= 2 S(Apqt,t)+ 2 S(Apql,t),
qKN2*" pqt^v pqt>v

We first consider the first term. We apply Buchstab's identity:

2 S(Apql,t) = 2S(Apql,N
e)- 2 S(Apqth,h).

pqtsv N'sh<t

It is necessary that qth ̂  I, so that subsums in the second term are manageable if qth s £
Split the remaining subsum according to whether pqth > v or pqth s v. Thus, it suffices to
consider sums of the form

*Z S(Apq,q), 2 2 2 S(Apqr2,r2),... etc.
pq>v

We use S* to denote the sum over the ranges: x<p^ Nm, Ne < rm < rm_, < . . . < r, ^
£/£> rir2 •• • rm < €, Phr2 • • • rm > v . Pr\r2 • • • rm-\ — v- Thus, the general form of the sum
we have to consider is

2J

The "different technique" mentioned in the introduction involves writing

2 * S{Aprv..rm,rm)=
pr1...rm>v

We remark that x ̂  T and Nlixr^... rm) has the size of p. Thus, we may apply Buchstab's
identity:

-.--.- ,
A^rJ = 2*S(Axrv..rm,N*)- 2 S(Axri...rmr,r).

,„ \*h • • • rm/ I x N'sr<(/V/r,... r^x)"2

By Lemma 5, the first term can be dealt with. By Lemma 6, the subsums in the second
sum are manageable if r ̂  £ (since it is necessary that r < £). For the remainder, we
observe that when £/£ <r£^,rrl...rm^ £/£ Np s £, as it is necessary that rx... rm ̂  Np.
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Thus, by Lemma, 6 we may give an asymptotic formula for the subsum of the second
sum with £/£ < r ̂  £.

For the part with r < f /£, we have an iterative process: the sum with rx... rmr s £ is
manageable by Lemma 6. If r , . . . rmr < £, we iterate again and so we eventually obtain
the desired result after O(l/e) operations. Thus, we may give an asymptotic formula for
Tx with an error of suitable size, similar to that in Lemma 8 or 9.

We discard T2, T4 and the subsums of S5 and 57 for which we fail to give asymptotic
formulae. We approximate those sums by integrals as before. This produces a lower
bound of

logNL JJ J J)

where

Di = {(«, /3): a + /3 > 1 - 8p, 1 - lOp < ]8 < a < 2p},

£>2 = {(a, /3):0 < min(a, 1 - 2o),j3 > 1 - 8p},

Z)3 = {(a, j8): 1 - 8p < a < 1/2 - p, (1 - 8p)/2 < ^ < 2p}

U { ( a , / 3 ) : l / 2 - p < a < l / 2 , l - 1 0 p < ) 3 < 2 p } .

The function w is Buchstab's function as given in section 4. The region D\ corresponds to
the subsum of 56 to be discarded and D2 corresponds to 74 and the subsum of 57 with
q > C, while Z)3 corresponds to the subsum of 57 with £/g^q <£ and T2. We evaluate
these integrals by machine calculations. With p = 5/56, we have

JML
0 / a02

D2

it
JJ

Thus, we do have a positive lower bound, so our result is proved. The value of p may be
improved slightly, but it is noted that, with p = 6/67, the amount discarded would be
greater than 1.
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