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MULTIPLICITY RESULTS FOR SEMILINEAR ELLIPTIC
BOUNDARY VALUE PROBLEMS IN BESOV AND

TRIEBEL-LIZORKIN SPACES
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The paper deals with superlinear elliptic boundary value problems depending on a parameter. Given
appropriate hypotheses concerning the asymptotic behaviour of the nonlinearity, we prove lower bounds on
the number of solutions. The results generalize a theorem due to Lazer and McKenna within the framework
of quasi-Banach spaces of Besov and Triebel-Lizorkin spaces.
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1. Introduction
Let Q be a smooth bounded domain in W (the Euclidean n-space) with boundary dQ.

Then we consider semilinear elliptic boundary value problems of the type

Lu=f(u) + h(x) infi
(1.1)

«=o on an,

where L is a second-order uniformly elliptic, formally self-adjoint linear operator and h
belongs to a function space of Triebel-Lizorkin and Besov type, respectively. Let
0 < At < k2 ^ • • • ^ Ak ̂  • • • denote the eigenvalues of L with Dirichlet boundary value
conditions. Here / is a sufficiently smooth real-valued function with linear growth at
infinity, and more precisely:

a^f'(t)^b for all t e [ - o o , oo], where / ' (±oo)= lim f'(i).
f->±oo

It is known that our problem (1.1) admits multiple solutions depending on the
interaction between the values of / ' and the spectrum of L if h belongs to the Holder
spaces C"(0), 0 < a < l . First, note that if [a, b] contains no eigenvalue kk, then (1.1) is
uniquely solvable in C2+*(&), see Dolph [6],

The first result, where the nonlinearity / meets the first eigenvalue, was proved by
Ambrosetti and Prodi [2]. They considered the case in which the range of / ' contains
only the first (simple) eigenvalue At. They showed that the conditions 0</ ' ( — oo)<A,,
Aj</'(oo)<A2 and / " > 0 on ( — 00,00) imply the existence of a closed connected
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C'-manifold Mx of codimension 1 in the Banach space C(Cl) such that C^Cl^Mi has
exactly two components M0 and M2 with the property that

-Au=f(u)
(1.2)

« = 0 on dil

has no solution if heM0, exactly one solution if heMu and exactly two solutions if
heM2- A corresponding result within the framework of Besov and Triebel-Lizorkin
spaces was proved in Geisler and Runst [12]. Manes and Micheletti [19] replaced the
condition 0 < / ' ( — oo)<i! by —co<f\ — oo)<A1.

The next important result was obtained by Kazdan and Warner [16] for more
general functions / . For example, they showed if one decomposes h = h1 + tcp1 (<px:
normalized eigenfunction to Al5 hy. smooth function which satisfies \ahl(x)<pl(x)dx=0),
then there exists to = to(hi) such that (1.1) has no solution for t>t0 and at least one
solution for t<t0. Simultaneously, Dancer [4] and Amann and Hess [1] showed that if
/ satisfies / ' ( —oo)<A1</'(oo) and / ' is bounded on [0, oo), then (1.1) has at least two
solutions if h — hl+t(pl and t<to(hi) and at least one solution if t = t0, see also Berger
and Podolak [3]. In [17], Lazer and McKenna showed that if / ' ( — oo)<A1 and
A2t</'(oo)<^2*+i (k^l)» then there exists tt^t0 such that (1.1) has at least three
solutions if h = h1 + tcp1 and t<tx (perform the change of variable u-> — u in order to
bring the problem considered in [17] to the present setting). Further results in this
direction can be found in Hess and Ruf [13], Ruf [21] and Solimini [23]. Furthermore,
Lazer and McKenna obtained in [18] that if / '( — oo)<l1 and A2</'(oo)^A3, then (1.1)
has at least four solutions if h = hl + t<pl and t is sufficiently small. There was also shown
that if A3 has odd multiplicity, there exists /?>A3 such that if / ' ( —oo)<Aj, A3</'(oo)^
P and h = h + tcpi, then (1.1) has at least five solutions for t sufficiently small.

In this paper, we consider equations of type (1.1) within the framework of Triebel-
Lizorkin spaces, Fs

p q, and Besov spaces, Bs
p q, with methods going back to [17]. For

0<q<l and/or 0 < p < l , Bp q and Fs
pq become quasi-Banach spaces (see 2.4). For

instance, quasi-Banach spaces are not locally convex, in general. Hence Schauder's fixed
point theorem is not applicable in these cases. Lazer and McKenna obtained their
results in [17] using the Leray-Schauder degree. Klee [14] proved that it is possible to
develop the Leray-Schauder theory in so-called admissible topological spaces. Up to
now, it is an open problem whether every quasi-Banach space is admissible in the sense
of Klee. However, in Franke and Runst [9], we obtained that the function spaces of
Triebel-Lizorkin and Besov type are admissible. Hence we can carry over the theory of
[17].

The paper is organized as follows. In Section 2, we describe the preliminaries
(function spaces on smooth domains, mapping properties of linear differential operators
and of nonlinear operators generated by smooth functions, results of the Leray-
Schauder theory). Section 3 deals with the number of solutions of (1.1). The first result is
an improvement of one obtained in Drabek and Runst [7]; the second is a generaliza-
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tion of the main result for Holder spaces in Lazer and McKenna [17] formulated now
within the framework of Besov and Triebel-Lizorkin spaces.

2. Preliminaries

2.1. Spaces

Let W be the real Euclidean n-space. In the following, we list some properties of the
spaces Bs

p q and Fs
p q, see Triebel [24] for details.

Let S be the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions on W and let S' be its topological dual. The Fourier transform
and its inverse on S' is denoted by F and F~l, respectively. Now let cpeS be a
real-valued even function with respect to the origin such that tp(x) = <p( —x) if
xesupp(pc{yeW,\y\^2} and cp(x)=l if |x |g l . Then we define a sequence {<Pj}f=0 of
functions by

for each x e W. We have £j°=0 q>j{x) = 1 for all x e W.
If — oo<s<oo, 0<p, q^ao, then by definition

2ys1^V//|MK'I)|N

and if p<oo,

<oo

(usual modification if p = oo and/or q = oo).
It can be shown (see Triebel [24]) that BPiq(W) and Fpq{W) are quasi-Banach spaces

(Banach spaces if min (p, q) ̂  1).

Remark 2.1. By means of the fact that cp is a real-valued even function we can
introduce the real part of the spaces BPtq(W), etc., denoted by Bpq(W),... (for exact
definitions see Franke and Runst [9, Subsection 3.2]).

Remark 2.2. These two scales of function spaces include many well-known classical
spaces. We give some examples, for details see Triebel [24].

Let s>0, then Bs
00>00(IR'1) = #s([Rn) (Zygmund space). If s>0 is not an integer, then

Bs
a,,a>(Un) = C%W) (Holder space). Let l<p<oo, -oo<s<oo, then Fp<2(W) = Hp(W)

(Bessel-potential space). If s is a natural number, then FPt2(U
n) = Wp(W) (Sobolev space).
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For dealing with boundary value problems it is useful to define Besov and Triebel-
Lizorkin spaces on domains. Let ft be a bounded C "-domain in W with boundary dCl.
Then one can introduce the spaces B'p,,(3ft) and Fs

pq(dQ) by standard procedures via
local charts (see Triebel [24, Subsection 3.2.2]). The spaces Bs

pJQ) and FPJO) are
defined usually by the restriction method (see Triebel [24, Subsection 3.3.1] and [25]).

(i) Let 0<p0,puqQ,qi^oo and — oo<s1<s0<oo. Then

D(ft) <= Bp°o,qo(Q) c Bp\,qi(Cl) <z D'(ft) (2.1)

if so-(n/po)>sl-(n/pl).

(ii) Let 0<p0,p1<oo, 0<q0, qx ^oo and — oo <s1<s0<oo. Then

(2.2)

if s-(n/po)>s,-(n/p1).

Here I>(O) denotes, as usual, the collection of all complex-valued infinitely differen-
tiable functions / . in W with supp/<=Q, and D'(Ci) is the dual space.

2.2. Traces and linear elliptic differential operators

Let ft be a bounded C°°-domain in W and let / be a function defined in ft belonging
to some function spaces of the above type. In the following, R denotes the restriction
operator given by Rf = f\dQ. The following results are known (see Triebel [24,
Subsection 3.3.3] and Franke [8]).

If 0<p, q^oo and s>s*: =(n — l)(l/min(p, 1) — 1) + 1/p, then R is a linear and
continuous mapping from Bs

p q(Q) onto Bp~q
llp(dQi) and if p>oo, then R is a linear and

continuous mapping from Fs
p q(Q) onto BP~q

lp(8n).
Let

i,j=\.OXi OXj

satisfying ai){x) = ai]{x), be a second-order uniformly elliptic operator. In this paper, we
only consider the corresponding homogeneous Dirichlet problem. We introduce (for
admissible couples (s, p))

and

Then the following result can be found in Franke [8] (see also Triebel [24, Subsection
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3.3.3]), for 0<q^co and s>s*. If 0 < p ^ o o then L yields an isomorphic mapping from
B*p , 0(Q) onto Bs

p~q
2(Sl). If 0 < p < oo then L yields an isomorphic mapping from Fs

p q 0(Sl)
onto Fp;q

2(Sl).
By Fucik [11, Theorem 34.10], we obtain the following result. If Aj denotes the

smallest eigenvalue of L\g$ 2(n) with Dirichlet condition, then it holds Aj>0 and kY is a
simple eigenvalue (B'p q(Sl) denotes the completion of D(Si) in BP q(Si)). Furthermore,
there exists a unique normed positive eigenfunction (ple£a>(&) to A, with q>1(x)>0 in
SI, L(pl = k1(pi,(d(p1/dv)<c<0 on dSl where v is the normal, and $a(pl(x)2dx=l.

In order to prove our main result we need some facts about sub- and supersolutions.

Definition 2.1. A distribution i//eD'(Si) is said to be non-negative if i/>((p)^0 for any
<peD(Sl) with cp^O.

Remark 2.3. The set of non-negative distributions is o(D'(Sl), £>(Q))-closed.

Definition 2.2. A function ueC(Si) is said to be a supersolution (subsolutiori) of (1.1) if
Lu^f(u) + h(x) in SI (Lu^f(u) + h(x) in SI) in the above sense and u\dSl = 0.

In Section 3 we use the following maximum principle.

Lemma 2.1. Let c e l J ^ o B ^ ^ P and let n>-k1. If v\8Sl = 0 and (L+fi)v^0 (in
the above sense of distributions) then v^O holds.

Proof. Step 1. Let w e B ^ . i ^ 0 < e < l , be non-negative. If tl/eCm(Ci), i{/\dSl=O
then & e B^-'^Sl). In Franke and Runst [10] (see also Triebel [24, Subsection 3.4.3]),
it is proved: If ifr is non-negative, then \p can be approximated in B\y(Sl) by non-
negative ^"(flj-functions. Hence î (vv) is well defined (for the dual space of
(5i.V( ):(£i,7(Q))' = *Ho~i(Q)) a n d non-negative. If fe€${Sl) is non-negative, then there
exists a non-negative geC00^) with g\dSl = 0, (L + n)g=f (see Fucik [11, Chapter 34]).
According to Jn ij/(x)f(x) dx = Jn q>(x)g(x) dx we obtain the following: If q>eCo(Si),
ij/\dSl = O, ij/ is non-negative if <p is. Here we used the fact that L is formally self-adjoint,
i.e.

J Lui(x)u2(x) dx = J Ui(x)Lu2(x) dx
n n

if uu

Step 2. Let v be the same as in the formulation of Lemma 2.1. Let q>eCo(Sl) be
non-negative, q>=(L + n)tj/ with \peCai(Sl), non-negative and {//\dSl = 0. Then an easy
limiting argument proves

J* q>(x)v(x) dx = \(L + ti)iP(x)v(x) dx
a n
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which completes our proof.

Remark 2.4. The following version of the strong maximum principle holds also:
Suppose that i>eUe>oBe«,.cx>(ft)> c,/*eR with /x>-A1. If v\dQ = 0 and (L + n)v^c>0 (in
the above sense of distributions) then v>0 in fi holds.

2.3. Mapping properties

In this subsection, we list some results which can be found in Runst [22, Subsection
5.4]. C denotes as usual the classical Holder space if p>0 is not an integer and the
well-known Banach space of differentiable functions if p > 0 is an integer. As mentioned
above, B%tBa=W if p>0.

Lemma 2.2. Let feCp+1, p>max(lvs). Then M->/(U) is a completely continuous
mapping

from F^q\n)nLm(Q) into Fs
pjn)nLJCl)

(fromBs
p+q%n)nLJQ) into B

if 0<p<oo (0<p^oo), 0<q£co, s>«((l/min(p, 1)) —1) and e>0.
Furthermore, there exists a function gf,gf'-[0, oo)->[0, oo), which is independent of u

such that

Remark 2.5. This result is a consequence of Runst [22, Subsection 5.4] and (2.1/2).

2.4. The Leray-Schauder degree

Let A be a (real or complex) linear vector space. \\-\A\\ is said to be a quasi-norm if
| | | | | satisfies the usual conditions of a norm with the exception of the triangle
inequality, which is replaced by

| 4 | | (2.3)

i.e. there exists a positive number c such that (2.3) holds for all ateA and all a2eA. Of
course c ^ l . (If c = l is admissible, then A is a normed space.) A quasi-normed space is
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said to be a quasi-Banach space if it is complete. By a theorem due to Rolewicz (see
Kothe [15, Subsection 18.10]) we may assume without loss of generality that

holds for suitable A, 0<A^l . This makes A into a linear metric space with translation
invariant metric

dA(ai,a2):=\\a1-a2\A\\\

Definition 2.3. Suppose that A is a quasi-normed space of type k. Such a space is
said to be admissible if for every compact subset K <= A and for every E > 0 there exists a
continuous mapping T:K-*A such that T(K) is contained in a finite-dimensional subset
of A and xeK implies ||Tbc — jc|y4|| ^e.

Remark 2.6. We introduced the notation "admissible" in the sense of Klee [14], see
also Riedrich [20, Subsection 4.1].

In the following, we use essentially the fact that the spaces considered here are
admissible. The next lemma has turned out to be very helpful.

Lemma 2.3 (Franke and Runst [9, Subsection 3.1]). Let A and B be (real or complex)
quasi-normed spaces. Furthermore, let T0:A—*B and T^.B^A be continuous mappings.
Suppose that Tj is uniformly continuous on every bounded set and let Tt To = IA (identity of
A). Then if B is admissible then A is also admissible.

By Riedrich [20, Subsection 4.2] every normed space is admissible. Furthermore, the
quasi-Banach spaces Bpq and Fs

pq are of type l = min(p, q, 1). (If A= 1, then they become
Banach spaces.) Applying Lemma 2.3 one can prove the following result.

Lemma 2.4 (Franke and Runst [9, Subsection 3.2]). Let 0<p,q^co and — oo < s < oo.

(i) The spaces BPJR"), BpJW), Bpq(Q), BpJQ), Bp,q(dil) and Bp,q(dto) are
admissible.

(ii) Let p<oo, then the spaces FpJW), FS
P,,(R"), Fp,q(Q), FpJCl), FpJdQ) and

F'pq(dCl) are admissible.

Suppose that X is an admissible quasi-Banach space, B is an open and bounded
subset of X, f:B-*X is a completely continuous mapping and y$(I—f) (dB). On these
admissible triplets (I—f,B,y) one can now introduce the Leray-Schauder degree
denoted by d^I—f, B, y). Then the following properties hold (also in admissible
topological spaces).
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Lemma 2.5 (Riedrich [20, Subsection 4.3]). Let X be an admissible quasi-Banach
space. Then we have

(b) / / dLS(I—f,B,y)^0, then there exists a solution xeB such that (I—f)(x) = y holds.

(c) dLS(I-f,B,y) = dLS(I-f,Buy) + dVi(I-f,B2,y) whenever Bt and B2 are disjoint
open subsets of B such that y$(l—f)(B\(B1uB2)).

(d) dLS(I-H(t,-),B,y) is independent of te[0,1] whenever H:[0, l]xB->X is a
completely continuous mapping and y$(I — H(t,-))(dB) on [0,1] (invariance under
homotopy).

In what follows, let X be an admissible quasi-Banach space. If x0 is an isolated
fixed point of / (i.e. (/—/)(xo) = 0 and 0 / / ( x ) in Br(x0\{x0}, where
Br(x0) = {yeX,\\y — xo\x\\<r} and r is small enough), then we know that
dus(I—f, Bp(x0), 0) is constant for all pe(0, r). This number is called the index of x0 and
is denoted by i(I—f,x0). Furthermore, we need some results about the Leray-Schauder
degree of completely continuous linear operators acting in admissible quasi-Banach
spaces.

Theorem 2.1. Let X be a real admissible quasi-Banach space, L be a completely
continuous linear operator acting in X, 0#Ae.R and X'1 is not an eigenvalue of L. Then
dLS(I — XL,BR(0),0) = { — l)aiX\ where a(X) is the sum of the algebraic multiplicities of the
eigenvalues /x satisfying fiX>l, and a(X) = 0 if L has no eigenvalues of this kind.

Proof. Step 1. By Williamson [26, p. 155] we know that there exists a smallest
natural number k = k{X) such that ker[(/-AL)fc] = ker[(/-/LL)*+1], dim ker [ ( / - AL)fc] <
oo,i?[(/-AL)k] is closed and X = ker [(I-XLf] + R[(I-XL)kl = :Nl + Rl. Furthermore,
we have Nk

knRi = {0}. Hence we obtain X = Nl
k@Rl. Since (l-XL)kL=(I-AL)k we see

that Nk and Rk are invariant under L,L\R^ is one-to-one and LRk = Rk. Hence L\R^ is a
homeomorphism onto Rk. Furthermore, every eigenvalue 10^=0 is an isolated one. To
prove it let Lx=L — Xl\Rt<>, Afo==(l/Ao)- By the properties of L there exists a c>0 such
that ||LAo|x|X| ^c||x|X||. Hence we get ||L,lx|X'||^(c-|/l-/lo|)||x|X||, i.e. Lx is one-to-
one for | A—Ao <c. On the other hand, Ao is the only eigenvalue of L on Wk°. Indeed,
Lpc = 0 for some xeNfc0 implies (L—A/)x=(2—A0)x and therefore 0= — A&(/—/ioL)*x =
(A - Ao)* for k = k(k), i.e. x = 0 if X * Ao.

Step 2. Now we can prove the above result. We may assume X = 1 for simplicity. By
Step 1 there are at most finitely many eigenvalues itu...,nm oi L such that /Xj^l. Let
Y = N(nl)@---®N(iim) and Z = H"-1K(fc), where N(^) = JVft,,, and /?(/*,-) = *£,',„,,. It is
straightforward to see that X=Y@Z holds. Now, any xeX can be written as x=y + z
with yeY and zeZ.lt holds that H(t,x): =(l-t)L(y + z) + 2ty?x for all xedBr(0) and
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O^r^ l because H(t,x)=x implies (l—t)Ly + 2ty=y and (1 — t)Lz=z. Hence we would
obtain 0 < t < l , Ly=((l-2t)/(l-t))y and Lz = (l/(\-t))z. Notice that (1 — 2t)/( 1 — t)< 1
for all te(0,1). By the properties of Y and Z we get y = z = 0, i.e. a contradiction to
x e dBr(0). Applying Lemma 2.5 it follows that

- L, BM 0) = dOl - H(0, •), Br(0), 0)

= dOI - H( 1, •), BM 0) = <U - y, BM. 0)

= sgndet(-/|J.)=(-l)fl(1>)

where a(l) = dim Y. Here we used the properties of the Leray-Schauder degree in finite
dimensions (see Zeidler [27, Subsection 12.5]). Finally, if a(l)=0, we may consider the
homotopy H(t, x): = (1 - t)Lx.

Remark 2.7. Theorem 2.1 is a generalization of the so-called index theorem to
admissible quasi-Banach spaces. We used an idea similar to one due to Zeidler [27,
Subsection 14.2], see also Deimling [5, Subsection 8.6].

Corollary 2.1. Let X be a real admissible quasi-Banach space, let f:Br(x0)<=X—*X be
a completely continuous mapping with f(xo) = xo. Furthermore, f is (Frechet-) differen-
tiable at x0 and A= 1 is not an eigenvalue of L: =/'(x0). Then x0 is an isolated fixed point
off and i(I-f x0) = <U/ - L, BM 0).

Proof. The proof is essentially the same as for Banach spaces (see Zeidler [27,
Korollar 14.1]).

3. Boundary value problems

3.1. On the existence of solutions

Let fi be a bounded C'-domain in 0?" and let

x) in Q

u=o on an

be a semilinear elliptic boundary value problem, where L and q>^ are the same as in 2.2.
The function hx belongs to a real Besov and Triebel-Lizorkin space, respectively, and
satisfies Jn/i1(x)<jo1(x)dx=0.

Theorem 3.1. Let 0<p,q^ao, s>(n/p), teU and feCp+i(U), p>max(l,s), satisfying
the conditions:

(fl) there exists a constant c such that f{x) — Xlx>c,
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(f2) lim ^

(i) Let / i ieBp^QJnL^Q). Then there is a toihJeM such that (P,) has at least one
solution weBp ,(Q) if t<t0, but no solution if t> t0.
(ii) Let p<co and hreFs

p~q
2(Q)nLW(Q). Then there is a t^hJeU such that (Pt) has at

least one solution ueFp ,(ft) ift<t0, but no solution if t>t0.

Proof. We consider (i). The proof of (ii) is the same.

Step 1. Assume one can solve (P(1), and let u be a solution. Then u is a strict
supersolution of (P,) for all t<t^ By means of hypothesis (f2) and Franke and Runst
[10, Theorem 3.4/1], we can find a strict subsolution u_eBp,(ft) of (P(), U_<M+. The
following conditions ensure the existence of a subsolution M_eBP9(ft) of (Pr) (see
Franke and Runst [10, Subsection 3.4]):

There exists a real number s_ and a bounded £°°-function /i_:ft x U-*R with

0 if veC*>{Ci),

v>S-(pt in Q

By analogy with Drabek and Runst [7, Section 3] one can show: If w+ is a
supersolution of (Pr) and w_ is a subsolution of (P,), u_<u+ in ft, then there exists a
function ueBs

p ,(ft) such that u . ^ u ^ « + inQ and u is a solution of (P,). Hence one can
solve (P,) for all t^tt.

Step 2. We show that to> — oo. It is enough to find for some telR a supersolution of
(Pt), since as in Step 1 we can then find a subsolution u_<« + . By our assumption we
have /iie5j7«2(^)n^oo(^) anc* / e C p + 1 . Hence we can choose t(/Ji)<0 so small such
that /(0) + ^1(x) + t<p1(x)<0 holds for xeQ. Then u+=0 is a supersolution of (P,).

Step 3. If we put £0 = sup{teR, (Pr) is solvable}, then we get to> — oo. To see that
to< oo, we apply hypothesis (f 1). Let u be a solution of (P(). Then we get

0 = i(Lu-llu)(x)<p1(x)dx
n

= j(f(u)-Xlu)(x)cpl(x)dx + t
n

which together with (fl) implies that t0<oo holds. Our proof is finished.
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Remark 3.1. Notice that the above proof yields the folowing result: For each
/ii£Bp^(flJnLa^fl) there exists a t1(A1)^ to(h,) s u c h that (P,) has at least one negative
solution for all

Remark 3.2. Theorem 3.1 is a generalization of the assertion in Kazdan and Warner
[16.Corollary3.il] .

Now we consider the solvability of (Pt) for ^ t o ^ ) . For it we need an additional
condition on / . Then we can apply an idea similar to one used by Hess (see Lazer and
McKenna [17, Section 3]).

Theorem 3.2. Let the assumption on s, p, q and p of Theorem 3.1 be satisfied and let
feCp+1(U) satisfies the following conditions:

(f3) f(x) — X1x'^cl\x\ — b for all xeU, where Cj>0, b^O and XX is, as usual, the first
eigenvalue of L,

(f4) f(x) is bounded on [0, oo).

Then there exists a solution uoeBp^Ci)(uoeFpq(Sl)) of (Pt) when t = t0.

Proof. We consider the case when uoeBs
pq(Q:) holds. The other part is almost the

same.

Step 1. Let {tn}"=i<=R, tn]t0, and let un be the corresponding solutions. Then
gn(x) = hl(x) + tn(pl(x) is bounded in Bp'fiQ)n L^fi) . We prove that un is bounded in
LJQ). Assume the contrary. Then there exists a sequence {gn}™=1 in Bs

p'q
2(Q)nL00(Q.)

with HgnlL^H^M and a corresponding sequence {"„}"= i in Bs
p q(£l) satisfying Lun =

f(un)+gn in Q, Mn = 0 on dQ. and Hu^L^H->oo as n->oo. By (f3), we obtain, if
lt— y<cu the existence of a real number c* such that for all n ^ l , Lun — yun =

-y)un + ( / ( " n )~^ i"n)^ c * o n Q- By the properties of L (see 2.2) there exists a
function veBs

pq 0(Q) satisfying (L—y)v = c*. Since y<A1( Lemma 2.1 implies uB(x)^
minx e n u(x) for x e Q and all n.

If we define vvn = un/||Mn|L00||, from (f4) it follows for some K>0, ||Lwn|L00||</C for all
n ^ 1. By the mapping properties of L and compactness results, see 2.1, it follows that we
may assume wn-*w in Lx(il). Then 11^1^11 = 1 and since

min v(x)

we obtain w(x) ^ 0 in £1
On the other hand, by (f3) we have

0=j(Lwn-X1wn)(x)q>l{x)dx
n
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i(x) dx + J gJLxfaix) dx)
a J

Hence

\ wn{x)(pi(x) dx = ., . .. J un(x)<p!(
n ||«n|L°o||n

rnJI

= II If \\i(b-8«(x))<Pi{x)dx.

Now n-»oo, implies a contradiction to w(x)^0 in f2, ||w|Z^oo|| = 1.

Step 2. We show that {«„}"=! is also bounded in fiy,(fi). Let 0 < £ < 2 be small
enough such that s — e>(n/p). Step 1 and Lemma 2.2 yield | | | 2 | |

c2(l |). Because of the imbedding Lm(n)<=B° 2(fi), see 2.1, and the inequality
H f e l H I l J I 1 9 , O<0<1, we get from Lun=f(un)+gn

Now we conclude ||un|Bp ^H^Mj. This proves the boundedness of {"„}"= i in Bs
p q(Sl).

Step 3. We have proved that the solutions un of un = L"l[/(un B

tn]t0, are bounded in Bs
pq(Q). Applying compactness arguments, we see un-m in

Bp 4 0(Q) and u is a solution of (P,) when f = t0- Our proof is finished.

Remark 3.3. Theorem 3.2 generalizes a result obtained by Amann and Hess [1] (see
also Dancer [4] and Lazer and McKenna [17]).

3.2. Multiplicity results

In this subsection, we prove results concerning the number of solutions of the
problem (Pt) within the framework of Besov and Triebel-Lizorkin spaces.

Lemma 3.1. Let 0<p,q^ao, 2>s>(n/p), p>max(l,s) and fetp+i(M). If tl<t<t2
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and if for i=l ,2 , «,(x) is a solution of (P,) when t = tt such that ui(x)^u2(x) then there
exists a number r such that

)=l (3.1)

where

K = {ueBs
p,,,0(Q),u1^u|u2 in Q, ||w|Bs

pJgr}.

Remark 3.4. A corresponding result holds also in Triebel-Lizorkin spaces.

Proof of Lemma 3.1. We use an argument of Fucik [11, Theorem 34.7] (see also
Lazer and McKenna [17]). By our assumption we have

and

in Q, u2\dCl=0.

By Theorem 3.1, Step 1 we obtain that there is a solution ueBs
p q 0(Cl) satisfying (P,)

and u^u^u2. By analogy with Drabek and Runst [7, Section 3], we choose a number
w>0 such that co + f'(Z)>0 for £e[minJC6flu1(x),max,C6fiu2(x)]. Notice that B*,(fi)c:
C(fi) if s > (nip). Then we get

and

(L + (o)(u2-u-(-^ff )(?! ) = f{u2- f(u) +

Since u\dil = u2\dil = (pl\dil = 0, Lemma 2.1 implies w2(x)>u(x) for x e i l Analogously,
we can prove ul(x)<u(x) for xeil. Now we define / :Q x U-*U by

x) if

if

K) if u<

Notice that by our assumptions LPl(fi)<=i^, ,2+f(fi) for some p x < l and e>0 sufficiently
small. By definition of / it holds that LTlJ is completely continuous in 5j,>0(^) a°d

for ue5p,0(fi) if i? is chosen sufficiently large. For it we apply
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the same arguments as in Step 2 of Theorem 3.2. Furthermore, Lemma 2.1 shows that
u = L~lJ(x,u) implies uelntK. Now standard arguments prove

1 = dLS(u, Ba(0), 0) = dLS(u - LT lJ(x, u), B*(0), 0)

= dLS(u - L~ \f{u) + h, + tip,), Int K, 0), (3.2)

where lntK<=BR(O) = {ueBPiq,o(n),\\u\Blq\\<R}.

Lemma 3.2. Let all the hypotheses of Theorem 3.2 be satisfied and t be a real number.

(i) Let BR{0) = {ueBpqO(n), ||u|BP>,||<R}. Then there exists Ro = Ro{t)>0 such that

dufr-L- \f(u) + hl + t<pl),BRl(O),O) = O (3.3)

for /
(ii) Let p<oo then a corresponding result is also true for Fs

p q.

Proof. We use an argument of Dancer [4] and Theorem 3.2. Let t^t^h,) and let
Ro be sufficiently large such that

u = 0 o n a , ^ g ,

imply ueBRo(0). By Theorem 3.1 we know that there is no solution for s= l . Hence, we
obtain by the a priori bound and the homotopy invariance

= dLS(u - L-»(/(«) + h, + tip,), BRl{0), 0),

for R

In the following, we describe the existence of at least three solutions of (P,).

Theorem 3.3. Let 0<p,q^co, 2>s>(n/p) and feCp + 1{U), p>max(l,s), satisfying
(f3) and \imx^ + oof'{x) = <x, where A2<a<23, and l2 has multiplicity one.

(i) Let ^ j eB^^QJnLJQ) . Then there exists a ^(/iJeR such that ift>tu (i3,) has
at least three solutions.

(ii) Let p<oo and h,e^/(fiJnLJfl). Then there exists a t^hJeU such that (P,)
has at least three solutions if
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Proof. We give an outline of the proof of (i). The other part is almost the same. We
apply a method used in Lazer and McKenna [17, Lemma 3.7].

Step 1. Let z(x) = q>1(x)/(X1— a). Since z<0 in Ji, dz/dv>c>0 on dil, there exists
<5t>0 such that if t>eBp,j0(Q) then ||i> —z|B^,||<5| implies t)<0 in fi. Here we used
BP,(n)cC(H) if s>(n/p). Let <5>0 be given. Then we choose some xoef2 and put
r = min(<5,<5j,( — z(xo))/2. The mapping u^Lr1((p1+au) is completely continuous on
Bp , 0(fi). Since z = L~i(cpl+<xz) holds, we obtain that there exists »/>0 such that
||u —z|Bp,|| = r implies ||u—ZT 1(<pi + au)|Bp,||^?j. Applying Corollary 2.1 and Theorem
2.1, we get

dLs(u—L~l(<p1+<xu),Vr,O) = l, (3.3)

where Î . = {ueBp , 0(Q), ||M —z|Bp , | |<r}. (Notice that aZT1 has precisely two eigen-
values larger than 1.)

Step 2. Now we consider the boundary value problem

r. ._f(tu)-ca

u = 0
(3.4)

Notice that u is a solution of (P,) if and only if tu is a solution of (3.4). We get for t<0

L"1 cp1-\-<xu+-{hi+{f{tu)-atu) - L " 1 ^

L-'RIi,

l-(hl+(f(tu)-atu)) (3.5)

for some Pi>\. Here we used the mapping properties of L and imbedding results (see
2.1/2.2).

From lims^00/'(s) = a we infer that for £^T<0| |M—z|Bp, | |<r (which implies «<0 in
fi) the following estimate holds:

c\\\(hl+(f(tu)-«tu)) (3.6)
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Hence by Step 1, from (3.3), (3.6) it follows that

1 = dufii-IT M >

(3.7)

(homotopy invariance). This implies the existence of a solution veB'pq0(n) of (3.10)
satisfying ||u —z|.B*fJ|<r Then tv is a solution of (Pt). Hence we have shown that for
given <5>0 there exists T(8) so that if t<T(d), (P,) has a solution w such that
||z — (w/t)|B*,,||<<5- Similarly, one can prove

l=dLJLu-L-lltq>l-aut], B(t), 0)

], B(t),0), (3.8)

where B(t) = {ueB;,,,o(fi), ||t<-tz|B*J|<|r|r}. Notice that ueB(t) and r^-(z(xo)/2),
where xoeQ, implies u(x0)>c(tz(x0)/2). Since z(xo)<0 and since ueK(t) implies
u(x0) ̂  u2(x0), where K and u2 as in Lemma 3.1 we get

0 (3.9)

for t<T(S) and some fixed re(0,3).

Step 3. For given £>0 we choose t<T(5) such that (3.9) holds. Now we can find by
Lemma 3.2 BR(0)=>(B{t)<uK(t)) such that (3.3) is satisfied. By the properties of the
Leray-Schauder degree (Lemma 2.5(c)) we deduce that

Hence in each of the three disjoint sets B(t), Int K(t) and BR(0)\(B(t)uK(t)) there exists
at least one solution of (P,). This completes the proof.

Remark 3.5. The conclusion of Theorem 3.3 holds also if ^2m<ix<^2m+i- 1° t n e

proof of (3.7), (3.8) we use the homotopy invariance of the Leray-Schauder degree.
Therefore it was essential that (3.5) and (3.6) hold. In general,

> . <•»

does not hold for t<T, | j u -z |B^J |^ r and u^O in H if s-2>(n/p)(B'p;q
2(Q))cC(Ci). A

simple counter-example is /(x)~c|x|m near the origin and limJ^00/'(s) = a (see Runst
[22, Subsection 5.4]).

Remark 3.6. If A!</'( + oo)<oo holds then we get by Lemma 3.1 and Lemma 3.2
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that (F,) admits at least two solutions if t<to(hi). It is a generalization of a result
obtained by Amann and Hess [1] (see also Dancer [4]).
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