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Abstract. This work defines a new algebraic structure, to be called an alternative
Clifford algebra associated to a given quadratic form. I explored its representations,
particularly concentrating on connections to the well-understood octonion algebras. I
finished by suggesting directions for future research.
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1. Introduction. The purpose of this document is to introduce and explore a new
algebraic object, which I will call the alternative Clifford algebra of a quadratic form.
This new mathematical object is a generalization of the (associative) Clifford algebra,
which was introduced as an algebraic tool to investigate quadratic forms.

Quadratic forms have a rich history in mathematics with many connections to
quadratic number fields, geometry, K-theory and various other areas.

In order to study quadratic forms in depth from an algebraic perspective, a
structure known as the Clifford algebra was introduced. Clifford algebras are described
by a vector space and a quadratic form. Clifford algebras can be described as the ‘freest’
algebra generated by a given vector space satisfying the condition v2 = q(v) · 1 for all v
in the vector space and a given quadratic form q. By studying these algebraic structures,
one may draw conclusions about a given quadratic form and vice versa.

It is my purpose in this document to generalize the theory of Clifford algebras by
constructing a non-associative algebra in a similar fashion generate the algebra using
a vector space in which all vectors satisfy the relation v2 = q(v) · 1. The motivation
behind generating such a structure is to develop a tool to explore quadratic forms using
the theory of non-associative algebras. In order to preserve some structure to work
with, I require the newly constructed algebra to satisfy the alternative laws.

Of particular relevance is the class of algebras constructed using the Cayley-
Dickson process. This iterative process generates algebras, which I refer to as Cayley
algebras, which double in size at each step. To begin the process, take an algebra A
of dimension n over F with an involution a → ā satisfying a + ā ∈ F and aā ∈ F for
all a ∈ A. Choose β �= 0 in F and define a new algebra B = A ⊕ A with addition and
multiplication by scalars defined component-wise, and product given by

(x, y)(w, z) = (xw + βzȳ, x̄z + wy).

Then B is an algebra of dimension 2n over F containing A as a subalgebra. Notice
that B also has an involution. Repeat this process on B to obtain a new algebra
C = B ⊕ B of double the size and also having an involution. This process can
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be repeated infinitely many times, but the properties of the original algebra are
quickly lost through iterations of this process. A more detailed description of the
Cayley–Dickson process can be found in [3]. This paper will specialize several results
to the 8-dimensional octonions produced at the third stage of the Cayley–Dickson
process, as their structure and representations are well-understood.

My hope is for this work to lay the foundation for future exploration into the
alternative Clifford algebra, as will be discussed in the future work section.

2. Alternative clifford algebras.

2.1. Definition of clifford algebra. In the discussion below, let F be any field with
char F �= 2. When we say “F-algebra”, we mean a unital algebra over F which is not
necessarily associative.

As mentioned in the introduction, Clifford algebras serve as an algebraic means to
study quadratic forms. Loosely speaking, a Clifford algebra is the ‘freest’ associative
algebra generated by a vector space V satisfying q(v) = v2 for v ∈ V . A definition in
terms of a universal property is given below.

DEFINITION 2.1. An F-algebra A is compatible with q if there is an F-linear map
φ : V → A such that φ(x)2 = q(x) · 1 ∈ A for any x ∈ A.

We recall two facts for the following lemma. First, every quadratic form q over
V = Fn has an associated bilinear form B : V × V → F , where

B(x, y) = 1
2

(q(x + y) − q(x) − q(y)) ∀x, y ∈ V

and

q(x) = B(x, x) ∀x ∈ V.

Second, we have the following definition of a regular quadratic space.

DEFINITION 2.2. A quadratic space (V, q) is regular if either of the following
equivalent conditions are true:
� For the bilinear form B corresponding to q, x �→ B( , x) defines an isomorphism

V → V∗, where V∗ denotes the vector space dual of V . Recall the vector space dual
V∗ is defined as the set of all linear maps f : V → F .

� For x ∈ V , B(x, y) = 0 for all y ∈ V implies that x = 0.

We will concern ourselves only with regular quadratic spaces for the remainder of
this paper.

LEMMA 2.3. Let A be compatible with q so there is an associated linear map φ : V →
A such that φ(x)2 = q(x) · 1 for all x ∈ A. Then φ is injective, and hence is an embedding
of V into A.
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Proof. We prove our claim by contrapositive. Suppose v �= 0. Then there is a
nonzero w ∈ V such that 2B(v,w) �= 0 since q is regular. But then

0 �= 2B(v,w)

0 �= q(v + w) − q(v) − q(w) (by definition of B)

0 �= φ(v + w)2 − φ(v)2 − φ(w)2 (by definition of φ)

0 �= φ(v)φ(w) + φ(w)φ(v) (applying linearity of φ).

Since φ(w) �= 0, we conclude φ(v) �= 0, proving φ is injective. �
DEFINITION 2.4. An associative F-algebra C compatible with q is said to be the

Clifford algebra for (V, q) if it has the following universal property: given any associative
F-algebra A compatible with q, there exists a unique F-algebra homomorphism φ :
C → A, such that φ(x) = x for any x ∈ V . We will denote the Clifford algebra for
(V, q) by Cl(q).

REMARK 2.5. Observe that the algebraic structure of the Clifford algebra is
comparable to the quadratic structure of (V, q). In particular, we show below that
x, y ∈ V are orthogonal if and only if x, y anticommute in A (meaning, xy = −yx). If
we let B denote the bilinear form on V associated with q, then

2B(x, y) = q(x + y) − q(x) − q(y) = (x + y)2 − x2 − y2 = xy + yx

So x and y are orthogonal if and only if xy + yx = 0.

2.2. Definitions and basics of alternative clifford algebra. We now define a new
algebra.

Recall the left and right alternative laws:

x(xy) = (xx)y ∀x, y

yx(x) = y(xx) ∀x, y.

The alternative laws imply the flexible law and are equivalent to the Moufang identities,
so we also have the latter identities to describe the algebra.

DEFINITION 2.6. An alternative F-algebra C compatible with q is said to be
the alternative Clifford algebra for (V, q) if it has the following universal property:
given any alternative F-algebra A compatible with q, there exists a unique F-algebra
homomorphism φ : C → A, such that φ(x) = x for any x ∈ V . We will denote the
alternative Clifford algebra for (V, q) by ClAlt(q).

We now look into the generators and relations of the alternative Clifford algebra.
In particular, let α1, . . . , αn generate the basis of the vector space associated to q.
We consider ClAlt(〈a1, . . . , an〉) by beginning with the imposed condition that, for
x, y, z ∈ F :

q(x1α1 + · · · + xnαn) = (x1α1 + · · · + xnαn)2.

Evaluating the left side gives

a1x2
1 + · · · + anx2

n = (x1α1 + · · · + xnαn)2.
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Since this condition must hold for any element in our algebra, we choose specific
substitutions to see the relations on generators. In particular, setting xi = 1, xj = 0
for j �= i ⇒ α2

i = ai and setting xi = xj = 1, xk = 0 for k �= i, j ⇒ αiαj = −αjαi.
It is clear that given generators α, β, γ satisfying the above relations that we obtain

an algebra A in which q(v) = v2 for all v ∈ A.
In order to see what distinguishes this algebra from the standard Clifford algebra

Cl(q), I specialize to the case of a 3-dimensional form q = 〈a, b, c〉 with basis elements
α, β, γ .

EXAMPLE 2.7. The standard Clifford algebra, Cl(〈a, b, c〉), consists of the elements
1, α, β, γ, αβ, αγ, βα, αβγ . The last element can be written sans parentheses because
the standard Clifford algebra is associative, whereas the alternative Clifford algebra
has two distinct elements (αβ)γ and α(βγ ) in place of the unparenthesized element in
the standard Clifford algebra.

One may wonder if there could be a relation between the elements listed above that
allows the alternative Clifford algebra to collapse to 8-dimensions. In order to address
this, I must cite future results (Corollary 2.16 and Proposition 2.17). I will show
there exist surjective maps φ : ClAlt(〈a, b, c〉) → O(a, b, c) and ρ : ClAlt(〈a, b, c〉) →
Cl(〈a, b, c〉). The latter map implies that

|ClAlt(〈a, b, c〉)| ≥ |Cl(〈a, b, c〉)| = 8.

If ρ were an isomorphism (meaning |ClAlt(〈a, b, c〉)| = 8), then there would be an
isomorphism, namely φ ◦ ρ−1 : Cl(〈a, b, c〉) → O(a, b, c), from the associative Clifford
algebra Cl(〈a, b, c〉) to the non-associative octonion algebra O(a, b, c). This clearly
cannot happen, so ρ is not an isomorphism, meaning |ClAlt(〈a, b, c〉)| > 8. So the
alternative Clifford algebra has at least nine independent elements and is distinct from
the standard Clifford algebra.

A natural question to follow that example is:

QUESTION 2.8. What is the dimension of ClAlt(q)?

This question remains open. It is a nontrivial task to determine whether or
not the alternative Clifford algebra is finite-dimensional. As one approach to tackling
this question, I explore the representations of the alternative Clifford algebra to the
octonions. I will, however, present more general results related to the flexible Clifford
algebra (defined in an analogous fashion to the alternative Clifford algebra) and Cayley
algebras. At the end of this paper, I will introduce yet another structure to give a sense
of what types of results we can hope for with regards to the alternative Clifford algebra.

2.3. Representations. Since the newly defined alternative Clifford algebra shares
the common property of being non-associative and satisfying the alternative laws with
the octonions, we explore what information we can gather by looking at maps from
the alternative Clifford algebra to the octonions. Whenever possible, I generalize to
the case of the flexible Clifford algebra and general Cayley algebras, which are flexible.
Recall the flexible law states (xy)x = x(yx) ∀x, y.

DEFINITION 2.9. A flexible F-algebra C compatible with q is said to be the flexible
Clifford algebra for (V, q) if it has the following universal property: given any flexible
F-algebra A compatible with q, there exists a unique F-algebra homomorphism φ :
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C → A, such that φ(x) = x for any x ∈ V . We will denote the flexible Clifford algebra
for (V, q) by ClFlex(q).

REMARK 2.10. Every Cayley algebra is flexible [3].

First, we recall the fact that the elements which anticommute in a Cayley algebra
correspond to those elements which are orthogonal with respect to the norm form N.
I remind the reader of a few facts.

(1) The norm form N of a Cayley algebra A is an n-fold Pfister form. An n-fold
Pfister form is a quadratic form of the type 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉, for any set
of elements a1, . . . , an ∈ Ḟ . We use the notational convention

〈〈a1, . . . , an〉〉 ∼= 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉.
(2) We define the pure part φ′ of an n-fold Pfister form φ = 〈1〉 ⊥ φ′ to be the (2n − 1)-

dimensional subform φ′.
(3) We refer to the subspace of a Cayley algebra A corresponding to the pure part of

the norm form as pure A.

LEMMA 2.11. Suppose A is a Cayley algebra with norm form N. Let u, v ∈ pure A,
then uv = −vu if and only if u ⊥ v with respect to N.

Proof. Let u, v ∈ pure A, so t(u) = t(v) = 0. Note the following facts about norm
forms:

(1) The bilinear form BN(·, ·) associated to the norm form N can be expressed as
2BN(x, y) = N(x + y) − N(x) − N(y).

(2) All elements in a Cayley algebra satisfy the equation x2 − t(x)x + N(x) = 0, so in
particular N(x) = −x2 + t(x)x for any x ∈ A.

Now observe that t(u) = t(v) = t(u + v) = 0. So applying the above equations and
simplifying, we get:

2BN(u, v) = N(u + v) − N(u) − N(v)

= [−(u + v)2 + t(u + v)(u + v)] − [−u2 + t(u)u] − [−v2 + t(v)v]

= −u2 − uv − vu − v2 + t(u + v)(u + v) + u2 − t(u)u + v2 − t(v)v

= −uv − vu

So BN(u, v) = 0 if and only if uv = −vu. �
We apply this lemma to conclude that most of the time, the image of (V, q) under

any map from a flexible Clifford algebra of a quadratic form q is contained in the
subspace of the pure part of the Cayley algebra, i.e. the subspace associated to the pure
part of the norm form.

THEOREM 2.12. Let A be a Cayley algebra with norm form N. Given a map φ :
ClFlex(q) → A, either

(1) φ(V ) ⊂ pure A, or
(2) q is a 1-dimensional form and φ(V ) ⊂ F.

Proof. Let v ∈ V . Because v is an element of the flexible Clifford algebra

v2 = q(v) ⇒ v2 − q(v) = 0
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Considering the image under the F-map φ yields that φ(v) satisfies

x2 − q(v) = 0

Now, φ(v) ∈ A, so it also satisfies the equation

x2 − t(φ(v))x + N(φ(v)) = 0

Subtracting these equations yields φ(v) satisfies

t(φ(v))x − (q(v) + N(φ(v)) = 0.

So we may consider two cases:

(1) t(φ(v)) = 0, in which case we are done because t(φ(v)) = 0 ⇒ φ(v) ∈ pure A as
desired. Notice that t(φ(v)) = 0 also implies that q(v) = −N(φ(v)), which we will
see in the next lemma.

(2) t(φ(v)) �= 0, in which case by plugging in φ(v) into the latter equation, we see that

φ(v) = [t(φ(v))]−1(q(v) + N(φ(v))) ∈ F (∗).

Now there are subcases to consider here.
(a) If q(v) = 0, then v2 = q(v) = 0. So φ(v) satisfies x2 = 0. But then the minimal

polynomial for φ(v) is either
(i) x = 0, meaning φ(v) = 0 ⇒ t(φ(v)) = 0 and we’re done, or

(ii) x2 = 0 and so [φ(v)]2 = 0. But recall that (∗) shows φ(v) ∈ F and since
F is a domain, there are no zero divisors, so φ(v) = 0 and we’re back to
the previous case.

(b) If q(v) �= 0 and φ(v) �= 0, then we find an exceptional case as follows. Let W =
v⊥ = {w ∈ V | Bq(w, v) = 0} ⊆ ClAlt(q) and let w ∈ W . In ClAlt(q), w ∈ W
means vw = −wv by Lemma 2.11. So under the mapping φ,

φ(v)φ(w) = −φ(w)φ(v).

But recall that ϕ(v) ∈ F by (∗), so in particular, ϕ(v) is in the centre and hence
commutes with everything, namely

φ(v)φ(w) = φ(w)φ(v).

Adding these two equations yields 2φ(v)φ(w) = 0. Again, since F is a
domain, there are no zero divisors and so φ(v) �= 0 ⇒ φ(w) = 0. Now we
know that w2 − q(w) = 0 because w ∈ ClAlt(q). So φ(w2 − q(w)) = 0 ⇒
φ(w)2 − q(w) = 0. Since φ(w) = 0, we conclude that q(w) = 0. Now recall
that w was an arbitrary element of W and q is a regular quadratic form,
so W = 0. This means that the original vector space is spanned by v and
q must be a 1-dimensional quadratic form. Moreover, (∗) guarantees that
φ(V ) ⊆ F .

�
Next, we establish a general result that if there is a map from the flexible Clifford

algebra of q to a Cayley algebra A, then the induced map on the vector spaces is
actually a quadratic space map.
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LEMMA 2.13. Suppose dim q ≥ 2 and let A be a Cayley algebra with norm form N.
If there exists a map φ : ClFlex(q) → A, then the induced map on the associated vector
spaces φ̃ : (V, q) → (pure A,−N ′) is a quadratic space map.

Proof. As we saw in the previous theorem, φ(V ) ⊂ pure A. Now the pure part of
the Cayley algebra corresponds to the quadratic space associated to the pure part of
the norm form N, which is a Pfister form and, a priori, a quadratic form. Let us denote
the pure part of this Pfister form by N ′.

Now consider

N ′(φ̃(v)) = −[φ̃(v)]2 + t(φ̃(v))

= −φ̃(v2) + 0 (because φ̃(v) ∈ pure A and is a homomorphism)

= −φ̃(q(v)) (because q(v) = v2)

= −q(v) (because q(v) ∈ F).

So φ̃ maps the underlying vector space associated to ClFlex(q) to the underlying
vector space associated to pure A and sends q → −N ′, showing that φ̃ is, in fact, a
vector space map. �

Finally, we establish a result below showing how we have a representation of the
flexible Clifford algebra to any algebra constructed with the Cayley-Dickson process.

THEOREM 2.14 (Main representation theorem). Suppose dim q ≥ 2 and let A be an
algebra constructed using the Cayley-Dickson process through n-iterations. There exists
a map from the flexible Clifford algebra

ClFlex(q) → A

if and only if q ∼= −φ where φ is a subform form of the pure part of the norm form N
on the algebra A. Moreover, there is a bijection between HomF−alg(ClFlex(V, q), A) and
Homq.s.maps((V, q), ({x ∈ A|tr(x) = 0},−N ′

A)).

Proof. We will show how to construct a quadratic space map given an F-algebra
map. Suppose there exists a map φ : ClFlex(q) → A. Then consider the restriction of
φ, φ|V : (V, q) → (A, N). This is a map of vector spaces V → A. Moreover, for v ∈
V , φ(v) satisfies the characteristic equation Cφ(v)(x) = x2 − t(φ(v))x + N(φ(v)) = 0.
Namely,

φ(v)2 − t(φ(v))φ(v) + N(φ(v)) = 0.

Since Im(V, q) ⊂ ({pureA}, N ′), t(φ(v)) = 0 and N(φ(v)) = N ′(φ(v)), so we get

N(φ(v)) = N ′(φ(v)) = −φ(v)2.

Notice that the map from ClAlt(q) → A being a homomorphism tells us that 0 =
φ(0) = φ(v2 − q(v)) = φ(v)2 − q(v), so that −φ(v)2 = −q(v). In particular, this shows
that q(v) = −N ′(ϕ(v)), so that q is similar to the pure part of the norm form of A.
Thus, ϕ is our desired quadratic space map.

Now we show the reverse construction. Suppose we have a quadratic space map
ψ : (V, q) → (A,−N ′) with q ∼= −φ where φ is a subform form of the pure part of the
Pfister form N = 〈〈a1, . . . , an〉〉 (denote the pure part by N ′). We need only check it
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preserves the relation q(v) = v2 to confirm it induces a map on the algebras.

ψ(v2 − q(v)) = ψ(v)2 − ψ(q(v))

= ψ(v)2 − q(v) (because q(v) is a scalar)

= ψ(v)2 + N ′(ψ(v)) (because ψ maps q �→ −N ′ )

= ψ(v)2 + N(ψ(v)) (because N = N ′ on the pure part of A)

= 0.

The last line results from the fact that every element of an algebra constructed under
the Cayley-Dickson process satisfies x2 − t(x)x + N(x) = 0 and ψ(v) maps to the pure
part of the algebra, meaning it has trace 0. Since ψ preserves the relation, we do in fact
obtain a map from ClAlt(q) → A. �

This result can then be specialized to the octonion algebra O(a, b, c), showing how
the quadratic form we use to construct our alternative Clifford algebra must be related
to the norm form of the octonion algebra if a map exists from the former to the latter.

COROLLARY 2.15. Suppose dim q ≥ 2. There exists a map

ClAlt(q) → O(a, b, c)

if and only if q ∼= −φ where φ is a subform form of the pure part of the norm form
〈〈a, b, c〉〉.

Proof. The octonion algebra O(a, b, c) is a specific case of an algebra constructed
with the Cayley-Dickson process through 3 iterations. �

The next two results will provide the support for my claims in the Example 2.7. They
are followed by a list of results which provide applications of the previous corollary.

COROLLARY 2.16. There exists a surjective map

ClAlt(〈a, b, c〉) → O(a, b, c).

Proof. The previous corollary states that since 〈a, b, c〉 is isometric to a scalar
multiple of a subform of the pure part of the norm form 〈〈a, b, c〉〉, there exists a
map φ : CAlt(〈a, b, c〉) → O(a, b, c). Since both algebras are generated by the image of
the underlying vector space of the quadratic form, this map must send generators of
ClAlt(〈〈a, b, c〉〉) to the generators of O(a, b, c). Hence, it is surjective. �

PROPOSITION 2.17. There exists a surjective map

ClAlt(〈a, b, c〉) → Cl(〈a, b, c〉).

Proof. The standard Clifford algebra is associative, and hence alternative. The
universal property of the alternative Clifford algebra guarantees a unique map from
ClAlt(〈a, b, c〉) → Cl(〈a, b, c〉). As above, this map must send generators to generators.
Hence, it is a surjection. �
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REMARK 2.18. We can generalize the above proposition to state that there exists a
surjective map

ClFlex(〈a1, . . . , an〉) → A,

where A is a Cayley algebra constructed through n iterations of the Cayley-Dickson
process having norm form 〈〈a1, . . . , an〉〉. The argument parallels the argument
provided in the previous proposition.

PROPOSITION 2.19. Let q be a quadratic form with dim q ≥ 2 and Oct be an octonion
algebra with norm form N. If 1 ∈ D(q) and there is a map ClAlt(q) → Oct, then Oct is
split.

Proof. Suppose there is a map ClAlt(q) → Oct. Then −q embeds in the pure part
of N. In particular, since 1 ∈ D(q), −1 ∈ D(−q) and so −1 ∈ D(pure N). By the Pure
Subform Criterion, N ∼= 〈〈1, . . . , 〉〉, meaning N is hyperbolic and Oct is split. �

We return to our study of the alternative Clifford algebra of the 3-dimensional
form q = 〈a, b, c〉.

LEMMA 2.20. Let O(a′, b′, c′) be an octonion algebra and CAlt(〈a, b, c〉) be the
alternative Clifford algebra for a quadratic form q = 〈a, b, c〉. Then if there exists a
map

ClAlt(q) → O(a′, b′, c′)

and q is isotropic, then 〈〈a′, b′, c′〉〉 ∈ W (F(〈a, b, c〉)/F).

Proof. By Corollary 2.1, we know that q = 〈a, b, c〉 is similar to a subform of the
pure part of the Pfister form 〈〈a′, b′, c′〉〉. So if q is isotropic, then so is 〈〈a′, b′, c′〉〉. But
as we saw earlier, Pfister forms which are isotropic are also hyperbolic, so 〈〈a′, b′, c′〉〉
is in the Witt kernel W (F(〈a, b, c〉)/F). �

This last result allows us to refer Fitzgerald’s paper on Witt kernels of quadratic
forms [1] to help us determine what restrictions may be placed on 〈〈a′, b′, c′〉〉.

THEOREM 2.21. [Fitzgerald 1.(a)] If ϕ is a neighbour to the n-fold Pfister form ρ,
then W (F(φ)/F) is a strong n-Pfister ideal.

PROPOSITION 2.22. Let q = 〈a, b, c〉 be a Pfister neighbour to the unique (up to
isometry) 2-fold Pfister form ρ = 〈〈ab, ac〉〉. If there exists a map ClAlt(q) → O(a′, b′, c′),
then 〈〈a′, b′, c′〉〉 ∼= 〈〈ab, ac, t〉〉 for some t ∈ F.

Proof. Fitzgerald’s result implies that 〈〈a′, b′, c′〉〉 is isometric to a sum of scalar
multiples of 2-fold Pfister forms in W (F(〈a, b, c〉)/F). In particular, since the 3-
fold Pfister form is 8-dimensional, we must express it as the perp of two 2-fold
Pfister forms in the Witt kernel. Moreover, since 〈a, b, c〉 is a Pfister neighbour to
ρ, W (F(〈a, b, c〉)/F) = W (F(ρ)/F) = ρWF . Hence, we actually have 〈〈a′, b′, c′〉〉 =
λρ ⊥ γρ = 〈λ, γ 〉ρ for some λ, γ ∈ F .
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Now we can see

〈〈a′, b′, c′〉〉 = ρ〈λ, γ 〉
= ρ〈λ〉〈〈λγ 〉〉 (since 〈λ, γ 〉 = λ〈1, λγ 〉)
= 〈〈ab, ac, λγ 〉〉〈λ〉 (rewriting ρ and combining the forms)
∼= 〈〈ab, ac, λγ 〉〉 (see remark below)

So 〈〈a′, b′, c′〉〉 ∼= 〈〈ab, ac, t〉〉 for t = λγ ∈ F . �
REMARK 2.23. We reference a theorem from Lam (X.1.9) [2] stating that for any

Pfister form φ over F , DF (φ) = GF (φ), where GF (φ) denotes the group of elements
c ∈ Ḟ satisfying 〈c〉φ ∼= φ. In particular, this means that in the above proof, having
1 ∈ D(〈〈a′, b′, c′〉〉) means 1 ∈ D(〈〈ab, ac, λγ 〉〉〈λ〉). And so λ ∈ D(〈〈ab, ac, λγ 〉〉). By
the theorem D(〈〈ab, ac, λγ 〉〉) = G(〈〈ab, ac, λγ 〉〉), meaning that 〈〈ab, ac, λγ 〉〉〈λ〉 ∼=
〈〈ab, ac, λγ 〉〉.

We generalize the above result using Fitzgerald to get the following.

PROPOSITION 2.24. If q is a neighbour to the n-fold Pfister form ρ and there exists
a map ClAlt(q) → O(a′, b′, c′), then 〈〈a′, b′, c′〉〉 ∈ W (F(q)/F), where W (F(q)/F) is a
strong n-Pfister ideal. This means that 〈〈a′, b′, c′〉〉 is isometric to a sum of scalar multiples
of n-fold Pfister forms in W (F(q)/F).

REMARK 2.25. Notice that since 〈〈a′, b′, c′〉〉 is only 8-dimensional, the previous
corollary only has meaning for n = 2 or n = 3 (as there are no octonions to map
into for n ≥ 4). We saw the n = 2 case in Corollary 2.3. The n = 3 case says that
〈〈a′, b′, c′〉〉 is isometric to a sum of scalar multiples of 3-fold Pfister forms in
W (F(q)/F); specifically, 〈〈a′, b′, c′〉〉 ∈ W (F(q)/F). So for q a Pfister neighbour to
ρ, W (F(q)/F) = W (F(ρ)/F) = ρWF , noting that the Witt kernel is a strong Pfister
ideal, we see that 〈〈a′, b′, c′〉〉 ∼= αρ. In particular, notice that since 1 ∈ D(〈〈a′, b′, c′〉〉)
then 1 ∈ D(αρ). This implies that α ∈ D(ρ). But we know that D(ρ) = G(ρ) [2], where
G(ρ) is the group of similarity scalars. So αρ ∼= ρ, and hence 〈〈a′, b′, c′〉〉 ∼= ρ.

Now, we explore what can be said about the representation when considering an
alternative Clifford algebra for a 4-dimensional quadratic form.

COROLLARY 2.26 (Fitzgerald 1.5). Let φ be an anisotropic form such that dim φ = 4
and φ is not similar to a Pfister form. If W (F(φ)/F) �= 0, then W (F(φ)/F) is a strong
3-Pfister ideal.

COROLLARY 2.27. Let q be a 4-dimensional anisotropic form. If there exists a map
ClAlt(q) → O(a′, b′, c′), then either

q is a conjugate neighbour 〈〈a′, b′, c′〉〉 ∈ W (F(q)/F) and by the previous corollary, is a
strong 3-Pfister ideal.

q is not a conjugate neighbour O(a′, b′, c′) is trivial 1.
q is a Pfister form Say q = 〈〈x, y〉〉, then 〈〈a, b, c〉〉 ∼= 〈〈x, y, z〉〉 for some z ∈ F.

I employ the fact that Pfister neighbours uniquely determine (up to isometry) the
associated Pfister form to make my remark below.

1Since −q ↪→ 3� ⊥ 〈−1〉 and 〈〈a′, b′, c′〉〉 ∼= 4�
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PROPOSITION 2.28 (Lam, Proposition X.4.17). Let σ be a Pfister neighbour to some
n-fold Pfister form φ. Suppose σ is also a Pfister neighbour to the n-fold Pfister form ψ .
Then φ ∼= ψ .

REMARK 2.29. The results for 5-, 6- and 7-dimensional quadratic forms are all the
same. For all three cases, if there exists a map ClAlt(φ) → Oct, then φ embeds in the
pure part of the norm form −N. In particular, φ is similar to a subform of N, making
it a Pfister neighbour by definition. But then φ uniquely determines N. Hence, if a map
exists, then φ is a Pfister neighbour to the norm form N and the octonion algebra
Oct(N) is unique up to isometry.

Note that if φ is not a Pfister neighbour when dim φ = 5, 6 or 7, then there is no
map from the alternative Clifford algebra to an octonion algebra.

3. Further questions. There is a clear need to explore the structure of the
alternative Clifford algebra in more depth.

QUESTION 3.1. Is ClAlt(q) finite dimensional?

We would like to make the claim that the alternative Clifford algebra is finite
dimensional and, thus, develop a structure theory about alternative Clifford algebras
paralleling the existing structure theory of the classic Clifford algebra. In particular,
establishing finite-dimensionality would allow one to draw upon the work of Schafer
on finite dimensional non-associative algebras [4].

In fact, my original goal was to define a Clifford algebra-esque structure that would
satisfy two properties.

(1) It maps into the octonions (so we could compare it to something well-understood).
(2) It satisfies a few specially chosen identities based on properties of the octonions

that would result in a finite-dimensional structure.

I originally hypothesized that the alternative laws, or equivalently the Moufang
identities, would be sufficient to accomplish these goals. However, there is certainly no
restriction forcing us to use the alternative laws to define a new algebra with Clifford
algebra qualities. I give an example below of a different direction that could be pursued
and list a sample result to give a flavour of what we hope to accomplish in the future
with the alternative Clifford algebra. In particular, this new structure can help to
address the last comment in Remark 2.6.

QUESTION 3.2. What kind of information can we gather from exploring all the
different maps from the alternative Clifford algebra to an octonion algebra? What
conditions allow for distinct maps?

DEFINITION 3.3. Let � = {φ : ClAlt(q) → O|O is an octonion algebra} and let K =
∩φ∈�kerφ. Define the octonion Clifford algebra ClOct(q) of a quadratic form q to be the
quotient

ClAlt(q)
/

K. (1)

QUESTION 3.4. Is ClOct(q) finite dimensional?

While I suspect that the answer is yes and further expect it to be easier to show in
general than it will be for ClAlt(q), I will conservatively state the result for q a Pfister
neighbour.
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PROPOSITION 3.5. Let Oct(ρ) be the octonion algebra over F with norm form ρ. If
q = be the pure part of the Pfister form ρ, then ClOct(q) is finite dimensional.

Proof. Since q is the pure part of the Pfister form ρ, by Proposition 2.24 there exists
a map ClAlt(q) → O(a′, b′, c′) where O(a′, b′, c′) ∈ W (F(q)/F). But, W (F(q)/F) =
W (F(ρ)/F), which is generated by ρ. So the octonion O(a′, b′, c′) must be isomorphic
to O(ρ). If we consider any two maps φ and φ′ from ClAlt(q) → O(ρ), then they must
have the same kernel. Namely, if φ and φ′ are induced by the embeddings ψ : q → ρ

and ψ ′ : q → ρ. Notice these embeddings can be extended to isomomorphisms
ψ ⊥ id : q ⊥ 〈1〉 → ρ and ψ ′ defined accordingly. But then (ψ ⊥ id)(ψ ′ ⊥ id)−1 is
an isomorphism from ρ → ρ. This gives us an induced isomorphism on octonions
α : O(ρ) → O(ρ). In particular, if x ∈ ker(φ), then α ◦ φ(x) sends x to 0 and gives that
x ∈ ker(φ′). A similar diagram chase shows that an element of ker(φ′) is also in ker(φ).
So the kernels are the same. Hence, every map φ : ClAlt(q) → O for an octonion O has
the same kernel, namely K = kerφ, giving

ClOct(q) = ClAlt(q)
/

K ⊂ Oct(ρ).

Hence ClOct(q) is finite dimensional because Oct(ρ) is. �
Should one be wary of venturing in this direction and instead insist on

concentrating on the alternative Clifford algebra, we could return to the tools presented
in this document thus far. In particular, we might try to better understand the
representations in hopes of describing the dimension of our new algebra. For instance,
one might question:

QUESTION 3.6. Is there a finite number of octonion algebras O(a, b, c) such that
there exist maps ClAlt(q) → O(a, b, c)?

I suspect that focusing on the number of distinct images of such a mapping might
help us to answer the ultimate question regarding finite-dimensionality.

This points to another point of interest about my results. Many of them rely on
the supposition of existence of a representation to then say something of note. We
would hope to achieve a more complete theory to include when such a map exists.
For example, Corollary 2.3 states that if a map exists ClAlt(q) → O(a′, b′, c′), then
〈〈a′, b′, c′〉〉 ∼= 〈〈ab, ac, t〉〉 for some t ∈ F . It would be highly desirable for this statement
to be an ‘if and only if ’ statement, or at least an ‘if ’ and ‘only if plus something
more’.

It is my hope that by highlighting some of these points, the interested reader might
pursue further study of this work.
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