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Abstract

Jørgensen’s famous inequality gives a necessary condition for a subgroup of PSL(2, C) to be discrete.
It is also true that if Jørgensen’s inequality holds for every nonelementary two-generator subgroup, the
group is discrete. The sufficient condition has been generalized to many settings. In this paper, we
continue the work of Wang, Li and Cao (‘Discreteness criteria for Möbius groups acting on Rn

’, Israel
J. Math. 150 (2005), 357–368) and find three more (infinite) discreteness criteria for groups acting on
Rn

; we also correct a linguistic ambiguity of their Theorem 3.3 where one of the necessary conditions
might be vacuously fulfilled. The results of this paper are obtained by using known results regarding two-
generator subgroups and a careful analysis of the relation among the fixed point sets of various elements
of the group.
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1. Introduction

In this paper, we let M(Rn
) denote the full sense preserving Möbius group acting

on Rn
and let R= R ∪ {∞}, where R is the real field. We refer the reader to [4] for a

fuller background and more detailed notation.
In [13], Jørgensen obtained a very useful necessary condition for two-generator

Kleinian groups of M(R2
), which is known as Jørgensen’s inequality. As an

application, he discussed the discreteness of subgroups of M(R2
) or M(R) and

obtained the following theorems (see [13, 14]).

THEOREM J1. A nonelementary subgroup G of M(R2
) is discrete if and only if each

two-generator subgroup of G is discrete.
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THEOREM J2. A nonelementary subgroup G of M(R) is discrete if and only if each
cyclic subgroup of G is discrete.

Furthermore, Gilman [10] proved the following theorem.

THEOREM G . A nonelementary subgroup G of M(R) is discrete if and only if every
nonelementary subgroup generated by two hyperbolic elements of G is discrete.

Wang and Yang [23] proved that Theorem G also holds for subgroups in M(R2
)

and Tukia and Wang [18] proved the following theorem.

THEOREM T W1. If a nonelementary subgroup G of M(R2
) contains an elliptic

element of order at least three, then G is discrete if and only if each nonelementary
subgroup generated by two elliptic elements of G is discrete.

Wang and Yang [24] proved the following theorem.

THEOREM W Y . If a nonelementary subgroup G of M(R2
) contains a parabolic

element, then G is discrete if and only if each nonelementary subgroup generated
by two parabolic elements of G is discrete.

For any nontrivial element f in M(Rn
), we let Fix( f ) denote the set of its fixed

point(s) in Rn
. For any subgroup G of M(Rn

), we let H(G) denote the set of
loxodromic elements of G so that H(G)= { f ∈ G | f is loxodromic}. Similarly let
P(G) denote the set of parabolic elements of G. We compare fixed points of arbitrary
elements of G. Let W Y (G) denote the set of the loxodromic fixing elements of G,
that is, those elements of G whose fixed point set contains the fixed points of every
loxodromic element of G, and W (G) the set of the parabolic fixing elements of G, that
is, those elements of G whose fixed point set contains the fixed point of each parabolic
element of G. These subsets of G are defined more precisely in Section 2. For now
we note that these are not subgroups of G, but merely subsets.

DEFINITION 1.1. For any f ∈ G, let

G f = {g ∈ G | g is conjugate to f and the subgroup 〈 f, g〉 is nonelementary} ∪ { f },

where 〈 f, g〉 denote the subgroup generated by f and g.

As generalizations of Theorems J1, J2, G, T W1 and W Y to M(Rn
), one has the

following results as obtained in [21].

THEOREM W LC1. Let G ⊂ PSL(2, 0n) be nonelementary. Then G is discrete if
and only if W Y (G) is discrete and each nonelementary subgroup generated by two
elements of G f is discrete, where f ∈ H(G).

THEOREM W LC2. Let G ⊂ PSL(2, 0n) be nonelementary. If G contains a parabolic
element, then G is discrete if and only if W Y (G) is discrete and every nonelementary
subgroup generated by two elements of G f is discrete, where f ∈ P(G).
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We say that a subgroup G ⊂ PSL(2, 0n) satisfies the parabolic condition if G
contains no sequence { fi } such that each fi is parabolic and fi → I as i→∞
(see [21]).

THEOREM W LC3. Let G ⊂ PSL(2, 0n) be nonelementary and satisfy the parabolic
condition. Suppose that G contains a g-elliptic element f such that f 2 is not an
element of W Y (G). Then G is discrete if and only if W Y (G) is discrete and each
nonelementary subgroup of G generated by two g-elliptic elements is discrete.

REMARK 1.2. We thank Shihai Yang for pointing out that in [21, Theorem 3.3]
there is the possibility that the hypothesis on the discreteness of each nonelementary
subgroup of G generated by two g-elliptic elements be vacuously satisfied. Namely,
there might not exist any nonelementary subgroups in G generated by two g-elliptic
elements. This was not assumed to be the case in the proof of the theorem. Here
Theorem W LC3 is a corrected version of [21, Theorem 3.3].

We the reader refer to [1, 6, 7, 9, 15, 29] for further discussions on this line of work.
In [18] Tukia and Wang proved the following theorems.

THEOREM T W2. Let G be a nonelementary subgroup of M(R2
). If G contains

an elliptic element of order at least three, then G is discrete if and only if each
nonelementary subgroup of G generated by an elliptic element and a loxodromic
element is discrete.

THEOREM T W3. Let G be a nonelementary subgroup of M(R2
) containing parabolic

elements. Then G is discrete if and only if each nonelementary subgroup of G
generated by a parabolic element and a loxodromic element is discrete.

In [30] Yang proved the following result which provides an affirmative answer to
the open problem raised in [18].

THEOREM Y . Let G be a nonelementary subgroup of SL(2, C) containing parabolic
and elliptic elements. Then G is discrete if and only if each subgroup of G generated
by a parabolic element and an elliptic element is discrete.

We refer the reader to [3, 5, 8, 12] for related investigations in this direction.
The main aim of this paper is to generalize Theorems T W2, T W3 and Y to the

n-dimensional case. Our main results are Theorems 3.1, 3.2 and 3.3. They are stated
in Section 3 and proved in Section 6.

2. Preliminaries

We need the following preliminaries, see [2, 22, 27] for more details.
Let 0n denote the n-dimensional Clifford group, SL(2, 0n) the group of all

n-dimensional Clifford matrices and

PSL(2, 0n)= SL(2, 0n)/{±I },

where I is the unit matrix.
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Let A be defined by

A =

(
a b
c d

)
∈ PSL(2, 0n)

corresponding to the mapping in Rn
:

x 7→ Ax = (ax + b)(cx + d)−1.

It is known that this is an isomorphism between PSL(2, 0n) and M(Rn
) (see [2]).

In the following, we identify the element in M(Rn
) and its corresponding element in

PSL(2, 0n).
For f ∈ PSL(2, 0n), let f̃ denote the Poincaré extension of f to Hn+1 (see [4]),

Fix( f̃ )= {z ∈Hn+1
| f̃ (z)= z},

and let Card(M) denote the cardinality of the set M .
Now, we classify the elements of PSL(2, 0n) as follows. A nontrivial element

f ∈ PSL(2, 0n) is called:

(1) fixed point free if Card[Fix( f )] = 0;
(2) loxodromic if Card[Fix( f )]> 0 and f can be conjugate in PSL(2, 0n) to( rλ 0

0 r−1λ′

)
, where r > 0, r 6= 1, λ ∈ 0n and |λ| = 1;

(3) parabolic if Card[Fix( f )]> 0 and f can be conjugate in PSL(2, 0n) to
( a b

0 a′
)
,

where a, b ∈ 0n , |a| = 1, b 6= 0 and ab = ba′;
(4) elliptic if Card[Fix( f )]> 0 and f can be conjugate in PSL(2, 0n) to

(
u 0
0 u′

)
,

u ∈ 0n , |u| = 1 and u /∈ R.

We call f g-elliptic if it is elliptic or fixed point free.

REMARK 2.1. When n = 1 or n = 2, since M(Rn
) contains no fixed-point-free

element, we see that each g-elliptic element in M(Rn
) is elliptic.

PROPOSITION 2.2. For a nontrivial element f ∈ PSL(2, 0n):

(i) f is fixed point free if and only if Card[Fix( f̃ )] = 1; f is elliptic if and only if
Card[Fix( f̃ )]> 1;

(ii) PSL(2, 0n) contains a fixed-point-free element if and only if n is odd and n ≥ 3.

It follows from Proposition 2.2 that for any nontrivial element f , it is g-elliptic if
and only if Fix( f̃ ) 6= ∅.

A subgroup G of PSL(2, 0n) is called elementary if it has a finite G-orbit in

Hn+1
=Hn+1

∪ Rn
(see [4]). Otherwise, we call G a nonelementary subgroup of

PSL(2, 0n).
The limit set of G is

L(G)= Rn
∩ cl(Gz),

where z ∈Hn+1, Gz = {g̃(z) | g ∈ G} and cl denotes the closure. Then L(G) is
independent of the choice of z (see [17]).
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A subgroup G of PSL(2, 0n) is called Kleinian if it is nonelementary and discrete.
From the discussions in [28], Remark B1 and the proof of Lemma B2 in [17], we

easily obtain the following.

LEMMA 2.3. We have the following results.

(i) If G contains a loxodromic element, then G is elementary if and only if it fixes a
point in Rn

or preserves a set consisting of two points in Rn
.

(ii) If G contains a parabolic element but no loxodromic element, then G is
elementary if and only if it fixes a point in Rn

.
(iii) If G is purely g-elliptic, that is, each nontrivial element of G is g-elliptic, then

G fixes a point in Hn+1
.

REMARK 2.4. The case that G fixes only one point in Rn
in Lemma 2.3(iii) can occur

when n ≥ 4 (see [28]).

In view of Lemma 2.3 and Remark 2.4, we obtain the following corollary.

COROLLARY 2.5. If the elements of G ⊂ PSL(2, 0n) have no common fixed points
in Rn

, then G is purely g-elliptic if and only if the elements of G have a common fixed
point in Hn+1.

For

gr =

(
ar br
cr dr

)
∈ PSL(2, 0n) (r = 1, 2),

we define

‖g1 − g2‖ = (|a1 − a2|
2
+ |b1 − b2|

2
+ |c1 − c2|

2
+ |d1 − d2|

2)
1
2 .

The following lemma is crucial for our investigation.

LEMMA 2.6 (Waterman [27]). Let f , g ∈ PSL(2, 0n). If 〈 f, g〉 is a Kleinian group,
then

‖ f − I‖ · ‖g − I‖ ≥ 1
32 .

For a nonelementary subgroup G ⊂ PSL(2, 0n), let

W Y (G)= {h ∈ G | Fix( f )⊂ Fix(h) for all f ∈ H(G)} (see [22])

and
W (G)= {h ∈ G | Fix( f )⊂ Fix(h) for all f ∈ P(G)}.

PROPOSITION 2.7. If G is nonelementary, then:

(i) H(G) 6= ∅ (see [25, 26]);
(ii) W (G)=W Y (G) provided that G contains some parabolic element;
(iii) W Y (G)= L(I ) (see [6] for the definition);
(iv) W Y (G) is discrete if and only if W Y (G) is finite.
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REMARK 2.8. When n = 1 or 2, W Y (G)= L(I )= {I } (=W (G) if P(G) 6= ∅)
provided that G ⊂ PSL(2, 0n) is nonelementary, see [22].

Let G ⊂ PSL(2, 0n) be nonelementary, and σ(L(G)) be the sphere of the smallest
dimension containing the limit set L(G). Then the dimension of σ(L(G)) is at least

one. By conjugation, we may assume that σ(L(G))= Rk
, where 1≤ k ≤ n. Then we

have the following decomposition theorem.

THEOREM 2.9. Let G ⊂ PSL(2, 0n) be nonelementary with σ(L(G))= Rk
(1≤

k ≤ n). Then for every element g ∈ G, g = g̃1 ◦ g0 = g0 ◦ g̃1, where g1 = g|Rk , the

restriction of g to Rk
, g̃1 denotes the Poincaré extension of g1 to Rn

and g0 is a
rotation with g0|Rk = I .

PROOF. If g(∞)=∞, then g(x)= t Ax + b, where t > 0, A ∈ O(n), det(A)= 1 and
b ∈ Rn . Since g(Rk

× {0})= Rk
× {0}, we know that b = (b1, b2, . . . , bk, 0, . . . , 0)

∈ Rk
× {0} and

A =

(
Ak 0
0 An−k

)
,

where {0} = (0, . . . , 0︸ ︷︷ ︸
n−k

),

Rk
× {0} = {x ∈ Rn

| x = (x1, . . . , xk, 0, . . . , 0), xi ∈ R, i = 1, . . . , k},

Ak ∈ O(k) and An−k ∈ O(n − k). Let g1(y)= t Ak y + b′ and

g0 =

(
Ek 0
0 An−k

)
,

where y ∈ Rk
, b′ = b|Rk = (b1, b2, . . . , bk) and Ek is the k × k identity matrix. The

conclusion follows for this case.
If g(∞) 6= ∞, then g(x)= t A((x − b)/|x − b|2)+ a (see [4]). Since g preserves

the subspace Rk
× {0}, we have that a, b ∈ Rk

× {0} and

A =

(
Ak 0
0 An−k

)
,

where Ak ∈ O(k) and An−k ∈ O(n − k). Let g1(y)= t Ak((y − b′)/|y − b′|2)+ a′

and

g0 =

(
Ek 0
0 An−k

)
,

where y ∈ Rk
and a′ = a|Rk . It follows that g = g̃1 ◦ g0 = g0 ◦ g̃1. 2

For a nonelementary subgroup G ⊂ PSL(2, 0n), as in [19], we define a
homomorphism 8 from G onto 8(G) given by 8(g)= g|σ(L(G)) = g1 for every
g ∈ G, that is, 8(g) is the restriction of g to σ(L(G)). Then we easily obtain the
following.
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PROPOSITION 2.10. We have the following results:

(i) W Y (G)= {g ∈ G |8(g)= I }, which is a subgroup of G;
(ii) when P(G) 6= ∅, W (G)= {g ∈ G |8(g)= I }, which is also a subgroup of G.

Since σ(L(G))= Rk
, the following are obvious.

LEMMA 2.11. An element f in G is loxodromic (respectively parabolic) if and only
if 82( f ) ∈ PSL(2, 0k) is loxodromic (respectively parabolic).

LEMMA 2.12. We have the following results.

(i) If f ∈ G is g-elliptic, then 82( f ) ∈ PSL(2, 0k) is g-elliptic or I .
(ii) If 82( f ) ∈ PSL(2, 0k) is g-elliptic, then the corresponding element f of 8( f )

in G must be g-elliptic.

We now recall a result from [19], which is a generalization of [16, Proposition
p. 246] to M(Rn

).

LEMMA 2.13. Let G ⊂ PSL(2, 0n) be nonelementary. Suppose that σ(L(G))=

Rk
(1≤ k ≤ n). Then:

(i) G is discrete;
(ii) Ker8 is not discrete but 8(G) is discrete; or
(iii) 8(G) ∩ PSL(2, 0k) is a dense subgroup of PSL(2, 0k).

Moreover, we prove the following result for subgroups in M(R2
).

PROPOSITION 2.14. Let G ⊂ PSL(2, C) be nonelementary and nondiscrete. If G
contains an elliptic element of order at least three, then G contains a nonelementary
and nondiscrete subgroup 〈g1, g2〉 generated by g1 and g2, where g1 is elliptic and g2
is loxodromic.

The following easy fact plays an important role in the proof of Proposition 2.14.

LEMMA 2.15. Let g be an elliptic element of order at least three in PSL(2, C), and
let { fi } ⊂ PSL(2, C) be a sequence of distinct elements such that

fi → I as i→∞.

If 〈g, fi 〉 is nonelementary for each i , then [g, fi ] 6= I ,

[g, fi ] → I

and [g, fi ] is not parabolic for all sufficiently large i .

PROOF OF PROPOSITION 2.14. Since G is not discrete, we see that there is a sequence
{ fi } of distinct elements of G converging to the identity. By passing to a subsequence
(denoted in the same manner), we may assume that each fi is elliptic, or each fi is
loxodromic, or each fi is parabolic.
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If each fi is elliptic, then, by choosing a subsequence if needed (still denoted in the
same way), we know that there exists a loxodromic element h in G such that

Fix(h) ∩ Fix( fi )= ∅

for all sufficiently large i . Then 〈h, fi 〉 is nonelementary but not discrete by
Jørgensen’s inequality.

If each fi is loxodromic, then, by choosing a subsequence if needed (still denoted
in the same manner), we know that there exists an elliptic element h of order at least
three such that

Fix(h) ∩ Fix( fi )= ∅

for all sufficiently large i . By Jørgensen’s inequality, we know that 〈h, fi 〉 is
nonelementary and nondiscrete.

If each fi is parabolic, by passing to a suitable subsequence (denoted in the same
manner), we may assume that Fix( fi ) tends in the Hausdorff metric to a one-point
subset of C. Then we can find an elliptic element g of order at least three such that

Fix(g) ∩ Fix( fi )= ∅

for large enough i .
This implies the nonelementariness of 〈g, fi 〉. It follows from Lemma 2.15 that

[g, fi ] 6= I , [g, fi ] is not parabolic for all sufficiently large i , and

[g, fi ] → I as i→∞.

By choosing a subsequence if needed, we may assume that each [g, fi ] is elliptic
or each [g, fi ] is loxodromic. By the above discussions, we know that the conclusion
holds. 2

From Proposition 2.14 the following results follow easily.

COROLLARY 2.16. Let G ⊂ PSL(2, C) be nonelementary and contain an elliptic
element with the order at least three. Then G is discrete if and only if each
nonelementary subgroup of G generated by a loxodromic element and an elliptic
element is discrete.

COROLLARY 2.17. Let G ⊂ PSL(2, C) be nonelementary and contain an elliptic
element with order at least three. If G is discrete or each nonelementary subgroup
generated by a loxodromic element and an elliptic element of G is discrete, then G
satisfies the parabolic condition.

REMARK 2.18. Corollary 2.16 provides an alternate proof of Theorem T W2.

3. Discreteness criteria for subgroups of PSL(2, 0n)

The following are our main results which are proved in Section 6.
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THEOREM 3.1. Let G ⊂ PSL(2, 0n) be nonelementary and satisfy the parabolic
condition. Suppose that G contains a g-elliptic element f such that f 2 is not an
element of W Y (G). Then G is discrete if and only if:

(i) W Y (G) is discrete; and
(ii) each nonelementary subgroup of G generated by a loxodromic element and a

g-elliptic element is discrete.

THEOREM 3.2. Let G ⊂ PSL(2, 0n) be nonelementary. Suppose that G contains a
parabolic element. Then G is discrete if and only if:

(i) W Y (G)(=W (G)) is discrete; and
(ii) every nonelementary subgroup of G generated by a loxodromic element and a

parabolic element is discrete.

THEOREM 3.3. Let G ⊂ PSL(2, 0n) be nonelementary. Suppose that G contains a
parabolic element and a g-elliptic element which is not an element of W Y (G)(=
W (G)). Then G is discrete if and only if:

(i) W Y (G) is discrete; and
(ii) each nonelementary subgroup of G generated by a g-elliptic element and a

parabolic element is discrete.

REMARK 3.4. The examples in [19, 22] show that the condition ‘W Y (G) being
discrete’ in the above theorems cannot be removed.

REMARK 3.5. When n = 1 or 2, by Remark 2.8 and Corollary 2.17, Theorem 3.1
coincides with Theorem T W2. When n ≥ 3, Theorem 3.1 is a generalization of
Theorem T W2.

REMARK 3.6. When n = 2, by Remark 2.8, Theorem 3.2 coincides with
Theorem T W3. When n ≥ 3, Theorem 3.2 is a generalization of Theorem T W3.
Theorem 3.3 is a generalization of Theorem Y .

4. Existence of three classes of two-generator subgroups

The main aim of this section is to prove the following three lemmas.

LEMMA 4.1. Let G ⊂ PSL(2, 0n) be nonelementary, which contains a g-elliptic
element f such that f 2 is not an element of W Y (G). Then there are at least two
loxodromic elements hr (r = 1, 2) in G such that

Fix(h1) ∩ Fix(h2)= ∅ and Fix(hr ) ∩ Fix( f 2)= ∅.

That is, the subgroups 〈 f, hr 〉 are nonelementary.

LEMMA 4.2. Let G ⊂ PSL(2, 0n) be nonelementary. If G contains a g-elliptic
element f such that f 2 is not an element of W Y (G), then G contains a loxodromic
element g such that the subgroup 〈 f, g f g−1

〉 is nonelementary.
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The following is obvious.

LEMMA 4.3. Let G ⊂ PSL(2, 0n) be nonelementary. Suppose that G contains a
parabolic element and a g-elliptic element which is not an element of W Y (G). Then G
contains a nonelementary subgroup generated by a g-elliptic element and a parabolic
element.

REMARK 4.4. Lemma 4.1 shows that under the hypotheses of Theorem 3.1, G
contains a nonelementary subgroup which is generated by a loxodromic element and
a g-elliptic element.

REMARK 4.5. Lemma 4.2 shows that under the hypotheses of Theorem W LC3, G
contains a nonelementary subgroup which is generated by two g-elliptic elements.

REMARK 4.6. Lemma 4.3 shows that under the hypotheses of Theorem 3.3, G
contains a nonelementary subgroup which is generated by a g-elliptic element and
a parabolic element.

The following result is crucial for our following discussions.

LEMMA 4.7. Let G ⊂ PSL(2, 0n) be nonelementary. If G contains a g-elliptic
element f which is not an element of W Y (G), then G contains a loxodromic element h
such that Fix(h) ∩ Fix( f )= ∅.

PROOF. Since f /∈W Y (G), there must be a loxodromic element h ∈ G such that the
attractive fixed point of h is not fixed by f .

If the repulsive fixed point of h is also not fixed by f , then Fix(h) ∩ Fix( f )= ∅.
If the repulsive fixed point of h is fixed by f , then there is another loxodromic

element g in G such that Fix(h) ∩ Fix(g)= ∅ since G is nonelementary.
Let

hs = hs
◦ g ◦ h−s .

Then for sufficiently large s, Fix(hs) ∩ Fix( f )= ∅.
By replacing h with hs , we have proved the conclusion. 2

PROOF OF LEMMA 4.1. Lemma 4.7 implies that there exists a loxodromic element h
in G such that Fix(h) ∩ Fix( f 2)= ∅. It follows from the nonelementariness of G
that there exists a loxodromic element g in G with Fix(g) ∩ Fix(h)= ∅. Then there
is a natural number K satisfying that for any k > K , Fix(hk gh−k) ∩ Fix( f 2)= ∅.
Obviously, 〈hk gh−k, f 〉 is nonelementry. The result follows. 2

The proof of Lemma 4.2 needs the following result.

LEMMA 4.8. Let G ⊂ PSL(2, 0n) be nonelementary. If G contains a g-elliptic
element f which is not an element of W Y (G), then G contains a loxodromic element g

such that Fix(g f g−1) ∩ Fix( f )= ∅ and Fix(g̃ f g−1) ∩ Fix( f̃ )= ∅. (Recall that f̃
denotes the Poincaré extension of f in Hn+1.)
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PROOF. Since f /∈W Y (G), by Lemma 4.7, there must be a loxodromic element h ∈ G
such that Fix(h) ∩ Fix( f )= ∅.

Let fk = hk
◦ f ◦ h−k . Then for sufficiently large k,

Fix( fk) ∩ Fix( f )= ∅ and Fix( f̃k) ∩ Fix( f̃ )= ∅.

By letting g = hk for some large enough k, we see that the lemma holds. 2

PROOF OF LEMMA 4.2. Since f 2 /∈W Y (G), by Lemma 4.8, there must be a
loxodromic element g ∈ G such that

Fix(g f 2g−1) ∩ Fix( f 2)= ∅ and Fix(g̃ f 2g−1) ∩ Fix( f̃ 2)= ∅.

These imply that

Fix(g f g−1) ∩ Fix( f )= ∅ and Fix(g̃ f g−1) ∩ Fix( f̃ )= ∅.

Hence, the subgroup 〈 f, g f g−1
〉 is nonelementary. 2

5. Several Propositions

The main results of this section are the following which are useful for the proofs in
the next section.

PROPOSITION 5.1. Let G ⊂ PSL(2, 0n) be nonelementary. Suppose that W Y (G) is
discrete and each nonelementary subgroup of G generated by a loxodromic element
and a g-elliptic element is discrete. Then G contains no sequence { fi } such that
each fi is g-elliptic and

fi → I as i→∞.

PROPOSITION 5.2. Let G ⊂ PSL(2, 0n) be nonelementary, which contains a
parabolic element. Suppose that W Y (G) is discrete and every nonelementary
subgroup of G generated by a loxodromic element and a parabolic element is discrete.
Then G contains no sequence { fi } such that each fi is not g-elliptic and

fi → I as i→∞.

PROPOSITION 5.3. Let G ⊂ PSL(2, 0n) be nonelementary. Suppose that W Y (G) is
discrete and each nonelementary subgroup of G generated by a g-elliptic element and
a parabolic element is discrete. Then G contains no sequence { fi } such that each fi
is g-elliptic and

fi → I as i→∞.
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PROOF OF PROPOSITION 5.1. Suppose, in contrast, that G contains such a sequence.

Without loss of generality, we may assume that σ(L(G))= Rk
, where 1≤ k ≤ n.

Choose x j ∈ L(G) and accordingly open balls U j in Rn
( j = 1, 2, . . . , k + 2) such

that x j ∈U j , U j ∩Us = ∅ whenever j 6= s and for any a j ∈U j , there exists only one
k-sphere S(a1, . . . , ak+2) containing a1, . . . , ak+2.

Since W Y (G) is finite, there is a ball U j0 such that Fix( f 2
i ) ∩U j0 = ∅ for large i ,

where j0 ∈ {1, 2, . . . , k + 2}. Since U j0 ∩ L(G) 6= ∅, there is a loxodromic element g
with Fix(g)⊂U j0 . Thus, Fix(g) ∩ Fix( f 2

i )= ∅ for all large i . It follows that 〈g, fi 〉

is nonelementary and hence discrete. This violates Lemma 2.6 since fi → I as
i→∞. 2

PROOF OF PROPOSITION 5.2. Suppose, in contrast, that G contains such a sequence.
By choosing a subsequence if necessary, we may assume that each fi is parabolic
(respectively loxodromic). Then there is a loxodromic (respectively parabolic) element
g so that Fix(g) ∩ Fix( fi )= ∅ for large enough i by passing to a suitable subsequence
of { fi } (still denoted in the same manner). Therefore, 〈g, fi 〉 is nonelementary and
hence discrete for large i . By Lemma 2.6, this is a contradiction since fi → I as
i→∞. 2

PROOF OF PROPOSITION 5.3. Suppose, in contrast, that G contains such a sequence.
Since W (G) is finite, there is a parabolic element g so that Fix(g) ∩ Fix( fi )= ∅ for
all large enough i by passing to a suitable subsequence if needed, which is denoted in
the same way. Since

‖g − I‖ · ‖ fi − I‖< 1
32

for large i , Lemma 2.6 implies that 〈g, fi 〉 is elementary. This yields that Fix(g) ∩
Fix( fi ) 6= ∅. This is the desired contradiction. 2

6. The proofs of the main results

First, let us introduce two lemmas which are needed in the proof of Theorem 3.3.

LEMMA 6.1 (Wang [20]). Let { fi } and {gi } be two sequences of M(Rn
), which

converge to f and g, respectively. Suppose that each group 〈 fi , gi 〉 is a Kleinian
group and each fi is of infinite order. Then f is of infinite order and 〈 f, g〉 is a
Kleinian group if {〈 fi , gi 〉} satisfies the E-condition.

Here, we say that a sequence {Gi } of subgroups of M(Rn
) satisfies the E-condition

if any sequence { fik } ( fik ∈ Gik (∈ {Gi })) satisfying that for each k, Card[Fix( fik )] =

∞ and fik → I as k→∞ has uniformly bounded torsion, that is, there exists a
positive number M such that for each k, the order ord( fik ) of fik satisfies that
ord( fik )≤ M or ord( fik )=∞.

LEMMA 6.2 (Hersonsky [11]). Let M =
(

a b
c d

)
be an element of SL(2, 0n), where

c 6= 0, and let U =
(

1 1
0 1

)
. If the group 〈M,U 〉 is discrete, then |c| ≥ 1.
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II 287

PROOF OF THEOREM 3.1. Suppose that G is not discrete. Then Proposition 5.1 and
the hypothesis G satisfying the parabolic condition show that G contains a sequence
{ fi } such that each fi is loxodromic and

fi → I as i→∞.

Then, by choosing a subsequence if necessary, we may assume that Fix( fi ) tends in
the Hausdorff metric toward a one- or two-point set Y ⊂ Rn

.
We now divide our proof into the following cases.

CASE I: Y ⊂ Fix( f 2). By Lemma 4.7, there is a loxodromic element g ∈ G such that

Fix(g) ∩ Fix( f 2)= ∅.

For large enough k, we let h = gk f 2g−k . Then the subgroup 〈h, fi 〉 is nonelementary
for each large i .

CASE II: Y = {x, y}, f 2(x)= x and f 2(y) 6= y. By Lemma 4.1, there are two
loxodromic elements hr (r = 1, 2) in G such that

Fix(h1) ∩ Fix(h2)= ∅ and Fix(hr ) ∩ Fix( f 2)= ∅.

If h1(y)= y, then h2(y) 6= y, that is, Fix(h2) ∩ Y = ∅. For large enough k, we let
h = hk

2 f 2h−k
2 . Then the subgroup 〈h, fi 〉 is nonelementary for each large i .

In either case, there is a g-elliptic element h such that 〈h, fi 〉 is nonelementary for
each large i . Thus, 〈h, fi 〉 is discrete, which violates Lemma 2.6 since fi → I as
i→∞. The proof is complete. 2

PROOF OF THEOREM 3.2. Suppose that G is not discrete. Then by Proposition 5.2, G
contains a sequence { fi } such that each fi is g-elliptic and

fi → I as i→∞.

Since W Y (G)=W (G) is finite, we know that there is a parabolic element g with
Fix(g) ∩ Fix( fi )= ∅ for all large i by choosing a suitable subsequence if needed.
Then for each large i , there is an integer mi such that fi gmi is loxodromic. Since
〈g, fi 〉 = 〈g, fi gmi 〉 is nonelementary, it is discrete by our assumption. This violates
Lemma 2.6. 2

PROOF OF THEOREM 3.3. We assume that σ(L(G))= Rk
, where 1≤ k ≤ n. Sup-

pose that G is not discrete. Then Lemma 2.13 implies that 8+(G)= {g ∈8(G) | g
is sense preserving} is dense in PSL(2, 0k).

Since G contains a g-elliptic element f which is not an element of W Y (G)=
W (G), there is a parabolic element p in G with Fix(p) ∩ Fix( f )= ∅. By the
hypotheses, we see that 〈p, f 〉 is discrete. Conjugate G so that p(∞)=∞. It follows
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that f (∞) 6= ∞. By [17] and the proof of Theorem 2.9, we may assume that
p(x)= Ax + a, where Aa = a, a ∈ Rk

× {0},

A =

(
Ak 0
0 An−k

)
,

Ak ∈ O(k) and An−k ∈ O(n − k).
If A is a rational rotation, then we can choose p to be a translation and conjugate it

such that p(x)= x + 1. In this case, we let pi (x)= x + 1.
If A is an irrational rotation, then we may assume that a = 1 and Aki → En as

i→∞. Let hi (x)= x/ki . Then hi pki h−1
i (x)= Aki x + 1→ x + 1 as i→∞. Since

the restriction of each hi to Rk
is an element of PSL(2, 0k), there is a sequence

{hi j } ⊂8
+(G) such that hi j → hi |Rk as j→∞. Then h̃i j → hi as j→∞, where

h̃i j ⊂ PSL(2, 0n) is the Poincaré extension of hi j to Rn
. For each i , we choose an

element from {hi j }, which is denoted by hii . Then h̃ii pki h̃−1
ii
(x)→ x + 1 for any

x ∈ Rn
. For each hii , we choose an element fi ∈8

−1(hii )⊂ G. Then by Theorem 2.9,
fi = fii h̃ii , where fii |Rk = I . By choosing a subsequence if necessary, we may
assume that fii (x)→ Dx , where

D =

(
Ek 0
0 Dn−k

)
and Dn−k ∈ O(n − k). Now we consider the sequence { fi pki f −1

i }. Since

fi pki f −1
i = fii h̃ii pki h̃−1

ii
fii
−1,

we have that fi pki f −1
i (x)→ x + 1. In this case, we let

pi (x)= fi pki f −1
i (x).

Since ∞ /∈ Fix( f ), we know by [4] and the proof of Theorem 2.9 that f has the
following form

f (x)= t2 B
x − b

|x − b|2
+ c,

where b, c ∈ Rk
× {0}, t > 0,

B =

(
Bk 0
0 Bn−k

)
,

Bk ∈ O(k) and Bn−k ∈ O(n − k).
Choose g(x)= N 2x so that N 2t > 1. Then

g f g−1(x)= t2 N 4 B
x − N 2b

|x − N 2b|2
+ N 2c.
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Since the restriction of g to Rk
is an element of PSL(2, 0k), there is a sequence

{gi } ⊂8
+(G) such that gi → g|Rk . Thus, g̃i → g. For each gi , we choose an element

hi ∈8
−1(gi )⊂ G. Then by Theorem 2.9, hi = hi0 g̃i , where hi0 |Rk = I . By choosing

a subsequence if necessary, we may assume that hi0(x)→ T x ,

T =

(
Ek 0
0 Tn−k

)
,

where Tn−k ∈ O(n − k). This implies that

hi f h−1
i = hi0 g̃i f g̃−1

i hi0
−1(x)→ t2 N 4T BT−1 x − N 2b

|x − N 2b|2
+ N 2c as i→∞.

We consider the sequence {Hi = 〈pi , hi f h−1
i 〉}. Each Hi is a nonelementary

subgroup of G generated by a parabolic and a g-elliptic element and hence discrete
by assumption. Let p0(x)= x + 1 and

f0(x)= t2 N 4T BT−1 x − N 2b

|x − N 2b|2
+ N 2c.

Then H = 〈p0, f0〉 is the algebraic limit of {Hi }. By Proposition 5.3, {Hi } satisfies the
E-condition. Hence, Lemma 6.1 yields that H is a Kleinian group. By Lemma 6.2,
the radii of the isometric spheres of g ∈ H − StabH (∞) are not larger than one, which
is a contradiction with the assumption N 2t > 1. The proof is complete. 2
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