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In psychophysiology, an interesting question is how to estimate the reliability of event-related poten-
tials collected by means of the Eriksen Flanker Task or similar tests. A special problem presents itself if
the data represent neurological reactions that are associated with some responses (in case of the Flanker
Task, responding incorrectly on a trial) but not others (like when providing a correct response), inherently
resulting in unequal numbers of observations per subject. The general trend in reliability research here is to
use generalizability theory and Bayesian estimation. We show that a new approach based on classical test
theory and frequentist estimation can do the job as well and in a simpler way, and even provides additional
insight to matters that were unsolved in the generalizability method approach. One of our contributions is
the definition of a single, overall reliability coefficient for an entire group of subjects with unequal numbers
of observations. Bothmethods have slightly different objectives.We argue in favor of the classical approach
but without rejecting the generalizability approach.
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1. Introduction

This article is based on a consultation request from biological psychologists seeking psychometric
advicewith respect to reliability issues. Theywere strugglingwith the issue of appropriate reliabil-
ity estimation for the psychophysiological data they collected using a design in which the number
of observations per person is a random variable instead of a fixed number, which poses some sta-
tistical challenges. Until recently, they relied on methods from classical test theory (CTT), mainly
coefficient alpha and the split-half method (e.g., Fabiani et al., 1987) for computing reliability for
data characterized by these challenges. A problem with most classical reliability coefficients is
that they cannot be applied to these data without discarding large portions of the data (Clayson,
2020). Baldwin et al. (2015) suggested that these simple methods were inappropriate and sug-
gested generalizability theory (GT) as a viable alternative using Bayesian statistics. In this article,
we develop two new CTT methods that circumvent this problem using a frequentist approach.
Our methods can be applied easily: the first method requires only traditional reliability estimates
such as coefficient alpha or λ4, computed repeatedly, and the second method requires only two
observed variances and an observed mean, using 100% of the data. Moreover, our theoretical
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analysis justifies the computation of an overall reliability coefficient over groups of participants
with different numbers of observations. This also leads to a conceptual distinction between ‘reli-
ability’ and ‘test–retest correlation’ even if items are parallel, thus clarifying theoretical issues
that were previously unaddressed.

The data relevant to this study are event-related potentials (ERPs) collected during an Eriksen
Flanker Task (Eriksen & Eriksen, 1974), but other, albeit similar, data types are also relevant here.
A well-known example is the Stroop test (Stroop, 1935). Fabiani et al. (1987) and Hedge et al.
(2018) discussed additional stimulus types in the context of CTT reliability estimation. Because
we focus on reliability, we do not further discuss other task types for generating similar data sets
but concentrate on the Flanker Task data.

In a Flanker Task, participants are repeatedly shown a string of letters (‘SSSSS’, ‘SSHSS’,
‘HHSHH’, ‘HHHHH’) and are instructed to press a button with one hand if the central letter is
an ‘H’ and with the other hand if the central letter is an ‘S’. Participants must respond as quickly
and as accurately as possible, and although correct responses are observed for the majority of
trials, incorrect responses are observed too. On such trials where participants respond incorrectly,
specific event-related potentials (ERPs) arise. ERPs are voltage fluctuations in neurons that can
be measured from the scalp with the use of electro-encephalography (EEG). Two ERPs that are
consistently observed when participants err (in a Flanker Task or in similar experimental designs)
are the error-related negativity (ERN, Falkenstein et al., 1991; Gehring et al., 1993) and the
error positivity (Pe, Falkenstein et al., 1991). The former peaks between 25 and 100 ms after the
commission of an error and is most potent at fronto-central scalp sites. The latter peaks between
200 and 400 ms after the incorrect response and is best observed at centro-parietal locations.
Although their precise functional significance is still debated (Olvet & Hajcak, 2008; Overbeek
et al., 2005), the ERN is thought to represent early error signaling that is not dependent on the
person being aware of having committed the error, and the Pe may represent later, more conscious
processing of the error (Nieuwenhuis et al., 2001; O’Connell et al., 2007). The stronger the ERP
(i.e., the more negative the ERN and the more positive the Pe), the stronger the neuronal response
to committing the error. As the ERN and Pe are only observed when participants err, the number
of observations per participant varies, complicating reliability estimation of this data.

Although we developed our reliability theory with ERN and Pe data in mind, it may be
applicable to other data where the number of observations is variable. One reviewer noted that
“it might be helpful for stimulus-related ERPs, which also tend to have unbalanced trial counts
due to artifact rejection,” and we agree with this. Another reviewer pointed out that the situation
is similar in cases of agreement coefficients or intraclass coefficients based on multiple raters,
if the number of raters or the number of objects is variable, and this is given more attention in
Supplementary Material C.

So far, the theoretical psychometric literature has been unaware of the reliability issue that
played in this research area. This article extends CTT with new methods for estimating reliability
with variable numbers of observations per participant, as is routinely encountered in psychophys-
iological data such as that of the ERN and Pe. We first describe the Flanker Task, the resulting
data matrices, and briefly review reliability methods that have been applied. After stating our
assumptions, we present our first method in the form of a theorem and corollary, which deal with
potentially non-parallel items. After this, we present our secondmethod, which deals with parallel
items. After a computational example and real data examples, we present a theoretical analysis
of test–retest correlations, showing that they can generally not be used to estimate reliability. We
compare our CTT approach in detail to the GT approaches suggested by Baldwin et al. (2015)
and Clayson et al. (2021).
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2. Flanker Tasks and Resulting Data

2.1. Flanker Tasks

The Flanker Task used in the present study is a representative version of the Eriksen Flanker
Task of which data have already been presented elsewhere (Bernoster et al., 2019; Rietdijk et al.,
2014) . In this version of the Flanker Task, participants complete 400 trials inwhich they are shown
a letter array of which the central target letter is equal (‘SSSSS’, ‘HHHHH’) or unequal (‘SSHSS’,
‘HHSHH’) to the flanking distractor letters. Participants are instructed to press a predefined button
with their right index finger if the central letter (the target) is an ‘H’ and another button with their
left index finger if the target is an ‘S’. Trials start with a 250ms cue (‘^’) pointing at the location of
the target. Then, the letter array appears for 52 ms, followed by a black screen for 648 ms. During
this 700-ms period, participants can respond by pressing one of the buttons. Then, a feedback
symbol appears indicating whether their response was correct (‘ooo’), incorrect (‘xxx’), or too
late (‘!’). After a 500-ms break (the so-called interstimulus interval or ITI), the next trial starts.
The trial sequence is illustrated in Fig. 1. Participants completed 80 trials in a row and had the
opportunity to take a break between each series of 80 trials. Within a series, each of the four letter
arrays was presented 20 times in a random order to prevent training or fatigue effects from having
a systematic effect on certain letter array conditions.

The ERN and Pe data were extracted in line with standard practices in electrophysiological
research—the ERN was defined as the mean amplitude at electrode FCz in the 25–100-ms time
window, and the Pe was defined as the mean amplitude at electrode Pz in the 200–400-ms time
window. Precise information on the recording and (pre-)processing of the data is described in
Supplementary Material A.

When given enough time to respond, participants would have each trial correct and no error-
related ERPs (i.e., no ERNs or Pe-s) would occur. Therefore, participants respond to trials under
time pressure. With adequately chosen presentation, response, and feedback time intervals, time
pressure forces participants to make errors. Presenting Flanker Tasks under time pressure is a
means for eliciting the data of interest, but because the presence of an ERN / Pe only occurs when

Figure 1.
Schematic Representation of a Flanker Task Trial
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the response was incorrect, we will further ignore the correct/incorrect data structure and focus
on the trials for which an incorrect answer was given, and thus, an ERN and Pe were elicited.

2.2. Data Matrix

With the Flanker Task, interest resides with psychophysiological activity in response to error.
Incorrect responses trigger an ERN and Pe, whereas correct responses do not. There are two ways
to represent these data in a data matrix that we will refer to as spaced and condensed. In the spaced
data matrix, each n-th column corresponds to the n-th trial on which a stimulus was presented.
This produces a data matrix containing ERPs when a response was incorrect, interspaced with
blanks in other trials. In the condensed data matrix, each n-th column corresponds to the n-th trial
on which the participant made an error. This produces a data matrix with ERPS in consecutive
columns at the left side, followed by blanks. A small fictitious example of both data matrices is
given in Table 1.

Because correct responses do not elicit these ERPs, it is disputable whether unavailable ERPs
should be considered as missing. The present situation is different from the blanks in a data matrix
where, for example, a participant’s age was expected. Because each participant has a particular
age, a blank represents a truly missing value that the researcher may wish to track down or treat
statistically. This approach does not make sense with alleged ERPs that, in fact, do not exist when
responses are correct and therefore are not missing. The blanks in Fig. 1 indicate where positive
responses were given, but do not represent missing ERPs. Our reliability method therefore must
deal with unequal numbers of scores across participants but not necessarily with missing data.
Consequently, we will use the condensed data matrix.

Note that data removed during data cleaning (for ERPs specifically in the artifact rejection
step, see Supplementary Material A) are missing even in our definition. This is usually a much
smaller part of the data. In our examples with real data, we do not differentiate these missings
from the empty cells due to correct responses, but we do not claim that future researchers should
necessarily do the same.

We will not differentiate between stimulus types (‘SSSSS’, ‘SSHSS’, ‘HHSHH’, ‘HHHHH’)
in the following sections, thus treating them as equivalent, because we want to focus on the
methodological innovation. A separate section will discuss how the results of different stimulus
types can be integrated.

Table 1.
Small Example of Spaced and Condensed Data Matrix of ERNs

Spaced Trial

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 −9 −16 −10 −5
2 26
3 −3 −13
4 −6 −6 −14

Condensed Error trial

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 −9 −16 −10 −5
2 26
3 −3 −13
4 −6 −6 −14
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2.3. Review of Previous Methods to Estimate Reliability

Importantly, as the ERN and Pe represent the neuronal response to committing an error, they
do not manifest on trials where a participant responded correctly. It is customary to present the
participant with a fixed number of stimuli (e.g., 400) and to compute the participant’s mean ERN
and Pe over only the error trials, but it must be noted that the number of error trials is a random
variable that can attain different values for different participants. If the mean ERN or Pe of each
participant is used as a psychological test score, then the number of error trials corresponds to the
concept of test length in reliability theory, but textbooks on CTT do not address the possibility
that the test length is a random variable that attains different values for different participants. As
a result, it is not directly clear how the reliability of the test scores can be estimated from these
data. Klawohn et al. (2020) used the split-half method, and many others used coefficient alpha
(Marco-Pallares et al., 2011; Meyer et al., 2013; Olvet & Hajcak, 2009; Pontifex et al., 2010;
Rietdijk et al., 2014). A problem with the computation of coefficient alpha in this case is that it
requires the same number of observations for each participant. In analyses of ERN and Pe data,
this problem is often solved by computing alpha only for a small number of trials, say the first
eight trials. A disadvantage of this approach is that it discards all data of participants with fewer
than eight trials, as well as data from the ninth trial onward. For example, if this is applied to our
ERN data, 69% of the scores are discarded. Other authors (e.g., Clayson et al., 2021) advocated
the use of generalizability theory (GT) with multilevel analysis, which does not discard data.

A reason why Clayson et al. (2021) and Clayson and Miller (2017a, 2017b) turned to GT is
that it allows a coherent treatment of multiple error sources such as ‘items’ and ‘time.’ Although
we agree that this could be a reason to use GT, many studies with ERPs involve only a single
error source, such as different trials within the same session, together with maybe fixed factors
such as diagnosis group and stimulus type. In these cases, our new CTT methods are simpler and
provide additional insights. However, we disagree with the cited authors on one point. Clayson
and Miller (2017a, p. 72) state that CTT requires the assumption of parallel items. This has been
claimed by authoritative authors on GT too, but we consider this claim misguided (see Sijtsma,
2009a, 2009b; Sijtsma & Pfadt, 2021a, 2021b). In our view, the only fundamental assumption of
CTT is that error scores are uncorrelated (Ellis, 2021). In some CTT theorems, it is also assumed
that items are parallel, but this is not the case for all CTT theorems, and in the absence of parallel
items we can still use the part of CTT that does not require parallel items. In order to make this
clear, we will precisely state in which formulas we assume parallel items and where we do not.

Both CTT and GT assume uncorrelated error score variables, and for this reason we studied
the autocorrelations in the ERN and Pe data of the Flanker Task. This is not the focus of our
article, and therefore, this analysis is reported in Supplementary Material B. Our conclusion is
that CTT and GT may be applied to these data.

3. Reliability for Psychophysiological Data

In this section, we develop a CTT approach to reliability that respects the characteristics of
the ERP data collected using the Flanker Task. First, we introduce a CTT definition of reliability
for the case that participants do not have the same number of items (here, error trials), typical
of Flanker Task ERP data. The reliability defined in this way for the whole group, with varying
number of items across participants, is shown to be a weighted average of the reliability estimated
within each subgroup with the same number of items. The weights are the subgroup proportions
of participants adding up to 1 across all subgroups and are easily derivable from the data, as are
the estimates of the other parameters needed. Second, we study the method for parallel items
as a special case and derive a result for estimating reliability that is even simpler, because it
requires only two observed variances and the harmonic mean of the number of observations per
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participant. Third, we provide computational examples for estimating reliability for ERP data.
Fourth and finally, we study the correlation between test administrations that have item-by-item
parallelism between administrations but not within the same administration. We show that in this
case the test scores would not be parallel, and therefore, there is no reason to expect that the
correlation of the two test scores is equal to their reliability. We also show that if the items within
the test administrations are parallel, then the situation simplifies considerably and the reliability
can be estimated from the correlation between two administrations if the harmonic means of the
test lengths are equal.

3.1. Reliability if the Number of Items is a Random Variable

3.1.1. Assumptions
Let X1, X2, . . . be an infinite sequence of observable score variables, where Xi is the observ-

able score variable on trial i . The variables are called “observable” because we assume that not
all of them are observed for all participants. In this study, this means that a variable is observed
if an ERN score and a Pe score are observed and recorded for a participant. We will also say
that, following psychometrics jargon, each variable Xi is an item score variable, or even shorter,
an item; the i-th column in the condensed data matrix is a sample of Xi . Let N be the number
of observed trials; N is a random variable. We assume that the variables that are observed are
X1, X2, . . . , XN , where N can have different values for different participants. We assume N ≥ 1
for all participants. In practical situations, N would also be bounded from above by some fixed
number m (in our study, m = 400), but there is no mathematical need to assume that here.

We assume CTT for the observable variables: For each i ∈ N, there are variables Ti and Ei

such that for all i, j, k ∈ N with k �= i ,

Xi = Ti + Ei (A1)

Cov
(
Ei , Tj

) = 0 (A2)

Cov(Ei , Ek) = 0 (A3)

Assumption A3 refers to uncorrelated errors. We need it in some derivations but not in all. We fur-
ther assume that the expected measurement error does not depend on the number of observations;
that is, for all i, n ∈ N,

E(Ei |N = n) = 0 (A4)

We further assume that the true scores and error scores are still uncorrelated if one considers only
a subpopulation with a fixed number of observations: for all i, j, n ∈ N,

Cov(Ei , Tj |N = n) = 0 (A5)

Finally, we assume that the variables N , Xi , Ti and Ei have finite second moments, both uncon-
ditionally and conditionally on N .

3.1.2. Variance Decomposition of Total Scores
Since participants differ in their number of observations, it is convenient to define each

participant’s overall test score not as the raw sum score, but rather as the mean of available item
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scores of the participant. We therefore define the test (or total) observed score, the test (or total)
true score, and the test (or total) error score as

X+ :=
N∑

i=1

Xi/N ,

T+ :=
N∑

i=1

Ti/N ,

E+ :=
N∑

i=1

Ei/N .

Then X+ = T+ + E+ but, now that the number of summands is variable, it is not obvious whether
at the group level we have that Var(X+) = Var(T+) + Var(E+). This is what we prove next.

Lemma 1. Assume A1, A2, A4 and A5. Then

Cov(E+, T+) = 0.

Proof. By the law of total covariance, we have

Cov(E+, T+) = E(Cov(E+, T+|N )) + Cov(E(E+|N ),E(T+|N )).

In the first term on the right, using the property that Cov(aY, bZ) = abCov(Y, Z) if Y and Z are
random variables and a and b are scalars (here, we use a = b = n−1), and assumption A5, we
obtain

Cov(E+, T+|N = n) =
n∑

i=1

n∑

j=1

n−2Cov
(
Ei , Tj |N = n

) = 0.

Therefore, we conclude that E (Cov(E+, T+|N )) = 0. In the second term on the right, we have

E (E+ |N = n) = E

(
N∑

i=1

Ei/n |N = n

)

=
n∑

i=1

n−1
E (Ei |N = n) = 0.

Therefore, Cov(E (E+ | N ) ,E (T+ | N )) = 0. ��
From Lemma 1, it follows immediately that Var(X+) = Var(T+) + Var(E+).

3.1.3. Conditional and Unconditional Reliability
We define reliability generically as the ratio of true score variance to observed score variance.

This is consistent with the definitions of many previous authors in CTT (e.g., Cho, 2021; Guttman,
1953; Novick, 1966; Raykov & Marcoulides, 2017). Define the unconditional reliability of the
test observed score as

Rel(X+) := Var(T+)

Var(X+)
.
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We set Rel(X+) := 0 if Var(X+) = 0. We will now stratify the participant population based
on N and then consider some parameters defined on the stratification. First, we assume that we
can estimate the reliability of the test observed score in the subpopulation where the number of
observations equals n. This is the conditional reliability of the test observed score, defined as

ρn := Var(T+|N = n)

Var(X+|N = n)
.

We set ρn := 0 if Var(X+ |N = n) = 0, so that Var (T+ |N = n) = ρnVar(X+|N = n) in all
cases. Furthermore, we write the conditional observed variance as

σ 2
n := Var(X+|N = n)

and the fraction of the subjects with n observations as

πn := P(N = n).

If the number of observed trials is bounded by some m ∈ N, then we can simply write πn = 0 for
n > m. We express the unconditional reliability, Rel(X+) in terms of the conditional reliabilities,
ρn . Note that the following result does not require uncorrelated errors.

Theorem 1. AssumeA1, A2, A4 andA5. The unconditional reliability of the total observed score
X+ is then given by

Rel(X+) = 1 −
∑∞

n=1(1 − ρn)σ
2
n πn

Var(X+)
.

Proof. By the law of total variance, we have

Var(X+) = E (Var(X+ | N )) + Var(E (X+ | N ))

and

Var(T+) = E (Var(T+ | N )) + Var (E (T+ | N )).

AssumptionA4 impliesE (Ei | N ) = 0.Combining this resultwith theCTTdefinition X+ = T++
E+ and its expectation for subgroups, E(X+|N ) = E(T+|N )+E(E+|N ), we haveE (X+ | N ) =
E (T+ | N ); hence, the variance terms on the right of the two former equations vanish if we subtract
Var(T+) from Var(X+) to obtain Var(E+). Therefore,

Var(E+) = Var(X+) − Var(T+)

= E (Var(X+ | N )) − E (Var(T+ | N ))

=
∞∑

n=1

Var(X+|N = n)×πn −
∞∑

n=1

Var(T+|N = n) × πn

Downloaded from https://www.cambridge.org/core. 12 Mar 2025 at 07:41:44, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1288 PSYCHOMETRIKA

Since Var(T+ | N = n) = ρnσ
2
n , we have

Var(E+) =
∞∑

n=1

σ 2
n πn −

∞∑

n=1

ρnσ
2
n πn

=
∞∑

n=1

(1 − ρn)σ
2
n πn . ��

The key principle of Theorem 1 is that, although we should not average the reliability coefficients
from different groups, wemay average the error variances if themean error is 0 in each group. This
provides a simple estimation method for reliability when different participants have responded to
different numbers of items, based on general assumptions.

As an aside, one may note the resemblance of the formula in the theorem with the formula
underlying stratified alpha. Suppose a test consists ofG subtests, eachmeasuring a different aspect
of an overarching attribute of greater complexity than each of the aspects it represents, such as
intelligence. Let σ 2

g denote the variance of the score on subtest g; ρg the reliability of subtest g;
and σ 2

X the variance of the total sum score across the G subtests; then, the reliability of the total
score equals (Lord & Novick, 1968, exercise 4.5; Nunnally, 1978, p. 248)

Rel(X+) = 1 −
∑G

g=1(1 − ρg)σ
2
g

Var(X+)
.

This is called a stratified reliability coefficient, and it is called stratified alpha if ρg is replaced
by the corresponding coefficient αg of subtest g; other reliability coefficients can be stratified
similarly (Ogasawara, 2009). The stratification of the treatment of the Flanker data concerns the
participant population rather than the item set; therefore, both equations are applicable in different
situations.

Theorem 1 uses the ‘true’ population values of the conditional reliabilities ρn , but these are
usually not known exactly. Any estimation method that produces correct reliability estimates can
be used here. We will now describe how, moreover, coefficient alpha can be used to obtain a
lower bound to the unconditional reliability. Let αn be the value of coefficient alpha (Cronbach,
1951; Novick & Lewis, 1967; Ten Berge & Sočan, 2004; Sijtsma & Van der Ark, 2020) in the
subpopulation with N = n. Assuming uncorrelated errors (assumption A3), a standard result is
that αn ≤ ρn , irrespective of the population or any selection thereof. Substitution of αn for ρn in
Theorem 1 yields the following result.

Corollary 1. Assume A1, A2, A3, A4 and A5. Then

Rel(X+) ≥ 1 −
∑∞

n=1(1 − αn) σ 2
n πn

Var(X+)
.

The proof follows immediately fromαn ≤ ρn . The quantity at the right handmay be named length-
stratified alpha. Based on Corollary 1, we suggest to estimate coefficient alpha in each subgroup
with a fixed number of observations, use them as lower bounds of the conditional reliabilities,
and aggregate them into the length-stratified alpha, which may then serve as a lower bound of
the unconditional reliability of the total score. The old method of using alpha in this situation
was to pick a minimum number of available trials, say m = 12, and then compute coefficient
alpha with m items, thus discarding the available item scores Xi with i > m and discarding the
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participants with N < m. For the ensuing coefficient alpha, it would, however, be unclear whether
it is greater than, less than, or equal to the unconditional reliability. Our length-stratified alpha
has the advantage that all data and all participants are used in the estimation and that the direction
of the bias is clear: it yields a lower bound to the unconditional reliability.

Although alpha has been heavily criticized, we have the considered opinion that it is appro-
priate in the present situation. Only if the data are highly multidimensional will coefficient alpha
show a large theoretical discrepancy with respect to the true reliability, but otherwise it closely
approximates reliability from below (Sijtsma & Pfadt, 2021a). However, if one wants to avoid
coefficient alpha, it may be replaced in Corollary 1 by any other lower bound or lower-bound
estimate of reliability, such as Guttman’s λ2 (Guttman, 1945)

3.1.4. Simple Formula for Parallel Items
Let us nowassume furthermore that the items are parallel. Thismeans they satisfy assumptions

A1, A2 and A3, and for all i, j ∈ N

Ti = Tj , (A6)

Var(Ei ) = Var(E j ). (A7)

These assumptions imply that the items have equal variances and equal correlations. For simplicity,
denote ε2 := Var (Ei ), τ 2 := Var (Ti ), σ 2 := Var (Xi ), and ρ = Cor

(
Xi , X j

)
. We assume the

latter correlation is defined, hence σ 2 > 0, and then, standard CTT results are that τ 2 = ρσ 2 and
ε2 = (1−ρ)σ 2. We furthermore assume that the error variances and covariances are independent
of the number of items; that is, for all i, j ∈ N, with i �= j ,

Var(Ei |N ) = Var(Ei ) and Cov(Ei , E j |N ) = 0. (A7a)

This means that responses of subjects with longer tests are not more or less reliable than responses
of other subjects, and errors remain uncorrelated within groups of the same test length.

Theorem 2. Assume A1, A2, A3, A4, A5, A6, A7 and A7a and Var(X+) > 0. Then

Rel(X+) = 1 − E
(
N−1

)
(1 − ρ)σ 2

Var(X+)

= ρ

ρ + E
(
N−1

)
(1 − ρ)

= 1

1 − E
(
N−1

) − E
(
N−1

)

1 − E
(
N−1

)
σ 2

Var(X+)
.

Proof. By the law of total variance, and noting that E (E+ | N ) = 0 (first step below) and,
because due to A7 and A7a, which is true irrespective of the number of trials, N , we can write
Var(E+ | N ) = Var

(
N−1 ∑

Ei |N
) = N−2.N .Var (Ei | N ) = N−1Var (Ei ) = N−1ε2 (second

step below), whereas Var(X+) > 0 implies σ 2 > 0 so that ε2 = (1 − ρ)σ 2 (fourth step below);
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we can readily derive

Var(E+) = E (Var(E+ | N )) + Var(E (E+ | N ))

= E (Var(E+ | N ))

= E

(
N−1ε2

)

= E

(
N−1

)
ε2

= E

(
N−1

)
(1 − ρ)σ 2.

This yields the first equation in Theorem 2. To obtain the second equation, we take the next steps.
Because all item true scores are parallel, it follows that T+, which is the mean of the item true
scores, equals T+ = Ti ; hence, Var(T+) = τ 2 = ρσ 2, and Var(X+) = Var(T+) + Var(E+) =
ρσ 2 +E

(
N−1

)
(1−ρ)σ 2. This yields the second equation in Theorem 2. To obtain the third and

final equation, we notice that Var(X+) /σ 2 = ρ + E
(
N−1

)
(1 − ρ), and solving for ρ yields

ρ = 1

1 − E(N−1)
× Var(X+)

σ 2 − E(N−1)

1 − E(N−1)
.

Multiplying both sides with σ 2

Var(X+)
yields on the left-hand side

ρσ 2

Var(X+)
= Var(T+)

Var(X+)
= Rel(X+),

so that we obtain

Rel(X+) = 1

1 − E(N−1)
− E

(
N−1

)

1 − E
(
N−1

)
σ 2

Var(X+)
.

This is the third equation in Theorem 2. ��
Corollary 2. Under the circumstances of Theorem 2,

a. A sample estimate of the unconditional reliability can be computed from estimates of
E

(
N−1

)
, σ 2, and Var(X+).

b. If we write the harmonic mean of N as H = 1/E
(
N−1

)
, then

Rel(X+) = Hρ

1 + (H − 1)ρ
.

The second part of Corollary 2 says that we can generalize the Spearman–Brown formula to a
situation with variable test lengths by substituting the harmonic mean of the test lengths.

As a generalization of the results obtained thus far, we mention the possibility to include
subgroupings of the population replacing subgroupings based on the number of items that elicited
ERPs or combining the two subgrouping variables. Reliability results are largely like the results
obtained thus far. Definitions and proofs are provided in Supplementary Material C.
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3.1.5. Examples
Example of Theorem 1. This example uses the ERN data obtained from 158 participants.We

consider a total of 400 letter series presentations, making no distinction between the four different
letter series (100 presentations each). Together, these participants realized 50 different values of
the number of trials, N = n, running from 0 trials (8 participants, the highest frequency for any
of the 50 values of n) through 122 trials (1 participant, the lowest frequency also realized with 15
different values of n). Participants with 0 (8 participants) or 1 (7 participants) realized trials are
not useful because the conditional alpha is undefined in these groups. Groups defined by N = n
with one participant cannot be used either because the conditional sample variance is undefined
in such groups. Note that with the method used in the proof of the lemma, the results still hold if
stratification is done with groups that combine groups of the form [N = n]. Therefore, we used
deciles of the subjects with N ≥ 2; see Table 2. In each group, there is a range in the number of
available trials. For example, in the first decile N ranged from 2 to 4, and in the second decile N
ranged from 5 to 7. The conditional alphas were computed with only the trial numbers on which
all participants in the group had a score, that is, the minimum number of trials in that group. For
example, in the first decile group, αn was computed with two items, even though some subjects
had four items, and in the second decile group, αn was computed with five items, even though
some participants had seven items. In total, 2509 out of 3011 observations were used (83%), and
this percentage can grow to 100% if more participants are added to the sample, such that each
group of the form [N = n] is large enough to estimate αn without combining groups. In contrast,
only 31% of the observations would be used if a single coefficient alpha is computed for the first
eight items, and 42% would be used if alpha is computed with the number of items that utilizes
the largest percentage of the data, which is 18 items. The table further lists the estimates of πn ,
αn , σ 2

n , and (1 − αn) σ 2
n πn per decile group. The sum of the estimates of (1 − αn) σ 2

n πn is 15.986,
and the sample variance of X+ in the entire group is 47.390. Therefore, the estimated value of
length-stratified alpha is

1 −
∑∞

n=1(1 − αn) σ 2
n πn

Var(X+)
≈ 1 − 15.986

47.390
= 0.663.

It should be noted that each group has fewer than 20 participants and that each αn may have
a large standard error. Nevertheless, the total estimate of length-stratified alpha might have an
acceptable standard error, because it is based on a weighted average of the αns. For example,
simulation of 1000 samples with parallel items with reliability 0.1887 each, using the test lengths
in the column “Number of Items Used” of Table 2, with 13 participants per group, showed that
a mean length-stratified alpha of 0.656 had a bias of only −0.007 (compared to the outcome
0.663 in a single simulation with subgroups of 106 participants) and a standard error of 0.074. In
comparison, with the same parameters, a single sample of 130 subjects with 9 itemswould have an
alpha with standard error 0.042. Thus, stratification increased the standard error—as usual—but
the effect may be modest. An extensive study of the standard error of length-stratified alpha would
be interesting but is beyond the scope of this article.

Computational Example of Theorem 2. We start with a computational example, using only
a small subsample of persons to clarify the steps needed. Table 3 shows the ERN scores of seven
participants and the variables X+, N , and 1/N derived from the data. The sample variance of all
the raw ERP scores in Table 3 (−7.32 to −11.73, spanning six columns) is 127.0444, which we
use as an estimate of σ 2; the sample variance of X+ is 52.7442, and the sample mean of 1/N is
0.2357. If we substitute this in the last equation of Theorem 2, thus assuming parallel trials, we
obtain
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Table 2.
Statistics For The Computation of Length-Stratified Alpha

Decile of N Number of Participants Number of Items Used πn αn σ 2
n (1 − αn) σ 2

n πn

1 15 2 0.105 0.508 121.013 6.242
2 11 5 0.077 0.700 77.562 1.789
3 18 8 0.126 0.527 40.547 2.414
4 15 11 0.105 0.676 39.855 1.353
5 13 15 0.091 0.572 26.489 1.031
6 15 18 0.105 0.880 73.058 0.922
7 12 21 0.084 0.753 26.548 0.551
8 16 25 0.112 0.692 23.156 0.799
9 15 31 0.105 0.583 13.355 0.584
10 13 41 0.091 0.920 41.317 0.301
Total 143 47.390 15.986

Note. N = number of items; πn = number of participants in decile / total number of participants (143);
αn = coefficient alpha in decile; σ 2

n = variance of sum score in decile group

Table 3.
Computational Example for Seven Participants (out of 143)

Person ERN Scores X+ N 1/N

P01 −7.32 1.44 3.78 3.87 0.4425 4 0.2500
P02 −3.85 −9.87 −6.8600 2 0.5000
P03 2.61 −12.34 12.95 −10.07 −14.92 −4.3540 5 0.2000
P04 5.26 6.66 −8.1 0.22 −9.63 −8.88 −2.4117 6 0.1667
P05 −12.18 −7.65 −20.56 −4.13 −3.84 −11.58 −9.9900 6 0.1667
P06 15.52 −21.37 −16.96 −13.34 −13.12 −9.8540 5 0.2000
P07 −26.51 −30.79 −34.1 −11.86 −16.18 −11.73 −21.8617 6 0.1667

Mean −8.4874 −7.8413 4.8571 0.2357
Variance 127.0444 52.7442 2.1429 0.0145

Rel(X+) ≈ 1

1 − 0.2357
− 0.2357

1 − 0.2357

127.0444

52.7442
= 0.566.

Using the sample variance of subjects with different N as an estimate of σ 2 is justified because
each column is assumed to have the same expectation and variance, as we assume parallel items
and scores independent of N .

Real Data Example of Theorem 2. Now consider the entire sample of the data from 150
participants with one or more scores; the computations are similar. Parameter σ 2 was estimated
as the sample variance of the whole data set, regardless of the subject and the trial. Var(X+) was
estimated as the sample variance of X+, and E

(
N−1

)
as the sample mean of 1/N . The data of

all subjects with N > 0 were used in all these estimates. The estimates are reported in Table 4.
In conclusion, the reliability of the total score is estimated at 0.559.

As Theorem 2 is based on the assumption of parallel items, one would need to check this
assumption. Supplementary Material B illustrates some visual inspections that may be relevant to
this. But note that if the items are parallel, the estimates based on Theorem 1 and 2 estimate the
same parameter, provided that they are computed on the same data. When we applied Theorem
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Table 4.
Estimates Needed for Computing the Unconditional Reliability

Parameter Estimate

σ 2 183.365
Var(X+) 49.179

E

(
N−1

)
0.1391

Rel (X+) 0.559

1 in Table 2, we used a subset of the data, and this yielded the estimate 0.663. If we use the
same subset of data to estimate the reliability with Theorem 2, we obtain 0.614; the difference
between the two estimates is 0.049. The size of the difference may be viewed as an indication of
the extent to which the assumption of parallel items is violated. Simulations of parallel items with
normally distributed true scores and error scores and reliability 0.1887 (needed to reproduce the
length-stratified alpha of 0.663) suggest that this difference falls between the 98th and the 99th

percentile of the sampling distribution. Although the difference between the two estimates seems
significant, indicating a violation of the assumption of parallel items, the effect of the violation
on the reliability estimate is modest.

A reason why the reliability is relatively low is that a small value of N has a large effect on
E

(
N−1

)
. Therefore, if the reliability is small, we recommend to revise the data collection such

that each subject has a certain minimum number of valid scores. As an example, in a Flanker Task
one could consider decreasing the allotted time for answering, which would increase the number
of errors.

Comparison of Various Methods With Real Data. One may be interested in a comparison
of our outcomes with the outcomes of preexisting methods if they are applied to the ERN data.We
consider (1) various versions of coefficient alpha, (2) the split-half reliabilities, and (3) variance
components. For a fair comparison, we use only the data with N ≥ 2. Recall that our first method,
length-stratified alpha, yielded 0.663 as a lower bound and utilized 83% of the data, and our
second method, assuming parallel items, yielded the estimate 0.559 based on 100% of the data.

1. We computed coefficient alpha for the first eight items with all participants that have eight or
more items. The outcome was 0.487, based on 117 participants, so that computations use 117
× 8 / 3011 = 31% of the data. The arithmetic mean of the number of observations (confined
to N ≥ 2) was 20.99, and when we computed coefficient alpha for the first 21 items with
all participants that have 21 or more items, the outcome was 0.695, based on 56 participants,
which utilized 56 × 21 / 3011 = 39% of the data. In view of the fact that Corollary 2 uses
the harmonic mean, we repeat this computation with the harmonic mean. The harmonic mean
of the number of observations (confined to N ≥ 2) was 10.3172, and when we computed
coefficient alpha for the first 10 items with all participants that have 10 or more items, the
outcome was 0.596, based on 106 participants, which utilized 106 × 10 / 3011 = 35% of the
data. Our lower bound 0.663, based on Corollary 1, has the advantage that it also uses data
from subjects with fewer than 8, 10, or 21 observations.

2. The correlation between the mean of the first half and the mean of the second half of the scores
was 0.496, yielding a split-half reliability of 0.663. If the halves were randomly selected, the
mean split-half reliability over 1000 independent draws was 0.665 with a standard deviation of
0.039. This computation utilizes 100% of the data, which is therefore not entirely comparable
with length-stratified alpha, which used 83% of the data. If the same 83% of the data is used
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to compute the split-half reliabilities, after 1000 draws the split-half reliabilities had a mean
of 0.671 with a standard deviation of 0.024

3. In a variance components model, the restricted maximum likelihood estimates for the variance
components of participants, items, and interaction + error were 30.575, 0.138, and 151.965.
Clayson et al. (2021, p. 183) recommended computing the stepped-up coefficient with the
arithmetic mean, but our analysis shows that the harmonic mean should be used (a further
explanation on this is found after Eq.4). Using the arithmetic mean of the number of obser-
vations (21), the estimated reliability is 30.575/(30.575 + 151.965/21) = 0.809. Using the
harmonic mean (10), the estimated reliability is 30.575/(30.575 + 151.965/10) = 0.668.

3.2. Correlation with a Second Test Administration

For a fixed number of items across participants, the CTT reliability of the test score X+
equals the correlation of the test with a parallel test. The idea is that if one could replicate the test
administration under similar circumstances, the reliability tells us what the correlation between
the first and second test is (in the context of this article, the terms ’test’ and ’test administration’
are used interchangeably). Although in practice parallel tests are (nearly) impossible to obtain,
we consider the theoretical issue of what happens to this result if the number of items is allowed
to vary across participants, typical of ERPs obtained using the Flanker test. We will show that if
the items within the first test are not parallel, even if the items of the second test are one-by-one
parallel with the items of the first test if both items are administered, a change in the number
of items in the second test, in comparison with the first test, will entail that subjects can have a
different true score T+ on the second test. Thus, even if the items of the two tests are one-by-one
parallel, the test scores would not be parallel, and therefore, there is no reason to expect that the
correlation of the two test scores is equal to their reliability. We study this next in more detail. In
doing this, we assume in the mathematical development that the series of items in both tests are
infinitely long irrespective of whether they have really been observed.

Let the items of the second test be denoted by X ′
i , T ′

i , and E ′
i and the number of items of

the second test by N ′. We assume for all i, j ∈ N,

X ′
i = T ′

i + E ′
i (A8)

Cov(E ′
i , T

′
j ) = 0 (A9)

We use the following assumptions. First, the items of the two tests are one-by-one parallel, that
is, for all items i ∈ N,

Ti = T ′
i ; (A10)

Var(Ei ) = Var(E ′
i ); (A11)

Cov(Ei , E
′
i ). = 0 (A12)

Note that the definition requires A8–A10 for all i ∈ N, even though only N items are observed
in the first test, and only N

′
in the second test, where N �= N

′
in general. The assumptions state

that the equalities hold if the variables involved are observed, but they do not imply that all of
these variables are indeed observed. This circumstance is comparable to the setup in mathematical
statisticswherewe use an infinite sequence of randomvariables to obtain the central limit theorem,
even though any real sample will include only a finite number of these random variables.

We do not need to assume that the errors within a test administration are uncorrelated, but we
will assume that the error correlations are the same in both test administrations: for all i, j ∈ N,

Cov
(
Ei , E j

) = Cov
(
E ′
i , E ′

j

)
. (A13)
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Finally, we assume that

(
N , N ′) is independent of all Ti , Ei , T

′
i and E

′
i jointly (A14)

N and N ′ have the same probability distribution (A15)

The test scores on the second test are defined as

X ′+ :=
N ′∑

i=1

X ′
i/N

′,

T ′+ :=
N ′∑

i=1

T ′
i/N

′,

E ′+ :=
N ′∑

i=1

E
′
i/N

′.

We focus on two items from the same test to arrive at reliability based on one administration and
denote the correlation between Xi and X j as ρi j . Further, we denote the correlation between Xi

and X ′
j as ρ′

i j . If the items are one-by-one parallel, then we have

ρi j = ρ′
i j (i �= j)

Var(Xi ) = Var
(
X ′

i
)

and ρ′
i i is the reliability of Xi . The average covariance between the first n items of the first test

and the first m items of the second test is

C̄nm := 1

nm

n∑

i=1

m∑

j=1

ρ′
i j

√
Var(Xi )Var(X ′

j ).

To express this in terms of only parameters of the first test administration, write ρ∗
i j := ρi j if

i �= j and ρ∗
i i := ρ′

i i , and let

C̄∗
nm := 1

nm

n∑

i=1

m∑

j=1

ρ∗
i j

√
Var (Xi )Var(X j ).

If the items are one-by-one parallel, then C̄∗
nm = C̄nm , but the point of C̄∗

nm is that it is entirely
defined with parameters of the first test. Let

πnm = P(N = n, N
′ = m).

We are now able to formulate Theorem 3, which allows us to express the correlation between
the two test scores as a function of the parameters of the first test and the joint distribution of
the test lengths (πnm). The involved parameters include the item reliabilities, and we do not offer
a method to estimate them, but this is irrelevant to the conclusion that we will draw from this
theorem.
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Theorem 3. Assume A1, A2, and A8–A15. The correlation between X+ and X ′+ is

Cor
(
X+, X ′+

) = 1

Var(X+)

∞∑

n=1

∞∑

m=1

C̄∗
nmπnm .

Proof. By the law of total covariance,

Cov
(
X+, X

′
+
)

= E

(
Cov

(
X+, X

′
+ | N , N ′))

+ Cov
(
E

(
X+ | N , N

′)
,E

(
X ′+ | N , N

′) )
.

Because (N , N ′) is independent of X+ (a consequence of A14), E
(
X+ | N , N

′) = E(X+), and

therefore, Cov
(
E

(
X+ | N , N

′)
,E

(
X

′
+ | N , N

′) )
= 0. Therefore,

Cov
(
X+, X

′
+
)

= E

(
Cov

(
X+, X

′
+ | N , N ′))

.

Now

Cov
(
X+, X

′
+ | N , N ′) = 1

NN ′
N∑

i=1

N ′∑

j=1

Cov
(
Xi , X

′
j | N , N ′).

Because (N , N ′) is independent of (Xi , X
′
j ), Cov

(
Xi , X

′
j | N , N ′

)
= Cov

(
Xi , X

′
j

)
. If i �= j ,

then Cov
(
Xi , X

′
j

)
= Cov

(
Xi , X j

)
because parallel tests have similar error correlations. If i = j ,

thenCov
(
Xi , X

′
j

)
= ρ′

i iVar (Xi ), because Xi and X ′
i are parallel.Notice that due to parallelism,

Var (Xi ) = Var(X ′
i ). In sum, we have that Cov

(
Xi , X

′
j | N , N ′

)
= ρ∗

i j

√
Var (Xi )Var(X j ) for

all i, j ∈ N. Therefore, Cov
(
X+, X

′
+ | N , N ′

)
= C̄∗

NN ′ , yielding

Cov
(
X+, X

′
+
)

= E
(
C̄∗
NN ′

) =
∞∑

n=1

∞∑

m=1

C̄∗
nmπnm .

Finally, because the two tests have one-by-one parallel items and N and N ′ have the same prob-
ability distribution, Var(X+) = Var(X ′+). ��

Note that the correlation between N and N ′ will affect the πnm , and if the items within a test
are not parallel, this will generally affect the outcome. The correlation between N and N ′ will
not affect Rel(X+) as defined earlier, however, and therefore, we conclude from this theorem that
the correlation between the total scores of two tests with variable lengths will generally not be
equal to the reliability of the total score, even if the items of the two tests are one-by-one parallel
and the two tests have identical distributions of test lengths. One way to understand this result is
that the variable test length acts as a source of variation that is not included in the definition of
reliability. We will analyze this situation in the next section using GT.

If the items in a test are parallel, the situation simplifies considerably. In that case C̄nm = ρσ 2,
so that

∑∞
n=1

∑∞
m=1C̄nmπnm = ρσ 2, regardless of the distribution πnm , hence regardless of the
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correlation between N and N ′. Furthermore, we saw earlier that Var (X+) = ρσ 2+E
(
N−1

)
(1−

ρ)σ 2, which implies that we do not even need that N and N ′ have the same distribution; it is
sufficient that E (1/N ) = E

(
1/N ′).

Corollary 3. Assume A1, A2 (basic CTT), A6, A7 (the items of the first test are parallel) and
A8–A14 (the items of the second test are one by one parallel with the items of the first test, with
similar error correlations, and the true and error score variables are independent of (N , N

′
)). If

E (1/N ) = E
(
1/N ′), then Cor

(
X+, X ′+

) = Rel(X+).

3.2.1. Integration of Reliabilities of Different Stimulus Types
This section briefly discusses how the above methods can be applied if the ERPs are obtained

fromdifferent stimulus types, such as ‘SSSSS’, ‘SSHSS’, ‘HHSHH’, and ‘HHHHH’ in the Flanker
Task. In such cases, one may consider it implausible that ERPs from different stimulus types are
parallel. Nevertheless, the method of Corollary 1 can still be used because it does not require
parallel items. If the items within each stimulus type are parallel, while items from different
stimulus types are not parallel, a better estimate can be obtained with the following method:
(1) estimate the reliabilities within each stimulus type using the methods of Theorem 2 and (2)
integrate the ensuing reliabilities with the formula for stratified reliability of composite tests,
1 − ∑G

g=1σ
2
g

(
1 − ρg

)
/Var(X+), discussed after Theorem 1.

4. Comparison with Generalizability Theory Approaches

Several authors have adopted the use of GT for ERP scores. Baldwin et al. (2015) and
Clayson and Miller (2017a; 2017b) described a model with persons and trials as random factors.
They included diagnostic category as a fixed factor, where persons are nested within diagnostic
categories such as anxiety disorder and major depressive disorder. The authors estimated the
generalizability coefficients in each diagnostic category separately, so for the present discussion
it suffices to consider only one diagnostic category and thus omit diagnostic category as a factor.
In addition, Clayson et al. (2021) described a model that includes the factors persons, trials, and
occasions. Within a single diagnosis group and with data of only a single occasion, the model
these authors proposed includes only persons and trials as random factors.

Because, in contrast with CTT, trial (or item) is now considered a random factor, we will
slightly change the notation and write the score of a participant p on item i as X (p, i). The model
with participant effects (τp), trial effects (βi ), interaction effects (γpi ), and a residual (εpi ) can
be written as

X (p, i) = μ + τp + βi + γpi + εpi .

Various methods exist for estimating the variance components corresponding to τp, βi , and
γpi +εpi . Clayson et al. (2021) recommended Bayesian hierarchical models. Denote the variance
components σ 2(τ ), and so on. The authors defined the dependability coefficient for subjects with
n trials as

Dep (X+, n) = σ 2(τ )

σ 2 (τ ) + 1
n [σ 2 (β) + σ 2 (γ + ε)] . (1)
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Baldwin et al. (2015, p. 792) assumed furthermore that σ 2 (β) = σ 2 (γ ) = 0, leading to the
special case

Dep (X+, n) = σ 2(τ )

σ 2 (τ ) + 1
nσ 2 (ε)

. (2)

Writing ρ = σ 2(τ )/(σ 2 (τ ) + σ 2(ε)), we can rewrite the coefficient of Baldwin et al. as

Dep (X+, n) = nρ

1 + (n − 1)ρ
. (3)

To compare this result with our own results, we note that if we define the true scores as Ti (p) =
μ+ τp +βi +γpi , the assumption σ 2 (β) = σ 2 (γ ) = 0 implies that the items are tau-equivalent,
i.e., Ti = Tj for all i, j ∈ N. Baldwin et al. (2015) used the same value of σ 2 (ε) regardless of
the included items or participants, so they treat the items as if they are parallel. In Corollary 2,
we concluded for the situation of parallel items that, with H = 1/E

(
N−1

)
(the harmonic mean

of N ),

Rel(X+) = Hρ

1 + (H − 1)ρ
. (4)

We will now discuss the differences between the approach of Baldwin et al. (2015) and our own
analysis. The most obvious difference is that Baldwin et al. use Equation (3), which uses a fixed
number of trials n, whereas we use Equation (4), which uses the harmonic mean H of a variable
number of trials. Baldwin et al. thus compute conditional dependability coefficients, given a
value of n, but they do not discuss how these conditional coefficients can be integrated into a
single unconditional coefficient that summarizes the reliability or dependability in a population
of persons having different values of n. Clayson et al. (2021, p. 183) recommend integration by
using a formula that is equivalent to (3) and replace n by the arithmetic mean or median of N ,
but this seems to be an ad hoc formula without proof of correctness. Our analysis shows that
this integration can be done with essentially the same formula, which is the Spearman–Brown
formula, replacing the fixed test length with the harmonic mean of the test lengths. Our formula
has the advantage that it is mathematically proven to produce the unconditional reliability when
this is defined in the conventional manner as the true score variance divided by the observed
score variance. The harmonic mean (H = 1/E

(
N−1

)
), rather than the arithmetic mean (denoted

here with A = E (N )), is used because the overall error variance is the expected value of the
individual error variances 1

nσ 2 (ε), which is σ 2 (ε) /H and not σ 2 (ε) /A. In general, H < A if
N > 0 and Var(N ) > 0, so using the arithmetic mean produces estimates that are too optimistic.
Mathematically, Equation (4) ismore general thanEquation (3), because the latter can be viewed as
a special case of the former when the test length is fixed. The two formulas can be complementary
in their applications. Equation (3) can be useful in clinical settings if, after the test administration,
one wants to decide whether enough trials have been observed for a given patient with known n,
even if the estimate of ρ is based on data with many patients with variable N . Equation (4) can be
used in research where a single reliability value is needed for a group of persons with variable N .

The second difference is themethod for estimatingρ. Baldwin et al. (2015) advocate the use of
a Bayesian hierarchical model to estimate the variance components and their ratio. In Corollary
2a, we concluded that it suffices to estimate σ 2 (the variance of all scores) and Var (X+) and
E

(
N−1

)
. These are simply variances and means of observed variables, and in the two examples

of Theorem2we demonstrated that these quantities can easily be estimatedwith the corresponding
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sample moments. Our analysis was mainly concerned with the relations between parameters, and
the examples were merely given with the purpose to clarify the results, not to claim that this is the
best estimation method. Any estimate of ρ may be inserted in Corollary 2b (the Spearman–Brown
formula with harmonic mean of N ) to obtain an estimate of the overall reliability. We discuss the
merits of the method of Baldwin et al. and compare them with our estimation method based on
Corollary 2a.

According to Baldwin et al. (2015), the advantages of their method are that it does not produce
negative variance component estimates and that “computing interval estimates and hypothesis tests
for variance components and dependability coefficients is straightforward” (ibid., p. 794). Our
method is based on the sample variances of σ 2 and Var (X+), which cannot be negative either.
Note that the method of Baldwin et al. assumes normal distributions for the components, whereas
our method does not require any distributional assumptions whatsoever. The method of Baldwin
et al. produces interval estimates, but in doing this it relies heavily on the assumption of normal-
ity. Ogasawara (2006) and Maydeu-Olivares et al. (2007) compared asymptotic distribution-free
(ADF) estimators and normal theory estimators for coefficient alpha, and Maydeu-Olivares et al.
concluded that “for sample sizes over 100 observations, ADF intervals are preferable, regardless
of item skewness and kurtosis” (ibid., p. 157). Braschel et al. (2015) and Coffman et al. (2008)
also noted lack of robustness of estimates of intraclass correlations based on normal theory, and
Coffman et al. provided the ADF distribution of sample intraclass correlations. Using Bayesian
methods does not render estimators invulnerable to violations of normality. Ionan et al. (2014)
compared various frequentist and Bayesianmethods for interval estimation of the intraclass corre-
lation in a two-way crossed random effects model and concluded that “none of the methods work
well if the number of levels of a factor are limited and data are markedly non-normal” (ibid., p.
1). This does not mean that our method is necessarily preferable, however; hypothesis testing and
interval estimation of σ 2/Var (X+), a ratio of two dependent variances, have similar problems if
data are non-normal (Wilcox, 1990, 2015). Further research is needed to determine the optimal
estimation method for small non-normal data with random numbers of observations.

A third difference is that we provide an analysis of what happens if the test administration
is repeated with possibly a different number of trials. Baldwin et al. (2015) did not discuss this
matter.

Clayson et al. (2021) generalized the model of Baldwin et al. (2015) to a setting with
multiple occasions. Applied to a setting with a single occasion, the main difference with
Baldwin et al. is that Clayson et al. do not assume σ 2 (β) = σ 2 (γ ) = 0, leading to
Equation (1) instead of Equation (2). A comparison of our analysis with Clayson et al. fol-
lows roughly the same lines as our comparison with Baldwin et al. Clayson et al. describe
conditional dependability coefficients, given a fixed number of trials, whereas our method
describes how we can integrate coefficients for different numbers of trials into an uncon-
ditional coefficient. More specifically, if we assume that the components of τ, β, γ, ε are
independent of N , then Var(X+) = E (Var(X+ | N )) = ∑∞

n=1Var(X+ | N = n) πn =∑∞
n=1{σ 2 (τ ) + 1

n [σ 2 (β) + σ 2 (γ + ε)]}πn = σ 2 (τ ) + E
( 1
N

) [σ 2 (β) + σ 2 (γ + ε)]. The
unconditional dependability is therefore

Dep(X+) = σ 2(τ )

σ 2(τ ) + E( 1
N )[σ 2(β) + σ 2(γ + ε)] . (5)
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Using ρ′ = σ 2(τ )/[σ 2 (τ ) + σ 2 (β) + σ 2 (γ + ε)], we can rewrite Equations (1) and (5) as

Dep(X+, n) = nρ′

1 + (n − 1)ρ′ , (6)

Dep(X+) = Hρ′

1 + (H − 1)ρ′ . (7)

Clayson et al. (2021) estimated the variance components using a Bayesian hierarchical model,
but given the previous discussion, we are not convinced that this is the best estimation method.
Our method to integrate various coefficients works regardless of the estimation method used for
the reliability or generalizability. We have suggested coefficient alpha in Corollary 1 because it
can be interpreted both in CTT and in GT (see also Sijtsma & Pfadt, 2021a; 2021b).

5. Discussion: Contributions of Our Study to the Theory and Practice of Reliability

We have extended CTT with new formulas to compute the reliability in situations where
the number of items per subject is a random variable. These formulas can be applied to data
of performance monitoring ERPs such as the ERN and Pe, where the number of relevant trials
depends on the performance of the participant. We studied this for the Eriksen Flanker Task, but
our theory can also be applied in other tasks in which ERN and Pe measurements can be obtained,
such as Go / NoGo tasks and Stroop tasks (see Baldwin et al. 2015). Furthermore, we illustrated
our theory with time-window mean amplitude scores, but our formulas are equally valid for other
EEG scores such as peak amplitude or peak latency.

The first method we created is based on a reliability formula for a stratified sample. This
method can be used in combination with existing reliability estimates such as alpha or omega,
applied to each subgroupwith equal test length. The limitation of thismethod is that it requires that
each subgroup of participants with the same test length is large enough to estimate the reliability
accurately. This requirement might be difficult to meet, although fortunately, for the field of
psychophysiology, a trend toward the use of larger samples is observed (Kissel&Friedman, 2023).
If the requirement is not met, then subgroups with different test lengths have to be combined,
which leads to loss of data. The reason for this data loss is that alpha has to be computed on
a rectangular data matrix; if groups with N = k and N = k + 1 items are combined, then either
alpha is computed with k + 1 items and the participants with N = k are discarded, or alpha is
computed with k items and the data of the (k + 1)th item are discarded. In our example, 83% of
the data could be used in our example of length-stratified alpha. However, maybe it is not really
necessary to estimate the reliability in each subgroup with the same accuracy as one would desire
in the total group. The stratification formula combines the subgroup reliabilities in a weighted
sum, and the standard error of the total reliability can be less than each of the contributing standard
errors. Our first simulation of standard errors of length-stratified alpha, reported in “Example of
Theorem 1,” gave promising results. Further research is needed to construct interval estimates
of this version of stratified reliability and to provide sample size recommendations. The second
methodwe proposed only requires two variance estimates and onemean to compute, whichmakes
it very easy to apply. Moreover, our second method uses 100% of the data. Its limitation is that it
requires that the items are parallel.

Our analysis shows that reliability estimation of the ERN and Pe data with CTT is very well
possible. The advantage of CTT is that the greater simplicity of having only a single facet allows us
to focus on an aspect that did not receive attention in the GT treatments, which is that the number
of items is also a random variable. In contrast with earlier treatments of GT, we were able to define
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a single reliability coefficient that combines all subgroups with different numbers of items. Our
analysis shows that the harmonic mean of the number of items, rather than the arithmetic mean,
relates the variance components to the overall reliability, and this result is relevant in both CTT
and GT approaches. Our analysis also clarified that even if items on a second test administration
are parallel with the items of the first test administration, their total scoresmay not be parallel if the
number of items changes between the test administrations. We generalized our approach to data
that are stratified on other variables in Supplementary Material C. We pointed out that Corollary 2
and Eq. (4) (i.e., the Spearman–Brown formulawith the harmonicmean of test lengths) can also be
applied in designs where randomly selected raters from one population are nested within objects,
with different sample sizes per object. This formula may be useful in studies of performance
evaluations of health care organizations where each organization is rated by a sample of their
patients, where sample sizes are usually different (e.g., Ellis, 2013; Ogasawara, 2021)—although
the situation is complicated by the need for a casemix correction.

We contend that CTT still has its merits if a detailed analysis of reliability is needed. This
study shows that CTT does not always require parallel items as some authors suggest and put
forward as a limiting condition for using CTT (Clayson & Miller, 2017a, p. 72). The simplicity
of CTT is attractive in the present context where it enables the researcher to estimate reliability
in a simple way, addressing the problem of obtaining a single reliability coefficient with variable
test lengths that more complex methods seem to obscure. In doing so, the present work provides
a crucial and necessary contribution to advancing ERP studies of individual differences.
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