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Abstract. An update is given on the current status of solar and stellar dynamos. At present, it
is still unclear why stellar cycle frequencies increase with rotation frequency in such a way that
their ratio increases with stellar activity. The small-scale dynamo is expected to operate in spite
of a small value of the magnetic Prandtl number in stars. Whether or not the global magnetic
activity in stars is a shallow or deeply rooted phenomenon is another open question. Progress
in demonstrating the presence and importance of magnetic helicity fluxes in dynamos is briefly
reviewed, and finally the role of nonlocality is emphasized in modeling stellar dynamos using
the mean-field approach. On the other hand, direct numerical simulations have now come to
the point where the models show solar-like equatorward migration that can be compared with
observations and that need to be understood theoretically.
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1. Introduction
The objective of IAU Symposium 294 is to provide an update since IAU Symposium

157 on “The Cosmic Dynamo” in Potsdam, 1992. The title of the present talk reflects the
common thinking at that time that nonlinearity and chaos tend to come together. This
is highlighted by the realization that a simple mean-field dynamo model for poloidal and
toroidal fields needs to be supplemented by a third equation to produce chaos, and the
idea that this third equation is the equation of magnetic helicity conservation. These de-
velopments have contributed to the unfortunate perception of mean-field dynamo theory
being just as a toy rather than a quantitatively predictive theory.

With the advent of numerous computer simulations of hydromagnetic turbulence ex-
hibiting large-scale dynamo action, a new field of computer astrophysics has emerged
where the objective is to understand simulated dynamos, where one has a chance to
resolve all time and length scales. This approach has helped making mean-field theory
quantitatively reliable and predictable.

Various predictions have emerged and have been tested. Firstly, dynamos must trans-
port magnetic helicity to escape catastrophic quenching. They do this through coronal
mass ejections and through turbulent exchange across the equator. The resulting field is
bi-helical, with opposite signs of magnetic helicity at large and small length scales. The
signs depend on the sign of kinetic helicity and on the relative importance of turbulent
diffusion. This has meanwhile been confirmed observationally using Ulysses data. Sec-
ondly, mean-field theory also predicts the formation of local magnetic flux concentrations
as a result of strong density stratification. Simulations have now confirmed this remark-
able theoretical prediction. This has opened the floor for suggestions that active regions
and sunspots might be shallow phenomena operating near the surface at some 40 Mm
depth.

There are also several observations that do not yet have a satisfactory explanation. One
of them concerns the dependence of the observed cycle period of late-type stars on their
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Figure 1. BST diagram showing inactive (letters) and active (numbers) stars on separate
branches of normalized cycle frequency ωcyc/Ω as a function of normalized chromospheric cal-
cium H and K line activity parameter 〈R′

HK 〉. Approximate age is given on the upper abscissa.
As stars evolve, they move along the lower (active) branch toward the left, and then (when
the color B − V is between 0.6 and 1.1) jump onto the upper (inactive) branch. Adapted from
Brandenburg et al. (1998).

activity and another one is the equatorward migration of toroidal magnetic flux belts
during the solar cycle: is it caused by meridional circulation, the migratory properties of
the dynamo wave, or something else that we do not know about yet?

2. Dynamo regimes
The graph of the ratio of stellar cycle to rotational frequencies versus magnetic activity

or stellar age shows two branches (Brandenburg et al. 1998, hereafter BST); see Figure 1.
These branches correspond to active (A) and inactive (I) stars and are separated by what
is known as the Vaughan–Preston gap. In addition, there is a third branch of super-
active (S) stars (Saar & Brandenburg 1999). How can we understand the origin of these
branches?

The BST diagram is not just a way of representing the non-dimensional cycle fre-
quency in a two-dimensional diagram, it might represent some deeper physics. In a glob-
ally quenched αΩ-type dynamo, i.e., a model where only the smallest wavenumbers have
a significant contribution (as found in simulations; see Brandenburg et al. 2008; Rhein-
hardt & Brandenburg 2012), the cycle frequency ωcyc is proportional to

√
αΩ′, where α
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represents the α effect responsible for reproducing the large-scale magnetic field (Moffatt
1978; Krause & Rädler 1980) and Ω′ is the radial differential rotation. Both are func-
tions of the angular velocity Ω (which has been subsumed into a factor Ωq with a poorly
constrained exponent q; see BST).

The essential point is that ωcyc can be regarded as a proxy of α. Furthermore, the
angular velocity normalized by the turnover time τ , which gives the inverse Rossby
number Ro−1 = 2Ωτ , can be regarded as a measure of the non-dimensional magnetic
field strength, B/Beq , where Beq is the equipartition field strength. This is a relationship
that is independent of the existence of different branches, i.e., inactive and active stars
lie on the same curve (BST). We can therefore imagine the BST diagram being really
a representation of α(B), and that the two rising branches describe therefore an anti-
quenching of α with B/Beq . Indications of this, and a corresponding anti-quenching of
the turbulent magnetic diffusivity, have been found in simulations of magneto-buoyancy
(Chatterjee et al. 2011). On the other hand, for faster rotation there is a third branch
of super-active stars (Saar & Brandenburg 1999), for which our proxy of α declines with
that of B.

These considerations are still as exciting today as they were back in 1998, but now
we have realistic global simulations of convection that reflect a qualitative leap from
earlier work in that we now find for the first time cyclic large-scale dynamo action with
equatorward migrating activity belts (Käpylä et al. 2012). One needs to check, however,
whether perhaps all of the dynamo solutions obtained so far are representative of the
superactive branch, and that the physics behind the active and inactive ones remains still
to be discovered. To make progress in understanding the different modes of cyclic stellar
activity, one also needs to analyze why those models produce long cycle periods and
equatorward migration, both of which are also seen in the Sun, but are theoretically not
understood; is it related to the possible dominance of the magnetic α effect (Pouquet et al.
1976) (which is inversely proportional to the density and therefore important near the
surface), to the tensorial structure of α (αij ) and turbulent diffusion (ηijk ), to meridional
circulation, or to subtleties in the differential rotation? Such understanding should be
accomplished by deriving and solving suitable mean-field models that reproduce the
behavior seen in DNS and Large Eddy Simulations (LES) of the Sun.

It is unlikely that differences in the cycle period are the only criterion distinguishing
stars on the two branches of the evolutionary BST diagram. Surface magnetic field struc-
tures as well as their spatio-temporal correlations are now becoming accessible to detailed
scrutiny. Quantifying the nature of magnetic fields using observed correlations among the
Stokes parameters might help to distinguish different types of behaviors and to associate
them with different branches in the BST diagram, which may reflect different underlying
dynamo modes. Progress can be made by considering turbulent dynamo simulations at
different rotation rates, as has recently been done by Käpylä et al. (2013). We return to
this issue in our conclusions and turn attention to recent simulation results that concern
the magnetic surface activity of the Sun, such as small-scale or local dynamos and the
evidence of helical magnetic fields from the global dynamo.

3. Small-scale and local dynamos
In recent years the action of two separate dynamos in the Sun has become popular; one

that governs the 11 year cycle and one that produces the small-scale field of the quiet Sun
(Cattaneo 1999; Cattaneo et al. 2003; Vögler & Schüssler 2007). This idea is supported
by the fact that the observed small-scale field of the Sun is essentially uncorrelated with

https://doi.org/10.1017/S1743921313002822 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921313002822


390 A. Brandenburg

that of the 11 year cycle (Lites 2002; Ishikawa & Tsuneta 2009; Danilovic et al. 2010;
Aurière et al. 2010; Stenflo 2012).

A potential problem is the fact that the critical magnetic Reynolds number Rm ,crit
grows larger as one decreases the value of the magnetic Prandtl number, PrM = ν/η, to
more realistic values (Schekochihin et al. 2005). Early work of Rogachevskii & Kleeorin
(1997) did already predict an increased value of Rm ,crit in the limit of small values
of PrM . Boldyrev and Cattaneo (2004) argue that the reason for an increased value of
Rm ,crit is connected with the “roughness” of the velocity field. Iskakov et al. (2007) found
that Rm ,crit has a local maximum at PrM = 0.1, and that it decreases again as PrM is
decreased further. The reason for this is that near PrM = 0.1 the resistive wavenumber is
about 10 times smaller than the viscous one and thus right within the “bottleneck” where
the spectrum is even shallower than in the rest of the inertial range, with a local scaling
exponent that corresponds to turbulence that is in this regime rougher still, explaining
thus the apparent divergence of Rm ,crit .

In the nonlinear regime the magnetic field affects the flow in such a way that the
bottleneck effect tends to be suppressed, so the divergence in the roughness disappears
and there is a smooth dependence of the saturation field strength on the value of PrM ; see
Brandenburg (2011) for details. In Figure 2, we show spectra compensated with ε−2/3k5/3 .
For PrM = 0.02 and 0.01, the kinetic energy spectra show a clear bottleneck effect,
i.e., there is a weak uprise of the compensated spectra toward the dissipative subrange
(Falkovich 1994; Kaneda et al. 2003; Dobler et al. 2003). The compensated magnetic
energy spectra peak around k = 20k1 , where k1 = 2π/L is the smallest wavenumber in a
domain of size L. Both toward larger and smaller values of k there is no clear power-law
behavior. The slopes of the k−11/3 spectrum of Golitsyn (1960) and Moffatt (1961) and
the scale-invariant k−1 spectrum (Ruzmaikin & Shukurov 1982; Kleeorin & Rogachevskii
1994; Kleeorin et al. 1996) are shown for comparison.

We recall that we have used here the strategy of generating low-PrM solutions by grad-
ually decreasing ν, and hence increasing the value of Re. As in the case of helical dynamos
(Brandenburg 2009), the fact that a turbulent self-consistently generated magnetic field
is present helps reaching these low-PrM solutions. However, the presence of the magnetic
field also modifies the kinetic energy spectrum and makes it decline slightly more steeply
than in the absence of a magnetic field; see Figure 2. This suggests that the velocity field
would be less rough than in the corresponding case without magnetic fields. Following
the reasoning of Boldyrev and Cattaneo (2004), this should make the dynamo more easily
excited than in the kinematic case with an infinitesimally weak magnetic field. In other
words, there is the possibility of a subcritical bifurcation where the dynamo requires a
significantly larger value of PrM to bifurcate from the trivial B = 0 solution than the
value needed to sustain a saturated dynamo.

4. Solar surface activity
The theory of stellar structure explains that the outer 200Mm of the Sun’s radius are

convectively unstable, resulting in fully developed turbulent convection. Numerical sim-
ulations of turbulent flows predict that part of the convective kinetic energy is converted
to magnetic energy through dynamo action. If we did not have observations, would we
have predicted that the Sun’s magnetic field would choose to manifest itself in the form
of spots? The answer might well be yes, but perhaps not for the reasons offered in text
books. Standard thinking focuses on the tachocline, which is a strong shear layer at
the bottom of the convection zone. Strong shear can produce a strong magnetic field in
the form of thin flux tubes (Cline et al. 2003; Guerrero & Käpylä 2011). The magnetic
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Figure 2. Compensated kinetic and magnetic energy spectra for runs with PrM = 0.05,
PrM = 0.02, and PrM = 0.01 for ReM ≈ 160 as well as one run with PrM = 0.02 and ReM ≈ 220.
The resolution is in all cases 5123 mesh points. The two short straight lines give, for compari-
son, the slopes 2/3 (corresponding to a k−1 spectrum for k < 20k1 ) and −2 (corresponding to
a k−11/3 spectrum for k > 20k1 ). Adapted from Brandenburg (2011).

Figure 3. Left: rising flux tube piercing the surface to form a pair of sunspots (taken from
http://www.lund.irf.se/helioshome/fluxtube.gif). Right: sunspot with surrounding flow field sug-
gested from local helioseismology. Adapted from Hindman et al. (2009).

pressure in these tubes expels gas, and so, being less dense than their surrounding, they
rise. If a segment of a tube pierces the surface of the Sun, the footpoints of the resulting
arch appear as sunspot pairs of opposite polarity (as the magnetic field in the tube has a
definite direction; see Figure 3). Simulations, on the other hand, predict turbulent mag-
netic fields with a diffuse large-scale component throughout the convection zone (Brown
et al. 2010; Käpylä et al. 2010; Ghizaru et al. 2010), and this scenario can also reproduce
the observed bipolar spots at the surface (Brandenburg 2005).

It might become possible to use local helioseismology to distinguish between the scenar-
ios sketched in the left and right hand panels of Figure 3. Unlike global helioseismology,
local helioseismology is an advanced technique that uses correlations of measured Doppler
shifts at the solar surface for different time intervals corresponding to sound travel times
for rays down to a given depth, as is seen in the left-hand panel of Figure 4. This
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Figure 4. Left: sketch illustrating the detection of subsurface magnetic activity via local helio-
seismology. Acoustic ray paths are bent back up again because of higher sound speed at greater
depth (lower turning points between 42 and 75 Mm are shown). Travel-time anomalies allow
detection of emergent flux (sketched in gray) near those turning points. Right: visualization of
the magnetic field on the periphery of the computational domain as obtained from NEMPI.
Light-yellow regions indicate enhanced flux in a region reminiscent of that implied by local
helioseismology (left). Adapted from Ilonidis et al. (2011) [left] and Kemel et al. (2012) [right].

Figure 5. Magnetic energy and helicity spectra, 2μ0EM (k) and kHM (k), respectively, for two
separate distance intervals. Furthermore, both spectra are scaled by 4πR2 before averaging
within each distance interval above 2.8 AU. Filled and open symbols denote negative and positive
values of HM (k), respectively. Adapted from Brandenburg et al. (2011b).

technique can provide detailed information on the structure of magnetic fields (Ilonidis
et al. 2011) nearby and even inside a sunspot (Kosovichev 2009). In a particular case,
some type of local activity has been detected at a depth of ∼ 60Mm, which corresponds
to 1/3 of the depth of the convective zone. If this was caused by a rising flux tube, as
sketched in Figure 4, one would have expected a wider elongated feature. On the other
hand, the observed activity might correspond to signatures of magnetic structures formed
by the so-called negative effective magnetic pressure instability (NEMPI, Brandenburg
et al. 2011a).

Coronal mass ejections play a major role in shedding small-scale magnetic helicity from
the dynamo to alleviate an otherwise catastrophic quenching of the dynamo (Blackman
& Brandenburg 2003). Meanwhile, models have made contact with unexpected phenom-
ena taking place in the solar wind. A striking example is the sign reversal of small-scale
magnetic helicity away from the Sun. This surprising result was first obtained by analyz-
ing data from the Ulysses spacecraft (Brandenburg et al. 2011b), see Figure 5, but the
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Figure 6. Left: twisted magnetic field lines from a bipolar region on the Sun, as seen in X-rays
(adapted from Gibson et al. 2002). Middle: twisted magnetic field lines from a self-consistently
generated bipolar sheet (Warnecke & Brandenburg 2010), not a bipolar region. Here the field is
generated by a dynamo without shear. Right: bipolar regions as seen in simulations with shear
(Brandenburg 2005). Light (dark) shades correspond to positive (negative) line of sight magnetic
field. Adapted from Gibson et al. (2002) [left], Warnecke & Brandenburg (2010) [middle], and
Brandenburg (2005) [right].

interpretation was greatly aided by similar results from simulations of Warnecke et al.
(2011). It now seems that the reason for this is an essentially turbulent-diffusive trans-
port down the local gradient of magnetic magnetic helicity density – even in the wind
(Warnecke et al. 2012). While this work has focussed on parameter studies exploring the
conditions for plasmoid ejections from helically forced turbulence as well as rotating con-
vection, the physical realism of the model remained poor. The density contrast between
dynamo region and corona is much bigger in reality, see for example Pinto et al. (2011).
Significant improvements are possible with only modest increase of numerical resolution,
as has been shown by Bingert & Peter (2011) using Pencil Code simulations with a
realistic setup. One may envisage important follow-up diagnostics by producing visual-
izations of helical magnetic fields in the corona (see the left-hand panel of Figure 6) and
to compute cases in which the field is generated either self-consistently by a dynamo be-
neath the surface, as in Warnecke et al. (2011, 2013), or the field is injected as a twisted
flux tube in a deeper layer and let to emerge at the surface. Simulations without shear
have successfully produced twisted magnetic field lines from a self-consistently generated
bipolar sheet (see middle panel of Figure 6), but this has not yet been attempted in sim-
ulations where more localized bipolar regions are produced. An example of the formation
of such regions has been seen in dynamo simulations with strong shear (Brandenburg
2005) leading to the occasional formation of bipolar regions when opposite polarities can
be drawn apart by latitudinal differential rotation; see the right-hand panel of Figure 6.
Observational evidence for such a process has been provided by Kosovichev & Stenflo
(2008).

Recent work using a simple model with a galactic wind has shown, for the first time,
that shedding magnetic helicity by fluxes may indeed be possible. We recall that the
evolution equation for the mean magnetic helicity density of fluctuating magnetic fields,
hf = a · b, is

∂hf

∂t
= −2E · B − 2ημ0 j · b − ∇ · F f , (4.1)

where we allow two contributions to the flux of magnetic helicity from the fluctuating
field F f : an advective flux due to the wind, F f

w = hfUw , and a turbulent–diffusive flux
due to turbulence, modelled here by a Fickian diffusion term down the gradient of hf ,
i.e., F f

diff = −κh∇hf . Here, E = u × b is the electromotive force of the fluctuating field.
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Figure 7. Scaling properties of the vertical slopes of 2E ·B, −2ημ0 j · b, and −∇ ·F f . The three
quantities vary approximately linearly with z, so the three labels indicate their non-dimensional
values at k1z = 1. Adapted from Del Sordo et al. (2013).

The scaling of the terms on the right-hand side with ReM has been considered before by
Mitra et al. (2010) and Hubbard & Brandenburg (2010).

In Figure 7 we show the basic result of Del Sordo et al. (2013). As it turns out, below
ReM = 100 the 2ημ0j · b term dominates over ∇ · F f , but because of the different
scalings (slopes being −1 and −1/2, respectively), the ∇ ·F f term is expected to become
dominant for larger values of ReM (about 3000). Surprisingly, however, ∇ · F f becomes
approximately constant for ReM >∼ 100 and 2ημ0j · b shows now a shallower scaling
(slope −1/2). This means that that the two curves would still cross at a similar value.
Our data suggest, however, that ∇ · F f may even rise slightly, so the crossing point is
now closer to ReM = 1000.

We have mentioned above some surprising behavior that has been noticed in connection
with the small-scale magnetic helicity flux in the solar wind. Naively, if negative magnetic
helicity from small-scale fields is ejected from the northern hemisphere, one would expect
to find negative magnetic helicity at small scales anywhere in the exterior. However,
if a significant part of this wind is caused by a diffusive magnetic helicity flux, this
assumption might be wrong and the sign changes such that the small-scale magnetic
helicity becomes positive some distance away from the dynamo regime. In Figure 8 we
reproduce in graphical form the explanation offered by Warnecke et al. (2012).

5. Conclusions and further remarks
In this review we have put emphasis on the appearance of magnetic helicity at and

above the surface of the dynamo. Other important diagnostics may come from local
helioseismology to distinguish between shallow and deeply rooted dynamo scenarios. As
mentioned above, simulations by various groups all produce distributed dynamo action
where the magnetic field is present throughout the convection zone.

A major breakthrough has been achieved through the recent finding of equatorward
migration of magnetic activity belts in the course of the cycle (Käpylä et al. 2012); see
Figure 9. These results are robust and have now been reproduced in extended simulations
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Figure 8. Sketch showing possible solutions hf (z) (upper panel) with S = const = −1 in z < 0
and S = 0 in z > 0. The red (dashed) and black (solid) lines show solutions for which the
magnetic helicity flux (−κh dhf /dz, see lower panel) is negative in the exterior. This corresponds
to the case observed in the Sun. The blue (dotted) line shows the case, where the magnetic
helicity flux is zero above the surface and therefore do not reverse the sign of hf (z) in the
exterior. Adapted from Warnecke et al. (2012).

Figure 9. Left: azimuthally averaged toroidal magnetic field as a function of time (in
turnover times) and latitude (clipped between ±60◦). Note that on both sides of the equa-
tor (90◦ − θ = ±25◦), positive (yellow) and negative (blue) magnetic fields move equatorward,
but the northern and southern hemispheres are slightly phase shifted relative to each other.
Right: Snapshot of the toroidal magnetic field Bφ at r = 0.98 outer radii. Adapted from Käpylä
et al. (2012).

that include a simplified model of an outer corona (Warnecke et al. 2013). Interestingly,
the convection simulations of other groups produce cycles only at rotation speeds that
exceed those of the present Sun by a factor of 3–5 (Brown et al. 2011); see also Racine et al.
(2011) for recent cyclic models at solar rotation speeds. Both lower and higher rotation
speeds give, for example, different directions of the dynamo wave (Käpylä et al. 2012).
Different rotation speeds correspond to different stellar ages (from 0.5 to 8 gigayears for
rotation periods from 10 to 40 days), because magnetically active stars all have a wind
and are subject to magnetic braking (Skumanich 1972). In addition, all simulations are
subject to systematic “errors” in that they poorly represent the small scales and emulate

https://doi.org/10.1017/S1743921313002822 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921313002822


396 A. Brandenburg

Figure 10. Left: Dependences of the normalized α̃ and η̃t on the normalized wavenumber
k/kf for isotropic turbulence forced at wavenumbers kf /k1 = 5 with ReM = 10 (squares) and
kf /k1 = 10 with ReM = 3.5 (triangles). The solid lines give the Lorentzian fits (5.1). Right:
Normalized integral kernels α̂ and η̂t versus kf ζ for isotropic turbulence forced at wavenumbers
kf /k1 = 5 with ReM = 10 (squares) and kf /k1 = 10 with ReM = 3.5 (triangles). Adapted from
Brandenburg et al. (2008).

in that way an effective turbulent viscosity and magnetic diffusivity that is larger than
in reality; see the corresponding discussion in Sect. 4.3.2 of Brandenburg et al. (2012) in
another context. In future simulations, it will therefore be essential to explore the range
of possibilities by including stellar age as an additional dimension of the parameter space.

In future work it will be important to understand the results of simulations using
simpler mean-field models. A potential problem is the fact that the turbulent eddies
often have sizes comparable with the size of the domain. In that case, scale separation
in space or time is poor and the mean-field α effect and turbulent diffusivity have to be
replaced by integral kernels by which the dependence of the mean electromotive force on
the mean magnetic field becomes nonlocal.

In Figure 10 we show results for the Fourier transformed integral kernels α̃(k) and
η̃t(k). Both α̃ and η̃t decrease monotonously with increasing |k|. The two values of α̃ for
a given k/kf but different kf/k1 and ReM are always very close together. The functions
α̃(k) and η̃t(k) are well represented by Lorentzian fits of the form

α̃(k) =
α0

1 + (k/kf )2 , η̃t(k) =
ηt0

1 + (k/2kf )2 . (5.1)

In Figure 10 we show the kernels α̂(ζ) and η̂t(ζ) obtained numerically. Observationally,
similar results have been obtained by Abramenko et al. (2011).

The results presented in Figure 10 show no noticeable dependencies on ReM . Although
we have not performed any systematic survey in ReM , we interpret this as an extension
of the above–mentioned results of Sur et al. (2008) for α and ηt to the integral kernels
α̂ and η̂t . Of course, this should also be checked with higher values of ReM . Particularly
interesting would be a confirmation of different widths for the profiles of α̂ and η̂t .

The challenge in solar and stellar dynamo theory is nowadays not just the understand-
ing of the nature and origin of magnetic fields in observed stars and in the Sun, but also
the understanding of simulated dynamos. Here we have a clear chance in achieving one-
to-one agreement because the magnetic Reynolds numbers are still manageable. Only
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when such agreement has been achieved will we be able to address in a meaningful way
solar and stellar dynamos.
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