BULL. AUSTRAL. MATH. SOC.

Abstracts of Australasian Ph D theses

(L^p, L^q) -multiplier problems

J.F. Price

Let A and B denote two linear topological vector spaces of functions, measures or distributions over a locally compact group which are invariant under all left translation operators. A continuous linear operator from A into B is called a *multiplier*, or an (A, B)-*multiplier*, if it commutes with left translations. The thesis is essentially a study of (L^P, L^q) -multipliers, the types of questions studied being largely influenced by the structure of the underlying group in each case. Much of the interest in (L^P, L^q) -multipliers stems from the fact that when the underlying group is the circle group there is a direct relation with the classical theory of factor functions, namely: "A continuous linear operator T from L^P , $p \neq \infty$, into L^q is a multiplier if and only if there exists a sequence $(\mu_n)_{n=\infty}^{n=\infty}$, a factor function, such that $\sum_{n=\infty}^{n=\infty} \mu_n a_n e_n$ is the Fourier series of Tf whenever $\sum_{n=\infty}^{n=\infty} a_n e_n$ is the Fourier series of f in L^P , where e_n denotes the function $x \mapsto e^{inx}$ ".

One of the new results obtained is that if the underlying group is infinite compact or infinite locally compact abelian, then for p satisfying 1 ,

$$\bigcup_{\substack{L^q \\ q \leq p}} L^q \not\subseteq L^p \not\subseteq \bigcap_{p \leq q} L^q,$$

where L_p^p denotes the set of (L^p, L^p) -multipliers restricted to any set

Received 10 November 1970. Thesis submitted to the Australian National University, March 1970. Degree approved, June 1970. Supervisor: Professor R.E. Edwards.

dense in L^p for all p satisfying $1 \le p < \infty$, for example, restricted to the set of continuous functions with compact supports. Other problems tackled are indicated in the following list of chapter headings:

Chapter 1, Multipliers with range in the space of temperate distributions;

- Chapter 2, Multipliers between some normed spaces of distributions;
- Chapter 3, Representations of (L^p, L^q) -multipliers when G is compact;
- Chapter 4, Idempotent multipliers and lacunary subsets of the dual of ${\cal G}$;
- Chapter 5, Complemented closed ideals in L^p ;
- Chapter 6, Multipliers which are not measures;
- Chapter 7, The strict inclusion $L_p^p \notin L_q^q$;

Appendix A, Some boundedness theorems;

Appendix B, (L^{∞}, L^{q}) -multipliers when L^{∞} has its weak topology; Appendix C, A constructive approach to boundedness principles.

Apart from several minor results, the original work of the thesis has been prepared for publication and has either appeared recently or will appear shortly.