F. Giovannelli

Istituto di Astrofisica Spaziale/CNR, Frascati, Italy S. Karakula, W. Tkaczyk

Dept. of Physics, University of Lodz, Poland

In the case of spherical symmetric accretion into a black hole, the matter may be heated up to the temperature KT = 0.1 $\rm m_p c^2$ (Kolykhalov and Sunyaev, 1979). In such a hot plasma inelastic collisions of protons may produce $\rm II^\circ$ which is the gamma quantum source (Dahlbacka et al., 1974; Kolykhalov and Sunyaev, 1979).

In this work we determined γ -rays production spectrum in the comoving plasma reference frame, expected γ -rays spectrum for the case of spherica symmetric accretion of matter into a black hole and the upper limit to the number of black holes in Galaxy is evaluated.

In the calculations we made the following assumptions: 1) the plasma is fully ionized; 2) the proton momentum distribution is described by the relativistic Maxwell distribution; 3) the characteristics of interactions $p + p \rightarrow \Pi^{\circ} + \text{anything were derived from an approximation of the experimental data (Barashenkov et al., 1972).$

Fig. 1 shows the γ -rays production energy spectrum in the comoving plasma reference frame.

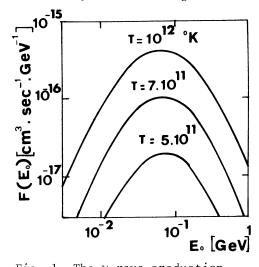
To evaluate the temperature, concentration and velocity of the plasma near a black hole, the system of equations describing the plasma motion should be solved (Michel, 1972)

$$(\frac{x}{x-1} \Theta + 1)^2 (1 - \frac{1}{r} + u^2) = const, nur^2 = const, \frac{\Theta}{n^{X-1}} = const,$$

where: $\Theta = KT/m_pc^2$, n - temperature and concentration of plasma in its own reference system, $r = R/R_g$, R - distance from black hole, R_g - its gravitation radius, u - R component of four velocity, x = 5/3. To determine the temperature as a function of the distance from black hole, different values of u_0^2 were taken for given r_0 . Calculations wer

hole, different values of u_0^2 were taken for given r_0 . Calculations were done for $r_0 = 10^4$, $u_0^2 = 2.6 \ 10^{-5}$ and 6 10^{-6} corresponding to Mach numbers 1.0266 and 2.1213, respectively.

Fig. 2 shows expected energy spectrum Q(E) from accretion disk multiplied by R_g/\dot{M}^2 (\dot{M} - accretion rate) which is determined in Schwarzschild metric with regard to relativistic effects (curves a, b - for u_0^2 = 2.6 10^{-5} and 6 10^{-5} , respectively).


Assuming the black hole mass equal 10 M_{\odot} and accretion rate \dot{M} = 10^{-8} M_{\odot}/year, we found its luminosity L(E > 100 MeV) and emissivity N(E > 100 MeV)

335

G. Setti, G. Spada, and A. W. Wolfendale (eds.), Origin of Cosmic Rays, 335–336. Copyright © 1981 by the IAU.

336 F. GIOVANNELLI ET AL.

L = $6.3\ 10^{3.3}$ erg/sec and $2.8\ 10^{3.2}$ erg/sec, N = $2.1\ 10^{3.7}$ phot/sec and 7.3 $10^{3.5}$ phot/sec for u_0^2 = $2.6\ 10^{-5}$ and 6 10^{-5} respectively.

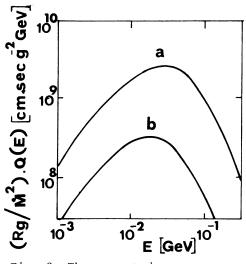


Fig. 1. The γ -rays production spectrum in the comoving plasma system.

Fig. 2. The expected energy spectrum Q(E) from accretion disc multiplied by R_g/\mathring{M}^2 .

From the experimental measurements SAS-II, Galaxy emissivity of photons of energies E > 100 MeV is 1.3 $10^{42}~{\rm sec}^{-1}$ (Strong et al., 1976). Assuming that all the Galaxy emissivity arises from considered objects, their number should be about 10^5 that gives 10^{-5} of the total star population. Taking into account another accretion parameter for instance $u_0^2 = 6~10^{-5}$ we derive the contribution of these objects of about 10^{-4} .

We conclude that such objects may give a significant contribution to the total emissivity of our Galaxy.

References

Kolykhalov, P.I., Sunyaev, R.A.: 1979, Soviet Astron. J. <u>56</u>, 338 Dahlbacka, G.H. et al.: 1974, Nature <u>250</u>, 36 Barashenkov, W.S. et al.: 1972, Vzajmodestvija vysokoenergeticeskih castic i atomnyh jader s jadrami, Moscow Michel, F.C.: 1972, Astrophys. and Space Sci. <u>15</u>, 153 Strong, A.W. et al.: 1976, Mon. Not. R. Astr. <u>Soc. 175</u>, 23P