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A CLASS OF SELF-SIMILAR
RANDOM MEASURE
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Abstract

We describe a class of self-similar random measure that generalizes the class of stable,
completely random measure, or, in one dimension, the class of processes with stable
independent increments. As with the stable processes, the realizations are purely atomic,
but the masses of the atoms are not necessarily independent, but rather characterized by
self-similar dependence relations. Indeed, the class can be described most effectively in
terms of the point process on the product space for the locations and sizes (‘marks’) of the
atoms. Then self-similarity reduces to an invariance relation (‘biscale invariance’) on the
distribution of this marked point process. The condition can be satisfied when the marked
point process is compound Poisson, corresponding to the nonnegative stable processes,
but is by no means restricted to this case. An example is given which modifies and extends
Ogata’s epidemic-type aftershock sequence model for earthquake occurrence.
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1. Introduction

In this note, we consider a class of purely atomic random measures which are stationary,
self-similar, but more general than the stable random measures in that they admit dependence
relations between the sizes and locations of the atoms.

The underlying idea of self-similarity is that a change in scale is balanced by a compensating
change in mass. We adopt the following definition (see Lamperti (1962), Vervaat (1985), and
Daley and Vere-Jones (1988, p. 326, Example 10.1(f)), writing R

d and B
d for d-dimensional

Euclidean space and its Borel σ -algebra, respectively, and R
+ for the half-line (0,∞).

Let H be a finite positive constant. A random measure ξ(·) on R
d is said to be self-similar,

with similarity index H , if its distributions are invariant under the group of transformations (or
renormalization group)

RHa ξ(A) = a−Hξ(aA), A ∈ B
d , a ∈ R

+. (1)

In most cases, we require the random measure to be stationary (invariant under shifts in R
d ) as

well. In the one-dimensional case, the two conditions together are equivalent to requiring the
cumulative process X(t) = ∫ t

0 ξ(ds) to have stationary, self-similar increments.
As a random measure, a point process cannot be self-similar in this sense, if only because

its values are integers, meaning that (1) cannot hold for all a. The best-known examples of
stationary, self-similar random measures are the stable random measures, where ξ is completely
random (that is, the ξ(Ai) are mutually independent whenever theAi are disjoint) and ξ(A) has
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a nonnegative stable (Lévy) distribution with Laplace transform of the form �(s) = exp(−csα),
for some c > 0 and α = 1/H , 1 < H < ∞. The last restriction places the processes in a
different group from the fractional Brownian motions, which are often used for models with
multiplicative rather than additive independence and have 0 < H < 1.

If we specialize to the case in which the measure has no fixed atoms and no drift, such
completely random measures have a Lévy–Khinchin representation (see Kingman (1967) and
Daley and Vere-Jones (1988, p. 177, Theorem 6.3.VIII)),

ξ(A) =
∫ ∞

0
κN(A× dκ). (2)

Here κ represents the size of the atom, whileN(·) is a Poisson process on R
d×R

+, the parameter
measure µ of which satisfies, for bounded Borel subsets A of R

d and all ε, 0 < ε < ∞,∫
κ>ε

µ(A× dκ) < ∞, (3)
∫

0<κ<ε
κµ(A× dκ) < ∞, (4)

and, for all x ∈ R
d ,

µ({x} × (0,∞)) = 0.

It should be noted that here and throughout the later discussion we need a slightly extended
definition of a point process N on R

d × R
+ that allows N(A× (0, ε)) to be infinite even when

A and ε are bounded. The essential requirement is that N(A × K) < ∞ whenever A and K
are bounded, and that K also be bounded away from zero. This can be made compatible with
the usual definition of local boundedness (bounded finiteness in Daley and Vere-Jones (1988))
by modifying the metric on R

+ so that the point 0 is at infinite distance from any positive κ ,
for example through the transformation κ ′ = log κ .

When the process is stationary on R
d , µ reduces to the product µ = �×� of the Lebesgue

measure � on R
d and a σ -finite measure � on R

+. If, in addition, the process is self-similar
with similarity index H , then � takes the power law form

�(dκ) = νκ−(1+1/H) dκ, (5)

where ν is a finite positive constant, while, to satisfy (3) and (4), we require that 1 < H < ∞.
The main purpose of the present note is to point out that a considerably wider class of

self-similar, stationary random measure can be obtained by retaining the representation (2) but
dropping the requirement that N(·) be a Poisson process.

2. Biscale invariance

In establishing the power law form (5) when the completely random measure is self-similar,
a key step is to show that invariance of the distributions of the original random measure under
the transformations RHa is equivalent to invariance of the Poisson point processes N appearing
in (2) under the group of biscale transformations DHa : R

d × R
+ → R

d × R
+, where

DHa (x, κ) = (ax, aHκ).

In general, if the distribution of a point processN is invariant under the groupDHa , we shall
say that N is biscale invariant with index H . Then the following lemma holds, irrespective of
whether the process N is Poisson.
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Lemma 1. Suppose that the random measure ξ can be represented, as in (2), in terms of a
point process N on the product space R

d × R
+. If, for given a and H , the distribution of

N is invariant under the transformation DHa , then the distribution of ξ is invariant under the
transformation RHa .

Proof. Consider the one-dimensional distribution of ξ(A) for some bounded set A ∈ B
d .

Using ‘
d=’ to denote equality in distribution, we have

RHa ξ(A) =
∫ ∞

0
κa−HN(aA× dκ)

=
∫ ∞

0
κN(aA× αH dκ)

d=
∫ ∞

0
κN(A× dκ)

= ξ(A).

Thus, the one-dimensional finite distributions of ξ are invariant underRHa . For all k > 1, similar
arguments can be applied to the k-dimensional distributions of bounded Borel sets (A1, . . . , Ak),
at least when these are disjoint. However, since such finite-dimensional distributions are
sufficient to determine the full distributions of ξ and RHa ξ completely, it follows that the two
random measures must be equal in distribution.

Building on this result, we identify conditions onN that will result in the associated random
measure ξ satisfying stationarity and self-similarity requirements. We assume throughout that
N defines a valid point process, in the extended sense already referred to, on the product space
R
d ×R

+. We shall say thatN has finite expectation measureM ifM(A×K) = E[N(A×K)]
exists and is finite for all bounded Borel sets A of R

d and Borel setsK of R
+ that are bounded

away from the origin.

Proposition 1. (i) In order that (2) should define a valid (boundedly finite) random measure ξ
on R

d , it is necessary and sufficient that, for all bounded A ∈ B
d , the integral (2) should exist

and be almost surely finite. If N has finite expectation measure M(· × ·), then it is sufficient
for the existence of ξ that M should satisfy (3) and (4).

(ii) If N is invariant under shifts in its first argument, then ξ is stationary.

(iii) If N is biscale invariant with index H , then ξ is self-similar with similarity index H .

(iv) If the expectation measureM exists and (ii) is satisfied, then there exists a σ -finite measure
� on R

+ such that M = �× �, where � is Lebesgue measure on R
d . If (iii) is also satisfied,

with index H , then � reduces to the form (5).

The proofs of these four statements are applications of standard results on the existence
and convergence of integrals with respect to random measures: see, for example, Daley and
Vere-Jones (1988, Chapter 6, pp. 155ff.).

These results provide a means of constructing self-similar random measures via the asso-
ciated marked point processes. For one-dimensional (time) processes, such a point process is
often most conveniently defined through its conditional intensity

λ(t, κ) dt dκ = E[N(dt × dκ) | Ht ],
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where Ht is the history up to (time) t . It is therefore relevant to ask what conditions on λmight
lead to point processes satisfying the above conditions. In situations in which the underlying
process is stationary and the history incorporates information from the indefinite past, the
relevant conditional intensity was called a complete intensity by Daley and Vere-Jones (2003,
Section 13.5, p. 558), and denoted by λ†(t, κ); we adopt this terminology and notation. In
what follows, we shall identify conditional expectations with respect to the history Ht with
functions of the realization of the past of the process, that is, with functions on the space of
counting measures on (−∞, t)×(0,∞) (which is justified by the fact that the counting measures
themselves can be represented as points in a complete separable metric space). Also, we shall
denote by [TτHt ] and [DHa Ht ] the histories associated with the process after transformation by
the shift Tτ and the biscale transformationDHa , respectively, and adopt a similar interpretation
for conditioning on [TτHt ] and [DHa Ht ]. We then have the following result.

Proposition 2. (a) For N to be stationary it is necessary that, for all real t and τ ,

λ†(t + τ, κ) dt dκ = E[TτN(dt × dκ) | TτHt ] = λ†(t, κ) dt dκ.

(b) For N to be, in addition, biscale invariant with parameter H , it is necessary that, for all
real t and a > 0,

λ†(at, aHκ)a1+H dt dκ = E[N(d(at)× d(aHκ)) | DHa Ht ] = λ†(t, κ) dt dκ.

The first condition requires the conditional intensity to depend on the times of past events
through the differences t − ti only. The two conditions together mean that the conditional
intensity should be expressible in the form

λ†(t, κ) = κ−(1+1/H)h

({
κ

κi
,
(t − ti )

H

κi

})
, (6)

for some function h(·) of a sequence of pairs, where (ti , κi) run through the sequence of points
of the process with ti < t , and the initial term in κ arises from transformation of the infinitesimal
elements dt dκ .

The representation implies that, as in the Poisson case, the marginal distribution of the marks
always has the form (5) and is invariant under time shifts. This distribution is not totally finite,
but over any lower threshold κ0 it can be normalized to form a Pareto distribution.

It should be noted that the conditions of Proposition 2 are not in general sufficient; for
instance, it is easy to construct examples of processes for which part (a) holds yet the resulting
process is explosive, meaning that no stationary version exists.

3. A self-similar epidemic-type aftershock sequence model

To exhibit an example different from the stable random measures, we construct a biscale-
invariant version of Ogata’s epidemic-type aftershock sequence (ETAS) model, from which
a self-similar random measure can be obtained by summing the marks (here interpreted as
energies).

Recall that the standard ETAS model (see, e.g. Ogata (1988) or Daley and Vere-Jones (2003,
p. 204, Example 6.4(d))) is a marked Hawkes process with complete conditional intensity,
expressed in magnitudesM rather than energies κ = eθM , and defined, forM above some fixed
threshold M0, by

λ†(t,M) = βe−β(M−M0)

{
µc + A

∑
{i : ti<t}

eα(Mi−M0)f (t − ti , c)

}
,
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where pairs (ti ,Mi) refer to the times and marks of past events, f (u, c) = pcp/(c + u)1+p,
and A, p, c, α, and β are positive constants. The condition for stability (i.e. the existence of a
stationary version) is

ρ ≡ A

∫ ∞

M0

eα(M−M0)βe−β(M−M0) dM = Aβ

β − α
< 1.

The variant of this model that we propose is defined by

λ†(t,M) = βe−βM
{
ν + A

∑
{i : ti<t}

eβMif (t − ti , cMi
)S(M −Mi)

}
, (7)

where cM = σeβM , S(M −Mi) = e−δ|M−Mi |, β = θ/H , and ν, η, σ , p, δ, andH are positive
constants.

After converting to energies rather than magnitudes, we can express (7) in the form

λ†(t, κ) = κ−(1+1/H)
{
ν + η

∑
{i : ti<t}

[
1 + t − ti

σκ
1/H
i

]−(1+p)
S(log[κ/κi])

}
. (8)

The compatibility with (6) is now evident, but it is not clear whether there exists a well-
defined process with this form of complete intensity.

To clarify this point, we make use of the cluster process representation of the Hawkes
process (Hawkes and Oakes (1974), Daley and Vere-Jones (2003, p. 183, Example 6.4(c))).
Our candidate model then has cluster centres forming a two-dimensional Poisson process with
intensity ψ(t, κ) = νκ−(1+1/H), while the cluster members from a parent at (tc, κc) are the
total offspring, from all generations, of a branching process in which first-generation offspring
form an independent Poisson process with intensity given by the kernel

θ(t, κ | tc, κc) = ηκ−(1+1/H)
[

1 + t − tc

σκ
1/H
c

]−(1+p)
S(κ/κc), t > tc, κ > 0.

The offspring from all later generations independently follow the same Poisson process relative
to their own parent. Relative to the initial parent, the second generation follows a Poisson
process with intensity

θ(2)(t, κ | tc, κc) =
∫
(tc,∞)×R+

θ(t, κ | t ′, κ ′)θ(t ′, κ ′ | tc, κc) dt ′ dκ ′

and, in general, the kth generation follows a Poisson process with intensity given by the kth
iterate of θ , say θ(k).

The expected number of offspring, from all generations, coming from a single ancestor
(cluster centre) at (tc, κc) and falling into the set B ×K is thus

∞∑
k=1

∫
B

∫
K

θ(k)(dt × dκ | tc, κc) =
∞∑
k=1

θ(k)(B ×K | tc, κc),

while the total expected number of points falling within B ×K , including cluster centres and
all generations of offspring, is given by the integrated sum

M(B ×K) =
∞∑
k=0

∫
Rd

∫
R+
θ(k)(B ×K | tc, κc)ψ(tc, κc) dtc dκc, (9)
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where θ(0) is the identity kernel. However, it is not difficult to check that ψ is an eigenvector
of θ corresponding to the eigenvalue ρ = ηC/pδ. The sum in (9) therefore reduces to

ν

( ∞∑
k=0

ρk
)
�(B)

∫
K

κ−(1+1/H) dκ,

which is finite provided that ρ < 1, B is bounded, and K is bounded away from the origin. It
follows from standard theorems on the existence of Poisson cluster processes (see, for example,
Daley and Vere-Jones (2003, p. 179, Proposition 6.3.III)) that the process exists and has finite
first moment measure with density m(t, κ) = [ν/(1 − ρ)]κ−(1+1/H).

If ρ < 1 then the number of cluster members from a given ancestor is infinite in total, but
most have very small marks and only a finite number fall into a bounded set B ×K whenK is
bounded away from the origin. On the other hand, the expected energy release from atoms in
B × K remains finite provided that K is bounded in the usual sense. Similar statements hold
for the overall process.

4. Extensions

The model just described can be modified in many different ways without affecting either
self-similarity or stationarity. Other types of shot noise process can be used in place of the
ETAS model. For example, an exponential decay in time could be used just as well as
the Pareto-type decay without affecting either stationarity or self-similarity. Similarly, for
compatibility with the eigenfunction requirement, the stability factor S(κ/κ ′) in (7) should
satisfy

∫ ∞
0 (1/κ ′)S(κ/κ ′) dκ ′ = 1, but the minimum function is by no means the only example

possible.
It seems more difficult to find alternatives to the self-exciting representation implied by (8),

although it may be possible to find versions with no immigration component along the lines of
Brémaud and Massoulié (2001).

We have limited the discussion in the present note to self-similarity in time, but similar
branching process constructions can also be developed with self-similarity in space or space–
time (see Ogata (1998) for some options).

A related approach to self-similarity was initiated in papers by Zähle (1988, 1990a, 1990b,
1991), who suggested that the property be based not on absolute locations relative to a fixed
origin in R

d , but on locations relative to a given point of the realization, that is, on relative
distances or time intervals between points. This amounts to examining the Palm distributions
of self-similar random measures. Related ideas were explored in Chapter 7, Section 8, of
Thorisson (2000). It would be of interest to explore these links more thoroughly. Another topic
of interest would be the development of simulation routines for models of the kind considered
here.

Finally, it seems plausible that any stationary, self-similar random measure must be purely
atomic in character. This is certainly true for completely random measures; whether it remains
true more generally appears to be an open question.
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