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Abstract

Signalling and genetic networks underlie most biological processes and are often complex,
containing many highly connected components. Modelling these networks can provide insight
into mechanisms but is challenging given that rate parameters are often not well defined.
Boolean modelling, in which components can only take on a binary value with connections
encoded by logic equations, is able to circumvent some of these challenges, and has emerged
as a viable tool to probe these complex networks. In this review, we will give an overview
of Boolean modelling, with a specific emphasis on its use in plant biology. We review how
Boolean modelling can be used to describe biological networks and then discuss examples of
its applications in plant genetics and plant signalling.

1. Introduction

Many cellular processes in biology are controlled by a large number of components that are part
of complex signalling networks (Kitano, 2002). Examples include the pathways controlling cell
polarity, cell motility, cell division and differentiation as well as the gene networks that underlie
a myriad of biological processes. The biological function in question frequently arises out of the
connections and dependencies among physical and chemical processes which may be relatively
simple and well understood. Technological advances in the last few decades have contributed
to a proliferation of data at the level of individual genes and metabolites (International Human
Genome Sequencing Consortium, 2001; Tyers & Mann, 2003), paving the way for synthesising
the knowledge to produce a systems-level understanding.

Models of biological networks attempt to recast the systems in a mathematical form and their
level of detail depends on the amount of available data as well as its requirements (Karlebach
& Shamir, 2008). In its optimal form, quantitative modelling can replace often laborious
experiments by carrying out in silico experiments during which one or more components of
the pathway or the interactions between components are altered. Even if this is not possible,
modelling can often reveal the role of a particular component in the pathway and can, thus,
predict the effect of removing or making it constitutively active.

Constructing models for biological pathways requires knowledge about their topology. In
other words, one needs to know whether component A affects component B. This is equivalent
to answering the question whether B is downstream or upstream of A. Furthermore, the ‘sign’
of the interaction between these components is required: does A activate (corresponding to a
positive interaction) or inhibit (negative interaction) B? Ideally, one would also like to know the
strength of the interaction: how much will B increase or decrease when A is present?

For pathways in which all connections and strengths are known, it is possible to construct a
mathematical model that represents concentrations of the pathway components as continuous
quantities that can take on all positive values. This type of model can provide significant insights,
particularly for small systems made up of a handful of simple reactions where all the interactions
are known (Ouellet et al., 1952; Pollard, 1986). For these systems, parameters like rate constants,
dissociation and association constants can be inferred by monitoring the formation of the
product or the decay of the substrate. Often, however, and especially for pathways that contain
many components, it is not possible to quantify the type of interaction and the strength between
the different components. After all, quantifying this for, say, A and B typically requires a
systematic variation of the level A and measuring the response in B. This type of experiment is
not always possible for all components and models with a large number of unknown parameters,
and interactions can quickly lose their predictive and mechanistic value.
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An alternative to creating continuous models is to construct
Boolean models (Schwab et al., 2020). In a Boolean model, each
element (alternatively called a node) can only take on one of
two values: 0 and 1. The dynamics of these nodes are no longer
determined by solving equations that involve rate constants but
are updated using logical operations. These operations encode
the connections between the different components using the ele-
mentary logical functions: identity, and, or and not. A Boolean
network is then obtained by connecting a number of such nodes
in a meaningful manner. Despite these significant simplifications,
Boolean networks have been shown to be able to provide insights
into genetic networks (Herrmann et al., 2012; Kauffman, 1969b;
Shmulevich et al., 2002b; Thomas, 1973), protein networks (Born-
holdt, 2008) and cellular regulatory networks (Lau et al., 2007;
Li et al., 2004). More importantly, from a practical point of view,
Boolean models have several advantages: they can be simulated
relatively quickly, even on daily-use desktop computers, and several
software packages are freely available (Karanam et al., 2021; Schwab
et al., 2020); modifying the network and simulating variants of the
original network are easy tasks, and thus Boolean modelling can be
used to (a) generate hypotheses that can be tested by experiments
and (b) systematically explore variants of a network that ‘predict’
or lead to an observed phenotype. These ideas have been explored
in several studies as will be described later (Karanam et al., 2021;
Maheshwari et al., 2019).

In this review, we focus on Boolean modelling in plant biology.
We start with a brief overview of Boolean logic and how one can
deduce a Boolean network from rate equations as well as from
experimental data. We then discuss software packages that can be
used to simulate Boolean networks, after which we discuss appli-
cations of Boolean modelling to gene regulatory networks (GRNs)
in plants. We then review how Boolean modelling can be used to
probe the pathways in guard cells that lead to stomatal closure in
response to the plant hormone abscisic acid (ABA) and carbon
dioxide (CO2), and end with a brief conclusion and outlook.

2. Boolean logic and networks

In this section, we will first describe in more detail how Boolean
equations are evaluated, provide a simple example, and show how
truth tables are a convenient way to analyse and comprehend small
Boolean networks. We will then describe how a Boolean network
can be constructed from experimental data and describe the vari-
ous updating schemes developed for this type of network. We will
also show how one can translate rate equations into Boolean equa-
tions and finish by discussing available software for the simulation
of Boolean networks.

2.1. Truth tables

As we mentioned in Section 1, the nodes in a Boolean network
can only take on values 0 (OFF) and 1 (ON). The ON state of a
variable corresponds to high activity or concentration and the OFF
state corresponds to low activity or concentration. The interactions
between the nodes are given by a combination of the logical func-
tions and, or and not acting on the input nodes that feed into the
output node. The future state of the output node (say at time t+1)
is obtained by evaluating its corresponding Boolean function that
takes the current states (say at time t) of its input nodes as inputs.
To simplify notation, we write the output node and the update rule
together as an equation, commonly known as the update equation
of the output node. We do not explicitly specify time because (a)

the update rules do not change with time and (b) the states of the
input nodes specify, through the update equation, the state of the
output node in the succeeding time step only.

As a simple example, consider the activation of gene B by a tran-
scription factor A. In this case, when the concentration of A is high,
the gene is ON, whereas when it is low, B is OFF. This process can be
mathematically expressed using an ordinary differential equation,
which describes the rate of change of B, dB/dt, as a function of the
concentration of A. In its simplest form, this differential equation
is written as

dB
dt
= f (A)−γB.

Here, γ is a degradation constant, determining how B is removed,
and the function f (A) describes how the production rate of the
gene depends on the transcription factor concentration A. This
function is often taken to be a Hill function f (A) = βAn/(An+Kn),
with n the (integer) Hill coefficient, β the maximum production
rate and K the activation coefficient. If we take n to be very large,
we can approximate f (A) to be a so-called step function: f (A) = 0 if
A<K and f (A) =β if A≥K. Thus, when A<K, B will be 0, while for
A >K, the time dependence of B is found by solving the differential
equation

dB
dt
= β−γB. (1)

The steady-state value, achieved after a long time, can be found
by setting the left-hand side of this equation to zero, resulting in
B=γ/β. Furthermore, assuming that A is set above the threshold
value K at t = 0, the solution of this equation can be found to be
B(t) = γ

β (1− e−γt). This solution is shown in Figure 1a, where we
plot B as function of time for different values of the degradation
constant and using γ/β = 1 for simplicity. When the transcrip-
tion factor is turned ON, B approaches its steady-state value at a
timescale that depends on γ. In this description of gene activation,
B can take on all possible values between 0 and 1.

Consider, on the other hand, a simplification of the model in
which A and B can only take on values of 0 or 1 and in which
the presence of A causes an instantaneous rise in B from 0 to 1.
This model can be simply formulated without any parameters by
a Boolean equation, which defines how the value of B is updated
given the value of A. This equation can be compactly written as

B∗ = A, (2)

where we have adopted the convention that the variable with an
asterisk is being updated. In other words, if A = 0, then B is updated
to 0, independent of its current state. If A= 1, on the other hand, B is
updated to 1, again independent of its current state. The time course
of this Boolean equation is shown in red in Figure 1a, where A is
changed from 0 to 1 at t = 0. In contrast to the differential equation,
B is immediately turned ON when A is set to 1.

The above example is very simple and does not involve any of
the elementary Boolean functions. To illustrate these functions, let
us now consider the nodes A and B as the input nodes and C as the
output node. A useful way to characterise the logical operations is
to construct the so-called truth tables, which list the output values
for all possible combinations of input values. The truth tables for the
elementary logical functions are listed in Figure 1b,c. For example,
the and function (C∗ =A and B) only returns C = 1 if both A and B
are ON and will return 0 for all other input combinations. Similarly,
an or gate returns an output of 1 if at least one or both of the inputs
is 1. Obviously, the identity gate copies the current state of the only
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Fig. 1. (a) Comparison of the output of a continuous model [equation (1)] and a Boolean model [equation (2)] for the activation of a gene. In the former, the output can take on

any value between 0 and 1 and depends on the model parameters, whereas in the latter, the output is either 0 or 1 and is independent of parameters. (b–d) Truth tables of

elementary Boolean functions. (b) Identity gate, which copies the value of the input to the output; NOT gate, which copies the inverted value of the input to the output. (c) OR and

AND gates, which take two inputs. (d) An example of a Boolean function that is a combination of the elementary functions. The output X can be determined by evaluating the

parts recursively.

input node to the future state of the output node. Similarly, the
not gate only has a single node as input and it inverts the current
state of the node. It can be shown that by compounding these three
elementary gates it is possible to encode all Boolean functions
(Mano & Kime, 1997), including some commonly encountered
ones in electronics, such as xor (exclusive or). In Figure 1d,
we show the truth table of the compound Boolean function
X∗ = (not A) and (B or C). This table also illustrates how the
output node X is updated by evaluating parts of the function
recursively.

2.2. Update rules

Once a Boolean network is constructed, the nodes are updated fol-
lowing a particular update scheme. This is a choice the investigator
needs to make because a Boolean model contains neither a natural
timescale nor a specified order in which the reactions of the model
take place. In the existing literature on Boolean models, three types
of update schemes have been used: synchronous, asynchronous and
probabilistic update schemes (Schwab et al., 2020). In synchronous
Boolean models, all the components are updated at the same time,
that is, the states of all the nodes at time step t+1 are determined
by their states at time step t (Espinosa-Soto et al., 2004; Fauré et al.,
2006; Garg et al., 2008; Remy et al., 2006). This also means that
the evolution of a synchronous Boolean model is deterministic: a
particular input will always result in the same output.

An asynchronous Boolean model orders the updates of the
nodes one after another in either a pre-determined or a stochastic
manner. There are a number of ways to implement this scheme
(Bonzanni et al., 2013; Fauré et al., 2006; Saadatpour et al., 2010;
Thomas, 1991). For instance, one can follow a random order asyn-
chronous update rule wherein all the nodes are updated exactly once
but in a random order in each iteration (also called time step). This
can be done by generating a random permutation of {1,2, . . .n},
where n is the number of nodes, at the beginning of each iteration.
Alternatively, one can follow a general asynchronous update rule

in which the element that is updated is randomly drawn from the
sequence {1,2, . . . ,n}. Thus, some nodes can get updated, by pure
chance, twice or more before another node gets its turn. These two
update methods will result in outcomes that are stochastic. This is in
contrast to the deterministic asynchronous method in which nodes
are updated using a fixed sequence (Aracena et al., 2009; Mortveit
& Reidys, 2007) or at pre-determined time steps set by the rates of
the corresponding reaction.

For biological applications, the synchronous update scheme is
most likely not appropriate; it is rare that all components in a
network change their value at the same time and that all processes
take the same duration of time to be completed. Asynchronous
updating can in principle implement data on timing and kinetics.
However, these type of data are not always available, in which case
it is unclear which type of asynchronous updating rule should be
used. For a comparison between synchronous and asynchronous
update schemes and its consequences, we refer to a study by Fauré
et al. (2006). This study applied both schemes to a model for
the mammalian cell cycle and also proposed a hybrid scheme,
combining both synchronous and asynchronous updating.

A third method of updating a Boolean model, also resulting in
stochasticity, is through the use of so-called probabilistic Boolean
networks (Shmulevich et al., 2002a). In this updating method, each
node in the network has a set of update equations to choose from.
At the beginning of a time step, an equation for each node is ran-
domly chosen, after which the nodes are updated synchronously.
It thus combines a rule-based determinism for Boolean networks
with stochasticity arising from the uncertainty from the choice of
the update equation. For a review of this type of Boolean model,
including its applications, we refer to Pal et al. (2005) and Trairat-
phisan et al. (2013).

2.3. Translating rate equation models into Boolean models

To see how a signalling network may be encoded using Boolean
logic, let us examine one of the simplest three-component systems
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Fig. 2. Examples of Boolean networks. (a) Example of an oscillatory network. Arrows indicate activation and flat-edge symbols indicated inhibition. (b) The components of the

network in panel (a) as a function of time, modelled using rate equations [parameters taken from Novák & Tyson (2008): k1=0.1, k2=0.2, k3=0.1, k4=0.05, k
−1=0.1, S=2, Km=0.01,

p=4]. (c) Truth table for synchronous updating of the network shown in panel(a) (d) Modified network in which Y depends on X and Z. (e) Truth tables for synchronous updating of

the network shown in panel (d). (f,g) State space and dynamics, represented by arrows, for asynchronous updating of the networks shown in panels (a,c). Fixed point attractors

are indicated by red dots while the oscillatory cycle is shown by the red arrows.

that can give rise to oscillations (Novák & Tyson, 2008). This
network is shown in Figure 2a and has only three components
X, Y and Z. The network is wired such that X activates Y, Y
activates Z and Z inhibits X. This is shown in the figures, where
activation is indicated by arrows (→) and inhibition by a line and
a perpendicular bar (⊣). This system can be translated into math-
ematical equations in which the concentration of the components
can take on arbitrary positive values. The resulting set of ordinary
differential equations is written as

dX
dt
= k1S/(1+Zp)−k−1X,

dY
dt
= k2X−k3Y/(Km+Y),

dZ
dt
= k4(Y −Z). (3)

In these equations, k1,. . ., k4 and k−1 are the activation and degrada-
tion rates, respectively, Km is a dissociation constant, p is an integer
representing the non-linear inhibition of X and S is an input signal
(Novák & Tyson, 2008). Simulating these equations for particu-
lar sets of parameters results in an oscillatory state as shown in
Figure 2b.

To write this network in terms of Boolean operators, it is sim-
plest to examine the diagram of Figure 2a. Note, however, that
there are also more systematic ways to derive Boolean networks
from ordinary differential equations (Davidich & Bornholdt, 2008;
Stötzel et al., 2015). This diagram can be translated into the fol-
lowing set of Boolean operators: Y∗ = X, Z∗ = Y and X∗ = not
Z. We can then perform simulations of this Boolean network
using synchronous update rules. As mentioned in Section 2.1, for

synchronous updating of small networks, it is most convenient
to construct the truth table. The table for this diagram is dis-
played in Figure 2c, which shows that it also exhibits oscillatory
cycles. Specifically, starting at (X,Y,Z) = (0,0,0), the sequence is
(0,0,0) → (1,0,0) → (1,1,0) → (1,1,1) → (0,1,1) → (0,0,1) →
(0,0,0), while (1,0,1) → (0,1,0) → (1,0,1) is also a cycle.

As a second example, let us consider the previous signalling
network but now changed such that the activation of Y depends
on both X and Z. This can be easily incorporated by changing the
rate equation for Y into

dY
dt
= k2XZ−k3Y/(Km+Y) (4)

while keeping the equations for X and Z unchanged. Now, there
are two possible solutions: the oscillatory state, similar to the one
shown in Figure 2b, and a stationary state given by Y = Z = 0 and
X = k1S/k−1. The latter is stable and the resulting state of the system
depends on the initial conditions.

The Boolean network corresponding to this slightly altered
network is shown in Figure 2d. The only difference between this
and the previous network is that the Boolean update equation for
Y is now written as Y∗ = X and Z. The truth table for this net-
work, corresponding to the synchronous update scheme, is given
in Figure 2e. This table reveals that (1,0,0) is a fixed point of the
system: once in this state, the network will remain in it indefinitely.
Note, however, that this fixed point is only reached for certain
initial conditions [(0,0,0), (1,0,0), (0,0,1), (0,1,1), and (1,1,1) to be
precise]. Thus, as in the continuous version of the network, the
binary Boolean network displays a steady-state solution in which
both Y and Z are zero and in which X has a non-zero value.
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Obviously, for the continuous system, this value depends on the
model parameters while for the parameterless Boolean network it is
simply one. As in the continuous system, the Boolean network also
exhibits an oscillatory state: (0,1,0) → (1,0,1) → (0,1,0), which is
reached from initial conditions (0,1,0), (1,0,1) and (1,1,0).

Let us now examine these two Boolean networks using asyn-
chronous update rules. In this case, each element can be changed
independently. Since our networks contain only three elements,
this process can be visualised using the cubes shown in Figure 2f,g,
where each node represents a particular state of the system and
the edges represent transitions between the states. Here, the arrows
indicate the transition between the different nodes according to the
rules of the Boolean network. The dynamics of the Boolean network
can then be determined by following these arrows.

For the network of Figure 2a, it is easy to see that the asyn-
chronous update scheme also results in the same oscillatory cycle
as the synchronous update scheme. This cycle is shown in Figure 2f
by the red arrows. Contrary to the synchronous update scheme,
however, the asynchronous update scheme for the second network
does not exhibit an oscillatory state. For this update scheme, regard-
less of the initial conditions, the network always transitions to the
same node (1,0,0). Thus, the steady state of the system corresponds
to a fixed point, indicated by the red dot in Figure 2g. Finally,
we should also point out that is possible to go “backwards” and
transform a Boolean model into a continuous model (Wittmann
et al., 2009). The resulting ordinary differential model could then
be used to provide quantitative information regarding, for example,
the concentrations of network components.

2.4. Encoding a Boolean network from experiments

The task of encoding a Boolean network based on experimental
data is not trivial. It requires the identification of the relevant
components (nodes in the network) as well as the correct update
rules and thus requires biochemical, genetic and pharmacological
data. While identifying components is typically not that difficult,
determining the interactions between these components is chal-
lenging since the number of possible update equations grows expo-
nentially in the number of nodes in the network (Demongeot et al.,
2008). Furthermore, to define these interactions requires careful
consideration of experimental data. This task is especially difficult
since available experimental information is generally incomplete.
To elaborate, consider a node in a Boolean network with n nodes
upstream. To formulate the update equation unambiguously, we
need the response of the node for the whole set of 2n inputs.
When such information is available, formulating the equation is
straightforward (Karanam et al., 2021). Generally, however, such

extensive data are unavailable and simplifying assumptions about
the nature of interactions are required.

A classical algorithm to infer a Boolean network, called REVerse
Engineering ALgorithm (reveal)(Liang et al., 1998), computes
quantities encountered in information theory (Cover, 1999), such
as joint entropy and mutual information. The advantage of reveal
over earlier methods is that one only needs a small fraction of all
possible input–output relations to obtain a Boolean network with
a very small error rate. The method is, of course, exact when one
uses all the 2n input–output relations for a network of n nodes.
To include a more realistic scenario in which one allows for noise
in gene regulation, either inherent or caused by measurement
techniques, the so-called Best-Fit Extension method (Lähdesmäki
et al., 2003; Shmulevich et al., 2001) can be employed.

We highlight here another approach used in constructing a large
network, following an extensive literature search, to model guard
cell dynamics in Arabidopsis in response to ABA (Albert et al., 2017;
Li et al., 2006). Mathematically, this approach relies on developing
a graph with the smallest number of nodes and edges consistent
with all established qualitative relationships (Aho et al., 1972). It
formulates a number of inference-based rules, shown schematically
in Figure 3. In the first graph, experimental data have identified that
component A promotes B (and is not a direct biochemical reaction)
but also that C promotes the interaction between A and B. In that
case, it is assumed that there is an intermediary node (IN) of the
A−B pathway and that C acts on this intermediary node. If it is
also known that A promotes C, then this intermediary node can
be identified as C (graph 2 in Figure 3). Finally, if A inhibits B and
C inhibits the interaction between A and B, then the logical rule
can be interpreted as A promotes an intermediary node IN, which
inhibits B, while C inhibits IN (graph 3 in Figure 3). Using these
rules, it was shown that the developed network was able to capture
existing experimental data (Albert et al., 2017; Li et al., 2006). We
will come back to this network in Section 4.1.

2.5. Dynamics of Boolean networks

Often, the goal of modelling is to determine the steady state of the
system. That is to say, what is the outcome of the system for long
times? Any deterministic Boolean model, when simulated for long
enough time, converges to a limit cycle or an attractor. A limit cycle
is a subset of the states of the network over which the state of the
system repeats over and over in a cyclical fashion. The length of the
limit cycle is the number of states in the limit cycle. An attractor is
a state of the system whose ‘future’ state is identical to the current
state; the system gets locked-in once it reaches an attractor state. We
have already seen examples of these two possible outcomes when

Fig. 3. Inference rules for the construction of Boolean networks. Experimental data are synthesised to be represented in graphs with the least number of nodes and edges, that is,

as a sparse representation. This sometimes requires an introduction of an intermediary node, as in graphs 1 and 3, but when additional information becomes available, the graph

can in fact simplify, as in going from graph 1 to graph 2. For further details, see text (from Li et al., 2006).
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discussing the networks presented in Figure 2. The set of states that
converges to a particular attractor constitutes its so-called basin
of attraction. Since the evolution of the network is deterministic,
no two basins of attraction share a common element; they are said
to be disjoint. Likewise, a limit cycle—along with transient states
that feed into it—is disjoint with the next one. Thus, the entire
state space can be carved up into disjoint basins of attraction and
basins of limit cycles and each trajectory of the system is a subset
of the basin its initial state belongs to. Determining the number of
attractors, together with their basins of attraction, is an active area
of research in the mathematical field of graph theory and we direct
the interested reader to several recent studies (Aracena et al., 2017;
Krawitz & Shmulevich, 2007; Mori & Mochizuki, 2017; Veliz-Cuba
& Laubenbacher, 2012).

Defining and analysing the basins of attraction for non-
deterministic Boolean networks (e.g., using random order asyn-
chronous or general asynchronous update methods) is not as
straightforward since the trajectory of the system is no longer
deterministic. Furthermore, the set of attractors and limit cycles
found using asynchronous updating can be different from the
ones found using synchronous updating. This was highlighted by
Saadatpour et al. (2010), which carried out a comparative study
of the dynamics and steady states of the ABA-induced stomatal
closure network under synchronous and the three aforementioned
asynchronous update schemes. To enumerate the fixed points and
limit cycles, they reduced the system using Markov chains (Ross,
2014) and by simplifying the Boolean update equations. They
found that both types of update schemes exhibited a fixed point.
However, for synchronous updating, they found large basins of
attractions for two limit cycles. These limit cycles, and their basins
of attractions, were not found using asynchronous updating, unless
strict limitations regarding the timing of several processes were
implemented.

2.6. Software tools

Once a network and the update schemes are defined, a Boolean
network can be simulated to obtain the trajectory and steady states
of the system, to visualise the network, and to determine the activity
levels of its components. A large number of computational tools
have been developed to simulate Boolean networks on personal
computers, as reviewed recently by Schwab et al. (2020). In addi-
tion, software packages are available to determine and computa-
tionally identify the attractors of a Boolean network (Rozum et al.,
2021; Rozum et al., 2022). Most of these packages, but not all (Klamt
et al., 2007), are open source and can thus be freely used. Some of
these tools, however, do not use a graphical interface, which makes
it more challenging to construct and visualise the network (Albert
et al., 2008; Garg et al., 2008; Helikar & Rogers, 2009; Klarner
et al., 2017; Müssel et al., 2010; Paulevé, 2017; Stoll et al., 2012).
Other packages only allow synchronous updating and can thus
not implement an asynchronous update scheme (Bock et al., 2014;
Terfve et al., 2012). Finally, some packages are only able to run
a single initialisation at a time, which means that probing a large
set of initial conditions, especially valuable for large scale networks
with asynchronous updating, is challenging (Gonzalez et al., 2006;
Schwab & Kestler, 2018).

We have recently developed Boolink, a simulation platform
for Boolean networks that is based on a graphical user interface
and is completely open-source (Karanam et al., 2021). Specifically,
the software allows users to define the nodes and connections in
the Boolean network, visualise the network as a tree, set various

simulation parameters including the number of time steps and
initial conditions, plot the activity of a few chosen nodes, and to
analyse the trajectory of the system as a whole. Boolink is written
in Python and C++, and the source code is freely available from
the GitHub repository, https://github.com/rappel-lab/boolink-gui,
along with its documentation, to use, modify and distribute. We
have also packaged the software as a Docker container (Merkel,
2014), which is a self-contained system that comes with all the soft-
ware dependencies and runs straight out of the box. In its original
presentation, Boolink was only able to simulate a Boolean network
using the physiologically relevant asynchronous update scheme.
Recently, however, we have extended Boolink to include the ability
to simulate networks using a synchronous update scheme.

3. Boolean networks and gene regulation in plants

Creating a regulatory framework based on the available data on
gene expression is essential to understanding gene expression. A
network that is inferred from gene expression data is termed GRN
(Emmert-Streib et al., 2014). Several methods have been devel-
oped to construct GRNs from available data, including Boolean
models, information-theory-based models, and machine-learning-
based models. These methods and their application and suitability
in different contexts is an active field of research and we refer
the interested reader to several review articles (Chai et al., 2014;
Delgado & Gómez-Vela, 2019; Fiers et al., 2018; Zhao et al., 2021).
Here, we limit our discussion to Boolean models.

The first application of Boolean modelling was carried out by
Kauffman when he described a genetic network (Kauffman, 1969a).
In a Boolean gene network, a gene is either turned ON (i.e., has
value 1) or turned OFF (with value 0), while the topology of the
network specifies how and if a gene interacts with other genes. In
plants, Boolean networks have been applied to a number of genetic
networks. We will discuss here three different examples: Boolean
models (a) for flower development, (b) for induced systemic resis-
tance (ISR) induced by microbes and (c) for the root stem cell niche
(SCN). These models have introduced modifications to the simple
implementations of Boolean networks described so far. These mod-
ifications will be discussed as the systems are introduced.

3.1. Flower development

One of the first examples of Boolean modelling studied early flower
development in the model plant Arabidopsis thaliana (Mendoza &
Alvarez-Buylla, 1998). In this model, 12 genes were considered and
the topology of the network was determined based on experimental
data. The model was slightly more involved than the simple Boolean
implementation we described in Section 2 in that the modified
model is known as a threshold Boolean model. Each node of the
model still takes binary values (0 or 1) but interactions between
any pair of nodes are encoded by weights between them; excitatory
interactions carry a weight of +1 whereas inhibitory interactions
carry a weight of −1. The update equation of a node in this model
is not Boolean but algebraic, consisting of the sum of weighted
interaction terms. When a node is updated, the sum of all of its
interactions with other nodes is calculated. If the sum exceeds the
threshold of the node, then the node is updated to 1; if not, to 0.

The update scheme for this model is in-between the syn-
chronous and asynchronous update schemes as described before,
and is termed semi-synchronic, and block-sequential and block-
parallel in later iterations (Aracena et al., 2009; Demongeot & Sené,
2020). Instead of updating all the nodes at once or one after another
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in some order, the nodes in the model are grouped into blocks. All
the nodes in a block are updated at once, and the blocks themselves
are updated sequentially. This method makes use of qualitative
experimental data, such as the order of activation of different parts
of the genetic network.

The model was found to have six attractors, four of which were
consistent with the gene expression patterns observed in A. thaliana
(Mendoza & Alvarez-Buylla, 1998). One of the remaining two was
not able to flower and the sixth one, while not observed, could be
induced experimentally (Mendoza & Alvarez-Buylla, 1998). Since
this Boolean threshold model was published, several studies have
further analysed its dynamics. These studies revealed that it is
possible to reduce its complexity while maintaining its steady-
state behaviour (Demongeot et al., 2010; Ruz et al., 2018) and
highlighted the crucial role of the plant hormone gibberellin in
normal flower development (Demongeot et al., 2010).

3.2. Induced systemic resistance

Recently, the ISR in A. thaliana plants triggered by beneficial
microbes was investigated using Boolean modelling (Timmermann
et al., 2020). ISR is an important defense mechanism of plants
against harmful pathogens (Pieterse et al., 2014) and the study
investigated how the bacterium Paraburkholderia phytofirmans
PsJN can trigger ISR and protection from the bacterial pathogen
Pseudomonas syringae DC3000 (Timmermann et al., 2017, 2019).
It used the temporal experimental expression patterns of eight key
genes following inoculation of PsJN and asked which threshold
Boolean network was able to reproduce the time series data.
Parameters of the model, including the weights among the
nodes and their threshold values, were fitted to experimental
data using an algorithm called differential evolution (Storn &
Price, 1997), which belongs to a class of fitting algorithms called
genetic algorithms (Ruz et al., 2015). The study inferred 1,000
networks from the data. One of these networks was chosen
and pruned using biological reasoning. The robustness of the
pruned network was then tested by determining how mutations
of fundamental genes affected the ISR response. These virtual
mutation experiments produced responses that were consistent
with available experimental data (Timmermann et al., 2020).
Additionally, the study found that the pruned consensus network
is robust because it requires an unlikely event of a triple mutation

to the network before the ISR is lost. Furthermore, the authors
argue that, in the presence of errors in gene expression data, the
differential evolution algorithm used to derive the GRN fared better
than classical algorithms to infer Boolean networks, including
REVEAL (Liang et al., 1998) and best fit extension (Lähdesmäki
et al., 2003).

3.3. Root stem cell niche

The examples above applied Boolean modelling to determine the
most probable network that is consistent with experimental data.
In doing so, these studies found missing links or were able to
determine the most critical network components. As a result, these
Boolean models were often able to predict novel components or
connections between components and could suggest new experi-
ments. To further illustrate the ability of Boolean models to guide
experiments, we focus here on another example of a gene network
studied using Boolean modelling, the root SCN in A. thaliana
(Azpeitia et al., 2010; Velderraín et al., 2017). The root SCN in A.
thaliana is well studied and is located at the root apical meristem
(Dolan et al., 1993). It consists of a so-called quiescent center (QC),
comprised of four infrequently dividing cells, and, in immediate
proximity, active stem cells that are called initials. The divisions of
these initials result in different types of differentiated cells and in
tissue growth of the plant (Dolan et al., 1993). The question thus
arises, how can the undifferentiated cells of the QC give rise to
several differentiated cell types?

Modelling, and in particular Boolean modelling, is ideal to
address this question. Experimental work has identified a num-
ber of molecular and genetic components that play a role in the
maintenance of the SCN (Pardal & Heidstra, 2021). Furthermore,
the interactions between some, but not all of the components can
also be deduced from experimental work. It is therefore possible to
construct a putative wiring diagram as in Figure 4a, which shows
the components along with their interactions as either arrows, indi-
cating activation, or flat-end symbols, indicating repression. The
dynamics of this network should then allow steady-state solutions
with gene expression that is consistent with the different cell types
of the SCN. In terms of Boolean modelling, this means that the
network should display attractors corresponding to these different
cell types.

a b c

50% 25% 14.84% 10.16%
Inactive Active

Fig. 4. Boolean modelling of gene networks. (a) Example of a putative network that maintains the SCN in Arabidopsis. Arrows indicated activation and flat-edge symbols

correspond to repression. For the definition of the different components, see Velderraín et al. (2017). (b) Attractors of the Boolean network shown in panel (a). Green represents

an active and red represents an inactive gene. The labels at the top of the diagram represent the attractors and correspond to the phenotypes observed in experiments (CEI,

cortex-endodermis initials; CEP, columella epidermis initials; QC, quiescent center; VAS, vascular initials) (from Velderraín et al., 2017). (c) Modified network based on novel

experimental and computational results (from Velderraín et al., 2017).
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Simulating the Boolean network in Figure 4a using synchronous
updating revealed four different attractors as shown in Figure 4b.
In this diagram, active genes are displayed in green while inactive
genes are displayed in red. Each of the four attractors correspond
to a different set of genes that are ON or OFF and, thus, to a
different cell phenotype. For example, the gene SCR (scarecrow)
is ON (and thus has a value of 1) in the phenotype corresponding
to columella epidermis initial and vascular initial but is OFF and
has value 0 in cortex-endodermis initial and QC (QC cell). The
diagram also shows the size of the basin of attraction, expressed
as the percentage of initial conditions that resulted in the attractor.

Further testing of this model and comparing the outcomes to
experimental results showed that certain interactions were miss-
ing. For example, this analysis revealed the need for a repressor
of WOX5 (wuschel related homebox 5) and an additional
component with an inhibitory link was predicted (Azpeitia et al.,
2010). This prediction was verified in experiments, which showed
that WOX5 is negatively regulated by CLE40 (clavata-like-40)
(Stahl et al., 2009). Additional predictions resulted in the modified
network displayed in Figure 4c, where the postulated interactions
are shown in red (Azpeitia et al., 2010). After this study and once
new experimental findings became available, this network has been
modified and extended further (Azpeitia et al., 2013). These studies
showed the power of Boolean modelling: once a Boolean network
has been constructed, it is fairly straightforward to modify and
extend it and to generate experimental predictions. These modi-
fications and extensions are much easier to implement than in con-
tinuous models based on rate equations. In those type of models,
a modification typically requires refitting and adjusting the model
parameters, which can be an arduous task (Karmakar et al., 2021).

4. Boolean networks and signalling in plants

Biological signalling pathways can be very complex, containing
numerous components and multiple feedback loops. Such com-
plex pathways can also be addressed by Boolean modelling and
examples include T-cell signalling (Saez-Rodriguez et al., 2007),
molecular pathways of neurotransmitters (Gupta et al., 2007) and
cancer pathways (Fumia & Martins, 2013; Sherekar & Viswanathan,
2021). A prime example of a complex signalling network is found in
plants, where the network regulating phytohormone ABA-induced
stomatal closure contains a large number of interconnected com-
ponents. Below, we will review studies that attempt to cast this
closure pathway into a Boolean network. Furthermore, we will also
discuss recent efforts to extend this signalling network to include
CO2 signalling.

4.1. ABA signalling network

Stomata are pores in the epidermis of leaves that regulate gas
exchange, including CO2 for photosynthesis and loss of water
vapor. Each stomata is formed by a pair of guard cells and its
aperture is modulated in response to environmental changes such
as light and CO2 (Assmann & Jegla, 2016; Munemasa et al., 2015).
Furthermore, drought results in the accumulation of ABA in guard
cells, which leads to stomatal closure (Hsu et al., 2021; Raghavendra
et al., 2010).

The network that underlies ABA-induced stomatal closure in A.
thaliana is complex and contains a large number of components
(>80). Consequently, the number of rate constants is also very large
and, not surprisingly, many are not quantified. To illustrate the
complexity of the network, we reproduce in Figure 5, the network

investigated by Albert et al. in a recent study (Albert et al., 2017).
Given the complexity and the number of components, this network
is particularly suitable for Boolean approaches (Albert et al., 2017;
Li et al., 2006; Maheshwari et al., 2019; Maheshwari et al., 2020;
Waidyarathne & Samarasinghe, 2018).

Albert and colleagues encoded the ABA-induced stomatal clo-
sure pathway into a Boolean network. This network has a single
input node, representing ABA, and a single output node, repre-
senting stomatal closure. Obviously, both the input and output
node were also taken to be binary: ABA is either 1 (present) or
0 (absent) while a similar logic applied to the closure node. The
network shown in Figure 5 was constructed following a careful
review of available experimental literature. The Boolean dynamics
was simulated using an asynchronous update scheme in which
nodes were updated in a randomly selected order at each time
step (random order asynchronous). A large number of simulations
(2,500) were performed and the percentage of closure was com-
puted as the percentage of simulations in which the node Closure=1
in the steady state. A verification of the wild-type model, that is,
without any alterations to the wiring or components, was per-
formed by computing the percentage of closure with and without
ABA present. The results are shown in Figure 6, as expected, in the
absence of ABA, the stomata remained open and the percentage
of closure was 0% (open circles) while in the presence of ABA the
stomata close (closed circle; 100% closure).

One of the strengths of Boolean modelling is the ease with
which one can alter the network and either ‘knock-out’ a node or
make a node ‘constitutively active’. A virtual knock-out experiment
equates to fixing one of the nodes to 0 while fixing a node’s value
to 1 corresponds to making this component constitutively active.
Albert et al. performed a systematic analysis of the response of
the Boolean network to ABA exposure in which all internal nodes
of the network were set to either 0 or 1. Some of the results of
these knock-out experiments are shown in Figure 6. For example,
knocking out cytosolic pH resulted in reduced sensitivity to ABA
with only 35% closure, consistent with experiments (Zhang et al.,
2009).

The study showed that altering single nodes in the networks
resulted in either an increased, a decreased, or an unchanged sensi-
tivity to ABA. Where possible, the results were compared to avail-
able experimental data and this comparison agreed in most cases.
In the case where no experimental data were available, the com-
putational result could be considered a prediction. Some of these
predictions were subsequently tested using experiments, demon-
strating the usefulness of Boolean modelling.

Even though the model was able to reproduce experimental
data in more than 75% of the predictions, there were several clear
discrepancies with experimental observations (Albert et al., 2017).
Further highlighting the strength of Boolean modelling, these dis-
crepancies were used in a follow-up study, which aimed to improve
the model (Maheshwari et al., 2019). For this, the original model
was first reduced to a smaller network with 49 nodes and 113
edges. This reduced network was shown to duplicate all results from
the original network. A subsequent computational analysis of this
reduced network then revealed that that inhibiting PP2C protein
phosphatase ABSCISIC ACID INSENSITIVE 2 (ABI2) by cytosolic
calcium was able to rectify most of the discrepancies. The proposed
inhibition by calcium was also verified in experiments, highlighting
the ability to iterate between model and experiment (Maheshwari
et al., 2019). This iterative quality of Boolean modelling was also
evident from a recent and additional follow-up study (Maheshwari
et al., 2020). This study examined the response of the improved
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Fig. 5. Signalling network of abscisic acid (ABA)-induced stomatal closure. Arrows indicate positive interactions while filled circles indicate negative interactions. Rectangles

represent nodes that are connected to other nodes. Black lines represent direct interactions and green lines represent indirect interactions. Nodes are color coded according to

their function: enzymes (red), signalling proteins (green), membrane-transport related nodes (blue), and secondary messengers and small molecules (orange). For names of the

components, see original publication (Albert et al., 2017).

Time step 

C
lo

se
d

 S
to

m
at

a 
(%

)

0 10 20

Fig. 6. Results of a Boolean ABA network. Shown are the percentage of closure as a

function of iteration step. The wild-type (WT) curves show the network response in the

absence of (open circles) and presence of ABA (closed circles). Other curves show the

response following simulated knockout of the component (node set to 0) in the

presence of ABA. For abbreviations, see original study (Albert et al., 2017).

network in the absence of ABA or following the removal of ABA. In
the first case, the stomata should remain open while in the second
case, their closed state should relax to an open state. Probing the

network under these conditions, it was further improved so that
its response was consistent with experiments (Maheshwari et al.,
2020).

4.2. CO2 signalling pathway

The Boolean network shown in Figure 5 was recently extended to
include CO2 regulation of stomatal movements (Karanam et al.,
2021). This extension is possible since several elements of CO2
signalling overlap with those of ABA signalling (Hsu et al., 2018;
Merilo et al., 2015; Zhang et al., 2020). Elevated CO2 levels result in
the closure of stomatal pores and thus affect the water use efficiency
and yield of crop plants (Dubeaux et al., 2021; Engineer et al., 2016;
Zhang et al., 2018). In an initial attempt, the ABA network was
complemented with a CO2 branch as shown in Figure 7a. This
branch consisted of CO2 as an input node and, through several
intermediary nodes, inhibited the GHR1 (guard cell hydrogen per-
oxide resistant 1) node in the ABA network. As in the ABA studies,
Boolean dynamics was implemented using asynchronous updating
using randomly selected nodes (random order asynchronous) and
results were averaged over a large number of realisations (Karanam
et al., 2021). The response of ABA under high and low CO2 condi-
tions, modelled by setting the node CO2 to either 1 or 0, is shown
in Figure 7b. Note that here the conductance level is used instead
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a

b

c

d

Fig. 7. CO2 and ABA-induced stomatal closure model. (a) Extended network showing the new CO2 branch in blue and the existing ABA network, shown in Figure 5, as a box. Only

several of ABA components are shown. (b) Predicted stomatal conductance levels of the network in panel (a) for both CO2=0 (red) and CO2=1 (blue), before and after the

application of ABA. (c) Modified CO2 and ABA-induced stomatal closure network, with modifications represented by orange links. (d) Predicted stomatal conductance levels using

the network shown in panel (c) for both CO2=0 (red) and CO2=1 (blue), before and after the application of ABA. For names of the components, see original publication (Albert

et al., 2017) (from Karanam et al., 2021)

of the percent closed stomata. This conductance level is simply
computed as 1-Closure. The simulations predicted that the intro-
duction of ABA leads to a decrease of conductance level from 1 to 0
when CO2=1, corresponding to fully closed stomata. For CO2=0,
the exposure to ABA resulted in a reduction of the conductance
level from 1 to 0.5.

These predictions were subsequently tested in experiments by
determining ABA-mediated stomatal closure under high and low
CO2 conditions (Karanam et al., 2021). These gas-exchange experi-
ments were conducted by applying ABA to the transpiration stream
of excised intact leaves (Ceciliato et al., 2019). The experiments
revealed that the application of ABA under both conditions resulted
in a reduced conductance level (Karanam et al., 2021). In con-
trast to the simulation results of Figure 7b, however, the steady-
state stomatal conductance prior to ABA application was different
for high and low CO2. Specifically, it was higher for low CO2,
demonstrating that CO2 induces stomatal conductance reduction.
Taken together, these experimental results suggested that both CO2
and ABA reduce stomatal conductance and that they have additive
responses (Karanam et al., 2021).

Again showing the ability to iterate between experiments and
modelling, the network was modified to account for the experi-
mental results. The updated network topology is shown in Figure 7c
where the added links are displayed in orange. These links were

partially motivated by experimental data. For example, adding CO2
dependence on calcium signalling was motivated by experiments
that showed that cytosolic calcium is involved in CO2-induced
stomatal closure (Schulze et al., 2021; Schwartz et al., 1988; Webb
et al., 1996). The response of the updated network to ABA applica-
tion is shown in Figure 7d and is now consistent with experimental
results. Importantly, in the absence of ABA, the updated network
has a steady state that depends on the CO2 level. Furthermore,
application of ABA resulted in absolute conductance changes that
were similar for both conditions (Karanam et al., 2021).

5. Conclusion and outlook

This article summarises recent attempts in modelling genetic
networks and signalling pathways using Boolean models. We have
focused on plants, where this type of modelling has been used
in a wide variety of studies. We have attempted to outline how
one can transform a model composed of ordinary differential
equations into a Boolean model and have described methods to
synthesise experimental data into logical equations. Furthermore,
we have shown how different update rules can result into different
outcomes and have pointed readers to available software for
Boolean modelling. We have also reviewed a number of genetic
and signalling networks in plants that have been investigated using
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Boolean models. In doing so, we have strived to highlight the
advantages and promises of Boolean modelling.

Most importantly, Boolean models offer a simple yet effective
way to model the steady states of reaction networks in biological
systems made of a large number of components. They only require
knowledge about the components of the network and the nature of
the connectivity between components but not detailed knowledge
about kinetics or rates. Boolean models are therefore especially
useful in cases where the current knowledge of interactions is only
qualitative, when the kinetic and rate parameters are not precisely
determined, or when the network is too large to be simulated in a
reasonable time. We should point out, however, that constructing
a Boolean network is not the only way to simplify a complex
mathematical model. Especially when a model falls into the class
of so-called sloppy models, in which many of the parameters are
loosely constrained (Brown & Sethna, 2003; Gutenkunst et al.,
2007), it is sometimes possible to systematically reduce the number
of equations while still maintaining the predictive value of the
model (Lombardo & Rappel, 2017; Transtrum & Qiu, 2014).

One of the main strengths of Boolean modelling is the ease
with which one can generate experimental predictions. As we have
discussed here, these predictions have resulted in the identification
of critical components or interactions in both genetic networks in
plants [e.g., negative regulation of WOX5 by CLE40 (Azpeitia et al.,
2010)] as well as in signalling networks [e.g., calcium inhibition of
ABI2 in the ABA signalling pathway (Maheshwari et al., 2019)].
These predictions can then be tested in experiments, further speci-
fying the underlying networks and improving our understanding of
the biological mechanisms. Boolean modelling, however, is not well
suited to address detailed kinetics of networks and pathways. After
all, time does not explicitly occur in a Boolean model and most
applications therefore focus on determining steady states of the
system. Furthermore, Boolean networks cannot be used to model
graded outcomes such as concentration of network components
that are different from 0 and 1. In order to achieve that, hybrid
models have been developed in which the set of states is expanded
beyond {0,1} and the update equations contain a combination
of algebraic and Boolean terms (Glass & Kauffman, 1973). These
hybrid models have been used to model the interaction of immune
cells and pathogens (Thakar et al., 2009), gene networks underlying
flower development in Arabidopsis (Mendoza & Xenarios, 2006),
and light-induced stomatal opening in plants (Sun et al., 2014).
Despite these limitations, we expect that Boolean modelling will
continue to play a prominent role in deciphering the structure
and mechanisms of biological networks in general and of plant
networks in particular.
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