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Abstract

We prove a version of Clifford’s theorem for metrized complexes. Namely, a metrized complex that
carries a divisor of degree 2r and rank r (for 0 < r < g − 1) also carries a divisor of degree 2 and
rank 1. We provide a structure theorem for hyperelliptic metrized complexes, and use it to classify
divisors of degree bounded by the genus. We discuss a tropical version of Martens’ theorem for
metric graphs.
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1. Introduction

For a smooth algebraic curve, Clifford’s theorem states that a divisor of rank r has
degree at least 2r , and when 0 < r < g − 1, equality may only be obtained for
hyperelliptic curves [4, Ch. III]. The first part of the theorem follows immediately
from Riemann–Roch, whereas the second part requires more subtle geometric
methods.

With the development of tropical and non-Archimedean geometry in recent
years, it was observed that many theorems from classical algebraic geometry have
combinatorial analogs in tropical geometry. Baker and Norine introduced divisors
on finite graphs, and showed that they satisfy a Riemann–Roch theorem [8].
Their results were later generalized by various authors to metric and weighted
graphs [3, 11, 20]. Via Baker’s Specialization Lemma [5], such results provide
new combinatorial techniques for studying algebraic curves.
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Subsequently, Amini and Baker introduced metrized complexes, a common
generalization of metric graphs and algebraic curves, and prove a Riemann–Roch
theorem in that setting [1, Theorem 1.3]. While these objects tend to be more
involved than graphs, they also capture more algebraic information, and provide a
much stronger tool in some cases. For instance, Katz, Rabinoff and Zurich-Brown
apply the first part of Clifford’s theorem for the metrized complex associated to
a semistable model of a curve, to bound the number of its rational points, thus
proving a weak version of the Bombieri–Lang conjecture [14].

Similarly to the algebraic case, an analog of the first part of Clifford’s theorem
follows immediately from Riemann–Roch. However, the methods used to prove
the second part do not carry well into the tropical world. Nevertheless, it is shown
in [10] that the full extent of Clifford’s theorem holds for metric graphs. Our main
result is an extension of the theorem to metrized complexes.

THEOREM (3.4). Let C be a metrized complex of genus g, and suppose that for
some 0 < r < g − 1 there is a divisor class δ of degree 2r and rank r. Then C is
hyperelliptic.

By hyperelliptic we mean a metrized complex having a divisor of degree
2 and rank 1. For a smooth curve, the existence of such a divisor induces a
double cover of a line. Similarly, for a metric graph, such a divisor implies the
existence of a harmonic map of degree 2 to a tree [9, Theorem 1.3]. The analogous
statement for metrized complexes is no longer true, as shown in [2, Example 4.14]
and [1, Remark 5.13]. Nevertheless, just as hyperelliptic graphs can be pictured
as two isomorphic trees meeting at their leaves [9, Theorem 1.3], we show
that hyperelliptic metrized complexes consist of two isomorphic trees, meeting
along hyperelliptic algebraic curves. See Lemma 3.5 for a precise statement. This
description allows us to classify all the effective divisors whose degree is bounded
by the genus.

THEOREM (3.6). Let C be a hyperelliptic metrized complex. Then every divisor
class δ of degree d and rank r with 0 6 r 6 d 6 g is of the form r · g1

2 + p2r+1 +

· · · + pd .

In the appendix, we discuss a possible tropical version of Martens’ theorem,
which is a refinement of Clifford’s theorem. The results presented there are joint
work with David Jensen.

Our strategy for proving the main theorem is partly inspired by the techniques
used in [10]. However, our argument is entirely self-contained. In particular, it
provides an independent proof of Clifford’s theorem for graphs by considering

https://doi.org/10.1017/fms.2017.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.13


Hyperelliptic graphs and metrized complexes 3

Figure 1. The metrized complex C.

metrized complexes in which all the components are rational. Before delving
into the proof and introducing various notations, we begin with an example to
demonstrate the strategy.

EXAMPLE 1.1. Let C be the metrized complex of genus 4, depicted in Figure 1
(see Section 2 for notations regarding metrized complexes). All its edges have
the same length, the points p3, q3, p4, q4 are in the middle of the edges, and p, q
are of equal distance from p2, q2, respectively. Suppose that p1 + q1 and p4 + q4

are equivalent to the pair of nodes corresponding to the incoming edges at their
respective components. The points p, p1, p2, p3, p4 form a rank determining set
for C, so to show that a divisor class has rank 1, it suffices to show that the union
of its different representatives contains each of them.

The divisor D = 4 · (x) has rank 2, and therefore, has a representative D′
containing p1+ p2. It is straightforward to check that this representative is exactly
p1 + p2 + q1 + q2. Similarly, it has a representative containing p2 + p3, namely,
p2 + p3 + q2 + q3. It follows that

p1 + p2 + q1 + q2 ' p2 + p3 + q2 + q3,

so by linearity, p1 + q1 ' p3 + q3. By repeating this process for all the different
combinations pi + p j and p j + pk , we see that

p1 + q1 ' p2 + q2 ' p + q ' p3 + q3 ' p4 + q4.

Therefore, p1 + q1 has rank 1, and C is hyperelliptic.

In the next section, we show that every metrized complex of genus g which
satisfies the conditions of the main theorem contains a divisor of degree 2g, with
similar properties to the divisor

∑
pi +

∑
qi in the example above.

2. Preliminaries

In what follows, we assume familiarity with the theory of tropical divisors and
metrized complexes. We refer the reader to [7] for an extensive exposition on the
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topic, and to [1] for a more thorough treatment. Roughly speaking, a metrized
complex is a generalization of a metric graph, obtained by placing smooth curves
at the vertices, and defining linear equivalence in a way that combines chip firing
on the graph and linear equivalence on the curves.

DEFINITION 2.1. A metrized complex is hyperelliptic if it has a divisor of degree
2 and rank 1.

We refer to the algebraic curves placed at the vertices as components. For each
vertex v, denote Cv the corresponding component and gv its genus. The point of a
component Cv associated to an edge is referred to as a node. The metric graph Γ ,
obtained by removing the components is called the underlying graph of C. There
is a natural map which takes divisors on C to divisors on Γ . By abuse of notation,
we often identify a divisor on C with its image without mention. The elements of a
divisor are referred to as chips. For an algebraic curve or a metric graph we denote
by W r

d the set of its divisor classes of degree d and at least rank r , or simply Wd

when r = 0.

DEFINITION 2.2. A divisor on a graph or a metrized complex is said to be rigid
if it is the unique effective divisor in its class.

On an algebraic curve, a divisor is rigid if and only if it is effective and has rank
zero. On metric graphs, rank zero is a necessary but not sufficient condition for
rigidness. However, as seen by the following lemma, rigid divisors are ubiquitous.

LEMMA 2.3. Let Γ be a metric graph of genus h > 0, and let K be its canonical
divisor. Then there is a divisor P of degree h−1 such that P and K − P are rigid.
Moreover, there is an open set of such divisors in the space Wh−1(Γ ) of effective
divisor classes of degree h − 1.

Proof. The space Wh−1(Γ ) is the Minkowski sum of h − 1 copies of W1(Γ ) in
the Jacobian of Γ . Since the latter is the image of Γ under the Abel–Jacobi map,
the former is a connected polyhedral complex of pure dimension h − 1.

Let D be a nonrigid effective divisor of degree h − 1. We begin by showing
that D has a representative with at least one chip at a vertex. Suppose that D is
supported on the interior of edges of Γ . Since D is nonrigid, removing its support
disconnects the graph [13, Theorem 13]. Let p1, . . . , pk be a minimal subset of
the support that disconnects the graph, and let e1, . . . , ek be the edges that contain
these points respectively. Then Γ \ {e1, . . . , ek} is a disjoint union of two graphs
Γ1 and Γ2. Then we can ‘move’ p1, . . . , pk together until they reach Γ1: Let d be
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the minimal distance from Γ1 to p1, . . . , pk . Define a piecewise linear function f
whose value on Γ1 is 0, has slope−1 on the first segment of length d on each edge
ei emanating from Γ1, and is constant on the rest of the graph. Then D + div( f )
is effective with a representative on a vertex.

The set of divisor classes with a chip on a vertex has dimension strictly smaller
than h − 1. Therefore, there is a dense open set in Wh−1(Γ ) classifying rigid
divisors. Since the map taking a divisor P to K − P is a linear bijection between
Wh−1 to itself, there is an open dense set for which both P and K−P are rigid.

The following lemma is a useful tool for dealing with the graph and algebraic
parts of divisors separately (cf. [18, Theorem 4.3] and [1, Proposition 2.1]).

LEMMA 2.4. Let D be a divisor of rank r > 0, let r = r0 +
∑

v∈V (Γ ) rv be
a partition of r , and let E be an effective divisor of degree r0 on Γ . Then D
is equivalent to an effective divisor that contains E, whose restriction to each
component of C has rank rv.

Proof. For each rational function f on C such that D + f is effective and contains
E , let s f be the collection of its incoming slopes at the components of C. Let S be
the set of all such s f . For s ∈ S and a component Cv, let

Ts,v = {D ∈ Wrv (Cv)| there exists f with sf = s such that D 6 D + div(f)}.

The restriction to Cv of divisors of the form D+div(f) for sf = s are all equivalent
to each other, and Ts,v is the entire space Wrv (Cv) if and only those restrictions
form a divisor class of rank rv.

Let Ts =
∏

v∈V (Γ ) Ts,v. Since D has rank r , the union of all the sets Ts is∏
v∈V (Γ ) Wrv (Cv). Furthermore, since each Ts is closed, and S is finite, there must

be s ∈ S such that whenever sf = s, the divisor D + div(f) has rank rv at every
component Cv.

For the rest of the section, we fix a metrized complex C of genus g > 1, whose
underlying graph Γ has genus h. Denote by K the canonical class of C.

PROPOSITION 2.5. Suppose that h > 2. Then there exist effective divisors P,Q
of degree g − 1 such that:

(1) P +Q ' K.

(2) P,Q are rigid.

(3) For each component Cv the restriction of P,Q to Cv is rigid and does not
meet the nodes.
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Moreover, there is an open set σ classifying such divisors in
∏

v∈V (Γ ) Wgv (Cv) ×

Wh−1(Γ ).

Proof. Fix rigid divisors P+Q ' K on Γ as in Lemma 2.3. By Lemma 2.4, there
is a representative K′ of K that contains P , whose restriction to each component
Cv has rank gv. Riemann–Roch for curves implies that this restriction has degree
at least 2gv. By subtracting 2gv chips from each component, and forgetting
the metrized complex structure, we obtain a divisor which is equivalent to the
canonical divisor K of Γ , and contains P . By Lemma 2.3, it is precisely the
divisor P + Q. Therefore, the restriction of K′ to each component has exactly
2gv chips. Since the set of rigid divisors of degree gv on Cv is open and dense in
Wgv (Cv), and the divisors P, Q vary in an open dense set of Wh−1(Γ ), there is an
open dense set in the product satisfying the desired properties.

PROPOSITION 2.6. Suppose that h is either 0 or 1. Then there exist effective
divisors P,Q of degree g − 1 such that:

(1) P +Q ' K.

(2) P,Q are rigid.

(3) For each component Cv the restriction of P,Q to Cv is rigid and does not
meet the nodes.

Moreover, there is an open set σ classifying such divisors in Wgv0−1(Cv0) ×∏
v0 6=v∈V (Γ ) Wgv (Cv)×Wh(Γ ) for some vertex v0.

Proof. Choose a vertex v0 with gv0 > 0, which exists since we assumed that
g > 1. By Lemma 2.4, together with Riemann–Roch for curves, the divisor K
is equivalent to a divisor whose restriction to Cv0 has degree 2gv0 − 2 and rank
gv0 − 1, its restriction to any other component Cv has degree 2gv and rank gv, and
its restriction to the edges of the underlying graph Γ has 2h chips. Moreover, the
restriction to each component can be chosen so that it consists of a pair of rigid
divisors. Now choose P to consist of the first summands of those pairs and h of
the graph points, and Q to consist of the second summands.

Recall that a set R is said to be rank determining if it suffices to consider points
ofRwhen computing the ranks of divisors. More precisely,R is rank determining
if the rank of every divisor D is the largest number r such that D− p1− · · · − pr

is equivalent to an effective divisor, for every choice of p1, . . . , pr in R. The
following lemma is a mild generalization of [1, Theorem A.1]. We leave it for the
reader to make the necessary changes.
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LEMMA 2.7. Let R be a divisor of degree g + 1 with the following properties:

(1) R has h+1 graph points (where h is the genus of Γ ), and the graph obtained
from Γ by removing h of them is a tree.

(2) The restriction of R to every component Cv is a rigid divisor of degree gv.

Then R is a rank determining set.

3. Hyperelliptic metrized complexes

3.1. Clifford’s theorem. In this section, we assume the existence of a divisor
class δ of degree 2r and rank r for some 1 < r < g − 1, and conclude
that C is hyperelliptic. Let σ be the open set of rigid divisors constructed in
Propositions 2.5, 2.6. By construction, for each P ′ ∈ σ , there is a unique Q′ ∈ σ
such that P ′ +Q′ ' K. Let µ : σ → σ be the map which assigns Q′ to P ′. Fix a
pair P ∈ σ and Q = µ(P).

DEFINITION 3.1. For divisors D, E , denote

(D ∩ E)(v) = min(D(v), E(v))

and
(D ∪ E)(v) = max(D(v), E(v)).

For a divisor D, we define its P-part as DP
= D ∩ P , and its Q-part as DQ

=

D ∩Q.

LEMMA 3.2. If D ∈ δ is effective and deg(DP) = r , then D is supported on
P +Q. In particular, D = DP

+DQ.

Proof. By Riemann–Roch, the divisor K − D has rank g − 1 − r . Let E be an
effective divisor that contains P −DP and is equivalent to K −D. Then D + E
is canonical, and as such, equivalent to P +Q. Therefore, D + E −P ' Q. But
D + E − P is effective and Q is rigid, so D + E − P is exactly Q. By adding P
to both sides, D + E = P +Q.

By now, we know that there is a correspondence between the subsets of size
r of P and Q. Next, we show that the correspondence respects unions and
intersections.
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PROPOSITION 3.3. If D1, . . . ,Dk are effective representatives of δ such that
deg(DP

i ) = r for each i , then

deg(DP
1 ∩ · · · ∩DP

k ) = deg(DQ
1 ∩ · · · ∩DQ

k )

and
deg(DP

1 ∪ · · · ∪DP
k ) = deg(DQ

1 ∪ · · · ∪DQ
k ).

Proof. For each i = 1, . . . , k, let σi be the subset of σ consisting of divisors that
contain P−DP

i . Similarly, let τi be the subset of σ of divisors containing Q−DQ
i .

We claim that the image of µ|σi is contained in τi for each i . Indeed, let Pi ∈ σi ,
and let Ei = Pi − P +DP

i . By definition of σi , the divisor Pi contains P −DP
i ,

so Ei is effective (in fact, Ei can be thought of as a divisor obtained by perturbing
DP

i ). Since deg(Ei) = r , there is a representative D′i of δ which contains Ei . Now,
P +Q+D′i −Di is effective because Di is contained in P +Q, it is equivalent
to K and contains Pi , so by the definition of µ, it equals Pi + µ(Pi). From

P +Q+D′i −Di

= P −DP
i = Q−DQ

i +D′i = Pi + Ei +Q−DQ
i +D′i

= Pi + [(D′i − Ei)+ (Q−DQ
i )],

we see that µ(Pi) contains Q − DQ
i , and in particular, is in τi . We conclude

that the restriction of µ to σ1 ∩ · · · ∩ σk maps to τ1 ∩ · · · ∩ τk . The map µ is a
bijection, so there is a one to one correspondence between divisors in σ containing
P −DP

1 ∩ · · · ∩DP
k and divisors containing Q−DQ

1 ∩ · · · ∩DQ
k . In particular,

DP
1 ∩ · · · ∩DP

k and DQ
1 ∩ · · · ∩DQ

k must have the same degree.
By the inclusion–exclusion principle, the cardinality of a union can be

expressed as an alternating sum of the cardinalities of different intersection,
which proves the second part of the proposition.

We are finally in a position to prove our main theorem.

THEOREM 3.4. Let C be a metrized complex of genus g, and suppose that for
0 < r < g − 1 there is a divisor class δ of degree 2r and rank r. Then C is
hyperelliptic.

Proof. For each p in the support of P , let

Sp = {D ∈ δ | deg(DP) = r, p /∈ D}.

By Proposition 3.3,
⋃

D∈Sp
DQ contains all but a single point of Q, which we

denote πP(p). The assignment DP
→ DQ is a bijection between the subsets of
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size r of P and Q, so we can reverse the process and conclude that πP(p) 6=
πP(p′) whenever p 6= p′. In particular, any divisor D ∈ δ whose P-part has
degree r , contains πP(p) if and only if it contains p. We claim that all the divisors
p + πP(p) for p in the support of P are equivalent. Indeed, choose Dp and Dp′

such that p+πP(p) 6 Dp, p′+πP ′(p′) 6 Dp′ , and deg(DP
p ∩DP

p′ ) = r − 1. By
the discussion above, deg(Dp ∩Dp′) = 2r − 2, so

0 ' Dp −Dp′ = p + πP(p)− p′ − πP(p′),

and it follows that p′ + πP(p′) ' p + πP(p). To finish the proof, we need to be
extend this assignment to a rank determining set.

We first handle the case h > 2. Let p1, . . . , ph−1 be the graph points of P . Since
σ is open, we can assume, perhaps after perturbing the points, that all the graph
points of P are in the interior of different edges. Next, we find an additional
point p′1 in the interior of an edge so that p′1 + p1 + · · · + ph−1 is rigid: by
[13, Theorem 13], a divisor on a graph that is supported on the interior of edges is
rigid if and only if removing it does not disconnect the graph. In particular, every
such rigid divisor can be completed to a rigid divisor of degree h that is supported
on the interior of edges. Now, since σ is open, we can choose this p′1, possibly
after another perturbation of the points, so that both P and P − p1 + p′1 are in σ .
Denote P ′ = P− p1+ p′1. By construction, the assignments πP and πP ′ coincide
on P ∩ P ′. In particular, we have an equivalence p1 + πP(p1) ' p′1 + πP ′(p′1).
Finally, let p be any other graph point contained in a representative of p1+πP(p1).
By Lemma 2.7, P ∪ {p′1, p} is a rank determining set, so p1 + πP(p1) has rank 1.

Now, suppose that h = 0, 1. Then by the construction in Proposition 2.6, there
is a vertex v0 such that the restriction P0 of P to Cv0 is rigid and of degree gv0 − 1.
Find a point p0 so that P0 + p0 is rigid, and a graph point p that is contained
in a representative of p1 + πP(p1). Similarly to the higher genus case, P ∪ {p0,

p} is rank determining, and the divisor p1 + πP(p1) has representatives through
each of the points in its support. We conclude that it has rank 1, and the proof is
complete.

3.2. The structure of hyperelliptic metrized complexes. To complete our
discussion on metrized complexes, we show that being hyperelliptic imposes
strong conditions on their structure. The following characterization is familiar
to experts, but to the extent of our knowledge, does not appear in the literature.
For a visual illustration of the lemma, see Figure 1.

LEMMA 3.5. A metrized complex C is hyperelliptic if and only if it satisfies the
following properties:
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(1) The underlying graph Γ is either a tree or hyperelliptic with involution ιΓ (if
Γ is a tree then ιΓ is just the identity).

(2) If Cv has genus gv > 0, then ιΓ (v) = v. For every node p corresponding to
an edge e, the edge ιΓ (e) meets Cv at a node p′, and all such divisors p+ p′

are equivalent.

(3) If gv > 2, then Cv is hyperelliptic with involution ιv, satisfying ιv(p) = p′ for
every node p.

Proof. Suppose that C is hyperelliptic, and let x + x ′ be a divisor of degree 2 and
rank 1. When passing to the underlying graph, rank may only increase, so x + x ′

has rank at least 1 on Γ . By [9, Theorem 1.3], Γ is either a tree or a hyperelliptic
graph with involution ιΓ . Let v be a vertex of Γ . By Lemma 2.4, there is a divisor
equivalent to x + x ′ whose restriction to Cv has rank at least 1. When gv > 0,
it implies that this restriction has degree 2. In particular, v is a point of Γ with
ιΓ (v) = v. When gv > 1, we conclude that Cv is hyperelliptic with involution ιv.
Let p, p′ be a pair of nodes on Cv corresponding to edges e′ = ιΓ (e). Then for
every pair of points y, y′ on e, e′ at equal distance ε from v, x + x ′ ' y + y′. By
letting ε tend to zero, we see that x + x ′ ' p + p′.

Conversely, suppose that the conditions above are satisfied. Let x be a graph
point of Γ , and let x ′ = ιΓ (x). For any other point p of C, it can be verified, using
Dhar’s burning algorithm, that the p-reduced divisor equivalent to p has a chip at
p. In particular, the rank of x + x ′ is 1.

We define a map ι on C as follows. If p is a point of C that does not lie on a
rational component, then

ι(p) =


ιΓ (p) p is a graph point of Γ ,
q p is a point of Cv with gv = 1, and p + q

is equivalent to a pair of nodes on Cv,

ιv(p) p is a point of Cv with gv > 2.

If p is on a rational component Cv, and ιΓ (v) = v, then define ι(p) = p.
Otherwise, ι(p) is any point of Cι(v). As all the points on rational components
are linearly equivalent, it does not matter, for purposes of divisor theory, which
point we choose. For every p ∈ C, the rank of p + ι(p) is 1. Let g1

2 be the divisor
class of p + ι(p) for some p.

Reduced divisors. Recall that a divisor D on a metrized complex is said to be
v-reduced with respect to a point v of Γ if it is effective away from v, and its
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chips are as ‘lexicographically close’ as possible to v (see [1, Section 3.1] for a
precise definition). For any v, reduced divisors exist and are quasiunique, which
means that their graph part is unique, and the restrictions to the components are
unique up to linear equivalence [1, Theorem 3.7]. We extend the definition to
nongraphical points of a metrized complex. A divisor D is p-reduced for a point
p on a component Cv, if it is v-reduced, and its restriction to Cv has the highest
degree at p among the divisors that are effective away from p. Reduced divisors
are quasiunique, and their restriction to Cv is unique.

In [15], it was shown that every divisor of degree d and rank r (for 0 6 r 6
d 6 g) on a hyperelliptic metric graphs contains r copies of the unique divisor of
degree 2 and rank 1. A similar argument holds for metrized complexes.

THEOREM 3.6. Let C be a hyperelliptic metrized complex. Then every divisor
class δ of degree d and rank r with 0 6 r 6 d 6 g is equivalent to r ·g1

2+ p2r+1+

· · · + pd .

Proof. Let p be a point of C with ι(p) = p. Let D be the p-reduced representative
of δ. It suffices to show that D(p) > 2r . First, assume that r = 1. In this case,
D(p) > 1. Assume for the sake of contradiction that it equals 1. Since d 6 g, it
is follows from [1, Lemma 3.11] that there is a point q 6= p of C such that D + q
is still p-reduced. Let D′ be the p-reduced representative of δ+ p− ι(q), and set
D′′ = D+q− p. Then D′′ ' D′, and both are p-reduced, because p-reducedness
does not change when adding or subtracting chips at p. By quasiuniqueness, both
divisors have the same number of chips at p. But D′′(p) = 0 and D′(p) is at least
1, so we arrive at a contradiction.

For r > 1, let s be the largest integer so that D = 2s · p+ q1+ · · · + qk (where
one of the points qi might coincide with p). We need to show that s > r . Again,
by [1, Lemma 3.11], there are points qk+1, . . . , qk+s different from p, such that
D+qk+1+· · ·+qk+s is p-reduced. Since 2p is equivalent to q+ ι(q) for every q ,
we have D ' q1+· · ·+ qk + qk+1+ ι(qk+1)+· · ·+ qk+s + ι(qk+s). Therefore, the
p-reduced representative of D− ι(qk+1)−· · ·− ι(qk+s) is exactly q1+· · ·+qk . Its
degree at p is at most 1, so by the first part, its rank is 0. This divisor was obtained
from D by removing s chips, so the rank of D is at most s.
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Appendix A. Martens’ theorem (joint with David Jensen)

In this section, we discuss possibilities for a tropical version of Martens’
theorem, which refines the characterization of hyperelliptic curves provided
by Clifford. It is one of several structure theorems for classifying special
curves according to their Brill–Noether loci. A further refinement is given
by Mumford [4, Theorem 5.2], and on the other extreme, the Brill–Noether
theorem determines the dimension of the Brill–Noether locus of general curves
[12, 16, 17]. Let us first recall the classical statement of Martens’ theorem.

THEOREM [4, Theorem 5.1]. Let C be a smooth curve of genus g, and let d and r
be integers satisfying 0 < 2r 6 d < g. Then dim(W r

d (C)) 6 d− 2r , and equality
holds precisely when C is hyperelliptic.

Note that the special case where d = 2r is Clifford’s theorem. As a first attempt,
we examine a naive tropical analog of the theorem. As we see, the first part of the
statement holds, but the second, unfortunately, does not.

Recall that the Jacobian of a metric graph Γ has the structure of a real
torus Rg/Zg, where addition in the torus corresponds to addition of divisors
[6, Theorem 3.4]. After fixing a base point p0, the set of divisor classes of
any degree d can be identified with the Jacobian, by sending a divisor D to
D − d · p0. For instance, the set W1(Γ ) is the image of the Abel–Jacobi map
which sends every point x of Γ to x − p0 in the Jacobian. Addition of divisors is
still respected under this identification. Consequently, the set Wd(Γ ) of effective
divisor classes of degree d can be identified with the Minkowski sum of d copies
of W1(Γ ). Moreover, since any divisor of degree g is effective by Riemann–Roch,
the Minkowski sum of g copies of W1(Γ ) is the entire Jacobian. In particular,
W1(Γ ) is nondegenerate, namely, it is not contained in any hyperplane quotient
in Rg/Zg.

THEOREM A.1. Let Γ be a metric graph of genus g, and let d and r be integers
satisfying 0 < 2r 6 d < g. The dimension of W r

d (Γ ) is at most d − 2r , and
equality holds for hyperelliptic graphs. However, the dimension of W r

d (Γ ) may be
d − 2r for nonhyperelliptic curves.
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Proof. We prove the first part by induction on r . Let r = 1. We need to show that
dim(W 1

d (Γ )) < d − 1. The Brill–Noether locus in this case coincides with the set
of divisor classes with an effective representative through every point of Γ . That
is,

W 1
d (Γ ) =

⋂
p∈Γ

([p] +Wd−1(Γ )).

Here, [p] + Wd−1(Γ ) is the translation in the Jacobian of Wd−1(Γ ) by the point
representing the divisor class [p]. Since [p] varies over all the points of the
nondegenerate complex W1(Γ ), and the dimension of Wd−1(Γ ) is smaller than
g, Lemma A.2 below implies that the dimension of W 1

d (Γ ) is at most d − 2, as
claimed. Next, assume that the statement holds for r − 1. We have

W r
d (Γ ) =

⋂
p∈Γ

[p] +W r−1
d−1(Γ ).

By induction, all the cells of W r−1
d−1(Γ ) are of dimension at most d − 2r + 1, so

Lemma A.2 implies that the intersection has dimension at most d − 2r .
Now, suppose that Γ is hyperelliptic, and let δ be an element of W r

d (Γ ). By
Proposition 3.6, δ has a representative of the form w1 + · · · + wd−2r + 2r · v0,
where v0 is a point of Γ which is invariant under the hyperelliptic involution.
Since 2r · v0 has rank r , any perturbation of the points w1, . . . , wd−2r results in a
divisor of rank at least r . It follows that δ has a neighborhood of dimension d−2r
in W r

d (Γ ).
To show that the converse is false, let Γ be the graph from [19, Theorem 1.2].

It is straightforward to check that Γ is not hyperelliptic. However, the dimension
of W 1

3 (Γ ) is 1 = 3− 2 · 1.

LEMMA A.2. Let Σ be a polyhedral complex of dimension d < g in Rg/Zg, and
let Γ be a nondegenerate 1-dimensional complex. Then for every cell σ of Σ ,
there exists p in Γ such that the intersection of p + Σ and σ has dimension
strictly smaller than d.

Proof. Let σ be a d-dimensional cellΣ . Since Γ is nondegenerate, it has an edge
e which is not contained in any translation of the affine subspace spanned by σ .
Let σ ′ be another maximal cell of Σ . Then there is at most a single point q in e
such that σ ′ + q and σ intersect at dimension d . By varying over all possible σ ′,
we see that there is a point p in e such that every cell in Γ + p intersects σ at
positive codimension.

The theorem above is not the first example in which the dimension of the Brill–
Noether locus exhibits unpleasing behavior. For instance, it does not vary upper
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semicontinuously on the moduli space of tropical curves [19, Theorem 1.2]. These
phenomena suggest that a different quantity should act as the tropical analog
for the dimension of the Brill–Noether locus. Such an invariant was introduced
in [19].

DEFINITION A.3. Let X be either an algebraic curve, a metrized complex or a
metric graph. Its Brill–Noether rank, denoted wr

d(X) is the largest number ρ such
that every effective divisor of degree r + ρ is contained in a divisor of degree d
and rank r .

For an algebraic curve, the Brill–Noether rank coincides with the dimension
of the largest component of its Brill–Noether locus. Consequently, it satisfies
a specialization lemma: if Γ is the skeleton of an algebraic curve C , and C
is the corresponding metrized complex, then dim(W r

d (C)) 6 wr
d(C) 6 wr

d(Γ ).
Furthermore, it varies upper semicontinuously on the moduli space of tropical
curves ([18, Theorems 5.1, 5.3] and [19, Theorems 1.6, 1.7]). As we show here,
it also satisfies the first part of Martens’ theorem.

PROPOSITION A.4. Let C be a metrized complex of genus g, and let r, d be as in
the conditions of Martens’ theorem. Then

wr
d(C) 6 d − 2r.

Moreover, for hyperelliptic complexes, wr
d(C) = d − 2r .

Proof. Suppose for contradiction that wr
d > d − 2r . Then every divisor of degree

d − r + 1 is contained in a divisor of degree d and rank r . But this is clearly false:
choose a divisor of degree d − r + 1 and rank 0. By adding r − 1 chips to any
divisor, the rank may increase by at most r − 1.

For the second part, assume that C is hyperelliptic, and let E be an effective
divisor of degree d− r . We need to show that it is contained in a divisor of degree
d and rank at least r . Since d > 2r , the degree of E is at least r . Let p1, . . . ,

pr be points in the support of E , and let ι be the hyperelliptic involution. Then
E + ι(p1)+ · · · + ι(pr ) has rank at least r .

Given the facts above, we speculate that Martens’ theorem holds in tropical
geometry.

Conjecture. Let C be a metric graph of genus g, and let d, r be such that
0 < 2r 6 d < g. Then wr

d(C) 6 d − 2r , and equality holds precisely exactly
when C is hyperelliptic.

Very little is known about the conjecture, even in the metric graph case.

https://doi.org/10.1017/fms.2017.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.13


Hyperelliptic graphs and metrized complexes 15

References

[1] O. Amini and M. Baker, ‘Linear series on metrized complexes of algebraic curves’, Math.
Ann. 362(1–2) (2015), 55–106.
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