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Abstract. We study a class of rings which are closely related to principal ideal domains,
and prove in particular that finitely-generated projective modules over such rings are free.
Examples include the ring of Lipschitz quaternions; Z\S\ with d— — 3 or d= —7; and any
subring R of Mi(Z) such that R 3 MiipZ) for some prime number/? and R/MjipZ) is a field
with p2 elements.

1. Introduction. Recent work on the recognition of matrix rings has renewed interest in
the ring R of Lipschitz quaternions, i.e. R = Z[i,J] with i2 =j2 = - 1 and ij+ji = 0 (see for
instance [2], [3], [7]). Not every one-sided ideal of R is principal. But R is closely related to
the ring 5 of Hurwitz quaternions, and every one-sided ideal of S is principal. In some sense
R seems to be nearly as good a ring as S, and in particular every right ideal of R is either
principal or is a right ideal of S. This makes it almost trivial to prove that finitely-generated
projective /^-modules are free; (see Theorem 5.2 of [3] for an almost trivial proof). The work
in this paper arose from an attempt to isolate the special features of the relationship between
R and S which make it possible to prove results about R which are nearly as good as those
for S. Let M be the largest two-sided ideal of 5 which is contained in R. Then S/M is the
field with four elements, and R/M is the field with two elements. It turns out that what
happens in R is controlled by the very small number of 7?-submodules of 5 which contain M.
In this example every right (left) .K-submodule of S which contains M is either principal or is
a right (left) ideal of S. We have used this property of these particular rings as the basis for a
definition of rings which we regard as being nearly principal ideal domains.

The precise definition which we shall use is given in 3.1, and further examples which
satisfy it in Section 5. The property which we are studying, like that of being a principal ideal
domain, is very special and so it is not surprising that we can prove strong results from it.
For instance, if R is any ring which satisfies definition 3.1, then finitely-generated projective
/^-modules are free (Theorem 4.1) and, with one exception, every maximal right ideal of R is
principal (Proposition 3.17). Examples of such rings include the ring R of Lipschitz qua-
ternions; R = Zu/H where either d — — 3 or d = —7; any subring R of Mi{Z) such that
R 2 MiipZ) for some prime number p and R/MiipZ) is a field with p2 elements; and
R = E + XS where E c F is any quadratic extension of fields and 5 is the ring of poly-
nomials in X over F twisted by an automorphism of F.

2. Preliminaries. All rings considered here are associative with an identity element, and
all modules are unital. We refer to [1] for general background material on ring theory. An
element x of a ring R is said to be normal if xR = Rx, and x is said to be regular if x is not a
zero-divisor.

Let R be a semi-prime ring and let A be a two-sided ideal of R. It is easy to show that the
following conditions are equivalent:
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A has non-zero intersection with every non-zero right ideal of R;
A has non-zero intersection with every non-zero left ideal of R;
A has non-zero intersection with every non-zero two-sided ideal of R;
The left annihilator of A is zero; the right annihilator of A is zero.

When A satisfies these conditions we shall say that A is an essential ideal of R.
We shall use MR (resp. RM) to indicate that M is being considered as a right (resp. left)

^-module. The ring of rational integers and the field of rational numbers will be denoted by
Z and Q respectively, and Mn{R) will denote the ring of all n by n matrices over a ring R.

3. Ideal-theory. We shall now give the precise definition of the type of ring R which we
shall regard as being nearly a principal ideal domain.

DEFINITION 3.1. A ring R is said to be a near-P.I.D. if

(i) R is an indecomposable ring;
(ii) there is a semi-prime ring S such that every one-sided ideal of S is principal and also

S contains R as a proper subring;
(iii) S is finitely-generated as a right /^-module and as a left 7?-module;
(iv) the largest ideal M of S with M c R is essential as an ideal of S;
(v) any right (left) i?-submodule of S containing M is either a right (left) ideal of S or is

cyclic as an /^-module. It should be noted that R need not be an integral domain.

From now on, unless stated to the contrary, we shall assume tacitly that R, S, M are as
in 3.1. We shall also use Q(S) to denote the semi-simple Artinian quotient ring of S. Usually
only right-handed results will be stated and proved about such rings R, but of course the
corresponding left-handed results will also be true.

It is known that a ring 5 as in 3.1 is a finite direct sum of matrix rings over integral
domains, but it will follow from Theorem 3.12 that in this particular setting S can only be of
one of the three following types: S is an integral domain; or S is the direct sum of two inte-
gral domains; or S — Mi{T) for some integral domain T (and all three types can occur). In
Theorem 3.20 we shall re-formulate Definition 3.1 in a way which will make it easier to check
whether particular examples satisfy the definition, and so we will leave a detailed considera-
tion of examples till Section 5.

We shall now prove a sequence of results about the one-sided and two-sided ideals of R, and,
not surprisingly, these are strongly linked to corresponding information about the ring S.

LEMMA 3.2. R is essential as a right R-submodule of S.

Proof. Let / be a right i?-submodule of S with / D R = 0. Then IM c / because / is a
right i?-module, and IM c M because M is an ideal of S. Hence IMc.IDMc.lDR so that
IM = 0. But M is an essential ideal of S. Therefore 7 = 0.

COROLLARY 3.3. R is a semi-prime Goldie ring with the same quotient ring as S.

Proof. Let c be a regular element of R. It follows from 3.2 that c is also regular as an
element of S and hence is a unit of Q(S). Also M contains a regular element w of S, so that if
d is any regular element of S then dw is a regular element of R. It follows easily that if
q e Q{S) then qc € R for some regular element c of R.
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LEMMA 3.4. S/M is Noetherian as a right R-module.

Proof. Because S is finitely-generated as a right 7?-module, so also is every right ideal of
S. It now follows immediately from 3.1 that every right i?-submodule of S which contains M
is finitely-generated.

THEOREM 3.5. R is right Noetherian.

Proof. Let / be a right ideal of R. Then IS is a principal right ideal of 5 so that IS/IM is
a cyclic right S/M-module. But (S/M)R is Noetherian, by 3.4. Hence (IS/IM)R is Noether-
ian. Therefore {I/IM)R is finitely-generated. But SR is finitely-generated and IM is a right
ideal of S, so that {IM)R is finitely-generated. Therefore IR is finitely-generated.

PROPOSITION 3.6. Let L be an essential right ideal of R. Then either L is a principal right
ideal of R or L is a right ideal of S.

Proof. It follows from 3.2 that LS is an essential right ideal of S. Hence LS = xS for
some regular element x of S. Note that x has an inverse x~x in Q(S). Set K= x~xL. Then A"is
a right tf-submodule of S. Also KDKM = KSM = x~xLSM = SM = M. Therefore, by 3.1,
we have either K = yS or K = yR for some y e S. Hence either L — xyS or L — xyR.

PROPOSITION 3.7. R has Krull dimension 1.

Proof. Let E be an essential right ideal of R. We must show that {R/E)R is Artinian. Let
L be a right ideal of R which contains E. Then either L i s a right ideal of S or L is a principal
right ideal of R by 3.6. If L is a right ideal of S then L 2 ES, and it is well-known that
(S/ES)S is Artinian. Therefore it is enough to show that R satisfies the descending chain
condition for right ideals L such that L 2 E and L = cR for some regular element c of R. But
E contains a regular element d of R, so that there is a one-to-one inclusion-reversing corre-
spondence between such right ideals L and some of the cyclic left /?-submodules of Rd~]

which contain R. But R(Rd~]) is Noetherian, by 3.5. Therefore R satisfies the decending
chain condition for principal right ideals which contain E.

PROPOSITION 3.8. Let I be an essential two-sided ideal of R. Then either I is a two-sided
ideal of S or I — xRfor some regular normal element x of R.

Proof. Suppose that / is a left ideal of S but not a right ideal of 5; we shall obtain a
contradiction and then the result will follow easily from 3.6. We could give a proof using the
fact that S is a maximal order, but for the reader's convenience we will give a self-contained
direct proof. By 3.6 we have I = cR for some regular element c of R. Also IS is an essential
two-sided ideal of S by 3.2, so that IS = aS for some regular normal element a of S. We have
SI= /, i.e. ScR = cR, so that S c cRc~]. Also cRc~xa c cRc~xaS = cRc~lIS = cRc~lcRS =
cS = IS = Sa. Thus cRc~xa c Sa so that cRc~x c S. Therefore cRc~x = S. Hence R ^ S, so
that every one-sided ideal of R is principal. In particular M — dR for some regular element d
of R. Hence dR = M = MS = dRS = dS, which is a contradiction because R^ S.

COROLLARY 3.9. Let Abe a one-sided ideal ofS such that Ac. R. Then ACM.

Proof. Let W be the sum of all the left ideals of S which are contained in R. Clearly W is
a two-sided ideal of R and M CW. Hence W is an essential ideal of R and is a left ideal of 5.
Therefore Wis a two-sided ideal of S by 3.8, so that We M.
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LEMMA 3.10. Let K be a right R-submodule of S which contains M and suppose that K is
not a right ideal of S. Then K — uRfor some unit u of S.

Proof. By 3.1 we have K= xR for some x e S. Because K 3 M it follows easily that x is
a regular element of S. Thus yx = 1 for some y e Q(S). But yM c yxR — R, and yM is a
right S-module. Therefore by 3.9 we have yM c M. Because M = Sa for some regular ele-
ment a of S, it follows that yS c S, i.e. y e S. Therefore x is a unit of S.

THEOREM 3.11. R/M is a division ring.

Proof. Let K be a right ideal of R with M£ AT. Then A: is not a right ideal of S, by 3.9.
Hence by 3.10 we have K— uR for some unit u of S. It follows that every non-zero right ideal
of R/M has zero left annihilator in S/M and in particular that R/M is an integral domain.
But R/M is Artinian, by 3.7. Therefore R/M is a division ring.

THEOREM 3.12. Set D = R/M. Then S/M is 2-dimensional as a right D-space.

Proof. Let ' denote image in 5" = S/M, and let "dim" denote dimension as a right D-
space. Because « j t S we have D ^ 5", i.e. dim(5") > 2. Let w e S' with vv £ Z). Set
W — D + wD. Then dim(PF) = 2 and PK is not cyclic as a right Z)-module. Hence the inverse
image K of W in 5 is not a cyclic right ^-module. It follows from 3.1 that K is a right ideal of
S, i.e. Wisa right ideal of 5'. But 1 € W. Therefore W = S'.

COROLLARY 3.13. S is an integral domain, or the direct sum of two integral domains, or a
full 2 by 2 matrix ring over an integral domain.

Proof. Because S is a semi-prime ring in which every one-sided ideal is principal, there
are orthogonal central idempotent elements e\,... ,en of S such that 1 = e\ -\ he,, and
each e,5 is a matrix ring over an integral domain ([5]). Because M c R and R is inde-
composable, there is no value of / such that e,- e M. Therefore for each i we have e-{M ^ e,S.
Hence S/M = e\S/e\M@ • • • © enS/enM where each e,-5/e,M is a matrix ring over a non-
zero ring. But it follows from 3.12 that S/M has length at most 2 as a module over itself.
Hence n < 2. If n = 2 then S/M ^ e\S/etM ®e2S/e2M, and it follows from 3.12 that each of
e\S/e\M and e^S/e^M is a division ring; hence S is the direct sum of two integral domains. If
n = 1 then S/M is a full matrix ring which has size at most 2 by 2, so that either S is an
integral domain or 5 is all 2 by 2 matrices over an integral domain.

PROPOSITION 3.14. Let P be a maximal ideal of R with P ^ M. Then P = xRfor some
regular normal element x of R, and R/P is simple Artinian.

Proof. We shall show that P is an essential ideal of/?; the result will then follow from 3.7
and 3.8. Set A = {r e R : rP = 0}. Then A is an ideal of R, and because R is semi-prime we
have A n P — 0. Also R is indecomposable so that we cannot have R = A + P. Therefore
Ac. P and hence A = 0. Therefore P is an essential ideal of R.

PROPOSITION 3.15. n,~ XM" - 0.

Proof. Let e be an indecomposable central idempotent element of S. Then, as in the
proof of 3.13, we have eM ^ eS. But eS is a prime ring in which every one-sided ideal is
principal, so that f\{eM)"= 0. The result now follows easily from the fact that the identity
element of S is a sum of such elements e.
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COROLLARY 3.16. R has no non-trivial idempotents.

Proof. This follows quickly from 3.15 and 3.11.

PROPOSITION 3.17. Let I be a right ideal of R which is not contained in M. Then I = xRfor
some regular element x of R.

Proof. There is a right ideal B of R such that / n B = 0 and / + B is an essential right
ideal of R. Also 1+ B is not contained in M, so that / + B is not a right ideal of S (3.9).
Hence by 3.6 we have 1+ B = xR for some x e R, and x is regular because / + B is essential.
Thus xR = R as right 7?-modules, and RR is indecomposable by 3.16. Therefore (xR)R is
indecomposable with xR = I® B. But / ^ 0. Therefore 5 = 0 and / = xR.

PROPOSITION 3.18. Let x e R. Then either x is regular or xR — xS.

Proof. Set A = [s e S : xs — 0}. Because xS is a projective right ideal of S we have
A = eS for some idempotent element e. Suppose firstly that e e R. By 3.16 we have either
e = 0 so that x is regular, or e = 1 so that x = 0 and trivially xR = xS. Now suppose that
e & R. It follows from 3.12 that R is a maximal submodule of SR. Therefore S — R + A and
xS = xR + xA = xR.

COROLLARY 3.19. Let I be a non-essential right ideal of R. Then I is a right ideal of S.

Proof. This follows immediately from 3.18 and the fact that the elements of / are not
regular elements of R.

The next result will make it easier to test whether particular rings satisfy Definition 3.1.
In view of Corollary 3.13 we may, without loss of generality, impose the condition that the
uniform dimension of S is at most 2.

THEOREM 3.20. Let S be a semi-prime ring of uniform dimension at most 2 in which every
one-sided ideal is principal, and let R be an indecomposable subring of S with R^ S. Suppose
that SH and Rs are finitely-generated, and that R contains an essential ideal of S. Let M be the
largest ideal ofS with M c R. Then the following two conditions are equivalent.

1. R satisfies Definition 3.1 with respect to S and M, i.e. every right (resp. left) R-
submodule of S which contains M is either a right (resp. left) ideal of S or is cyclic as an
R-module.

2. R/M is a division ring, S/M is 2-dimensional as a right and as a left R/M-space, and for
every unit u of S/M there is a unit d of R/M such that ud is the image in S/M of a unit of S.

Proof Let ' denote image in S' = S/M and set D = R' = R/M. Suppose that (1) is true.
Then D is a division ring and S' is 2-dimensional over D (3.11 and 3.12). Let u be a unit of S'.
Then uD / uS so that uD is not a right ideal of 5". Let K be the inverse image of uD in S.
Then K is not a right ideal of S, so that K=vR for some unit v of SS (3.10). Therefore
v' = ud for some non-zero element d of D, and (2) has been proved.

Conversely suppose that (2) is true. The part of Condition (2) which concerns units does
not immediately appear to be right-left symmetric, but in fact it is because of the fact that
(ud)~' = d~' u~'. Let Â  be a right /?-submodule of S which contains M. Suppose that K is not
a right ideal of S; we must show that KR is cyclic. We have S^K^M, so that K! is a proper
right Z)-subspace of the 2-dimensional space S'. Hence K = uD for some u € S'. Also
uD ^ uS' because K ^ KS. Because S'D is 2-dimensional we must have uS' — S', i.e. u is a unit
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of 5". Hence ud—v1 for some units d and v of D and S respectively. Therefore
K = uD = udD = v'D, i.e. K = vR + M = vR + vM = vR.

4. Module-theory. We shall now prove some module-theoretic results for the rings R
which satisfy Definition 3.1. In particular we shall show that finitely-generated projective R-
modules are free (this need not be true of the corresponding ring S, for instance if S is the
direct sum of two integral domains, but every finitely-generated projective S-module is a
direct sum of cyclic projective S-modules). We suspect that there is a good structure theorem
for finitely-generated torsion-free /^-modules, but at present we do not know what it is. It
will also be shown that R has injective dimension 1 and infinite global dimension. As in
Section 3 we shall assume that R, S, M are as in 3.1

THEOREM 4.1. Finitely-generated projective R-modules are free.

Proof. Let P be a non-zero indecomposable projective right /^-module; it is enough to
show that P 5* R. Set P* = Hoi t i s^ , R). Then P*P \s a. non-zero idempotent ideal of R.
Because fWn = 0 (3.15), we know that P*P is not contained in M. Thus we can fix/e P*
such that f[P) is not contained in M. By 3.17 we ha\ef{P) = xR for some regular element x
of R. In particular xR = R and/splits to give P = R.

COROLLARY 4.2. SR is not projective.

Proof. Suppose that SR is projective. Then MR is projective. Hence by 4.1. we have
M = xR for some regular element x of R. Thus xR = M — MS = xS so that R = S, which is
a contradiction.

THEOREM 4.3. SR has infinite projective dimension.

Proof. By 3.12 there is an element a of S such that the images of 1 and a in S/M form a
basis for S/M as a right R/M-spacc. In particular R + aR = S. Also if r e R with ar e R
then r e M. Thus Rf~\aR = aM. Because M contains a regular element of S, it follows by a
result of Robson that so also does the coset a + M (see for instance Corollary 1.20 of [1]).
Therefore without loss of generality we can suppose that a is a regular element of S. Thus,
working with right .R-modules, we have aR^R and RDaR = aM^ M^ S. The usual
short exact sequence 0 -> (R 0 aR) ->• (R 6 aR) -> (R + aR) -> 0 induces an exact sequence
0 -» S ->• (R © R) ->• S -» 0. But by 4.2 we know that SR is not projective. It follows that SR

has infinite projective dimension.

THEOREM 4.4. R has injective dimension 1.

Proof. Recall from 3.3 that R and S have the same quotient ring Q(S). Set E = Q(S)/R.
We must show that ER is injective. By Baer's Criterion we can suppose that / : /£-> E is a
right .R-module homomorphism where K is an essential right ideal of R, and we must show
that /extends to an i?-module homomorphism g : R -> E. This is trivial if K= xR for some
regular element x of R.

Therefore by 3.6 we need only consider the following situation: K is an essential right
ideal of R with K = xS for some regular element x of S;f: K^ E is a right /^-module
homomorphism; we must extend/to a homomorphism g : R-* E. For the remainder of the
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proof we fix aeS with a g R. By 3.12 we have S = R + aR = R + Ra. In particular
K = xS = xR + xaR, so that / is determined by the values of J{x) and j{xa). We have
J{x) = w + R and J{xa) = z + R for some w, z e Q(S). Let m e M. Then am 6 R so that
warn + R = j{x)am — j{xam) = j{xa)m = zm + R. It follows that (wa-z)MC.R. Set
M* -{qe Q(S) : qM c ./?}. Then wa-ze M*. Also ATM is a right ideal of S which is
contained in R, so that M*M c M by 3.9. But M = S j for some regular element j> of 5.
Therefore M* <z S. Hence wa — z e S, i.e. z = wa + s for some 5 € S. We have s = u + va for
some u, v e R. Define g : R -*• E by g(r) = (w + v)x~'r + 7? for all r e f i . It is routine to
check that g(x) —j{x) and g{xa) =j{xa), so that g is the desired extension of/.

REMARK 4.5. Let T be a torsion-free right /^-module. An easy modification of the proof
of 3.18 shows that if t <= T then either tR — tS or tR 3* R as right /^-modules. We conjecture
that if TR is finitely-generated then T is the direct sum of a free right 7?-module and a right S-
module.

5. Examples. We shall now give some detailed examples of rings which are near P.I.D.'s
according to Definition 3.1, and we shall show that all three types of S listed in 3.13 can
occur. As might be expected by analogy with the theory of P.I.D.'s, some constructions
always give rings of the right sort, while others do so only when some parameter is small.

EXAMPLE 5.1. Let Fbe the rational division algebra of standard quaternions. Thus the
elements of F are uniquely of the form a + hi + cj + dk with a, b,c,d € Q, where f = f = — 1
and ij = k = -ji. Set 5 = {(a + bi + cj + dk)/2 : a, b, c, d are integers which are either all even
or all odd}; M = (1 + i)S; and R = Z[i,j] = {a + bi + cj + dk : a,b,c,d e Z } . Then R and S
are respectively the rings of Lipshitz and Hurwitz quaternions. It is well-known that S is an
order in F and that every one-sided ideal of S is principal. Also M is an ideal of S with
M Q R, and S/M and R/M are fields with four and two elements, respectively. Set
j{X) = X2 + X + 1. Thenj{X) is irreducible over R/M. Set u = (1 + i + J + k)/2 and let v be
the image of u in S/M. Then «2 = u — 1, so that w is a unit of 5 and/(v) = 0. Therefore v is
algebraic of degree 2 over R/M. Hence the non-zero elements of S/M are 1, v, v2 and clearly these
are the images of units of S. Thus Condition (2) of 3.20 is satisfied, and so R is a near-P.I.D.

We conjecture that no further examples of rings R satisfying Definition 3.1 can be found
by allowing i2 a n d / to be arbitrary negative integers in 5.1.

EXAMPLE 5.2. Let F, M, S, R be as in 5.1 except that this time we take i2 = — 1 a n d / = p
where p is a prime number with p = 3 mod(4). Then S is a maximal Z-order in F (see for
instance Section 105 of [4]}, and it follows from a theorem of Latimer [6] that every one-
sided ideal of S is principal. In order to find instances in which R is a near-P.I.D., it is
enough, as in 5.1, to fine an element u of S such that u2 — au ± 1 for some odd integer a. If
p = 3 we can take « = (1 + 3/ +j + K)/2; if p = 7 we can take u = (3+ 3i+j +k)/2; if
p= 11 we can take w = (l +5i+j + k)/2; if p = 19 we can take u = (3 + 5i+j + k)/2; and
we suspect that this can be done for any such p.

EXAMPLE 5.3. Let E c F be any quadratic extension of fields, and let X be an inde-
terminate. Set 5 = F[X], M = XS, and R = E + M. It is clear that the units of S/M are the
images of the units of S (namely the non-zero elements of F). Therefore 7? is a near-P.I.D.
The same is true if the multiplication of S is twisted by an automorphism of F.
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EXAMPLE 5.4. Let p be a prime number. Set F = Z/pZ, S = Z®Z, and M = pS. We
shall identify S/pS with F® F. Let D be the diagonal copy of F in F® F, and let R be the
subring of S such that Ro pS and .K//?5 = 5 . Then R is a near-P.I.D. if and only if the units
of S/M lift to units of S, i.e. if and only if p = 2 or p = 3. Let Rp and 5P denote respectively
the rings formed from R and S by inverting the elements of Z which are not divisible by p.
Then Sp is semi-local with Jacobson radical pSp, and for every prime number p we see that
Rp is a near-P.I.D.

EXAMPLE 5.5. Let p be a prime number. Set 5 = M2(Z) and M = pS. Let /? be any
subring of 5 such that ROM and /?/M is a field with />2 elements. We shall show that R is a
near-P.I.D. We shall identify S/M with M2(F) where F= Z/pZ. We note that the field with
p2 elements can be embedded in M2(F), so that R does exist. We shall identify F with the
centre of M2(F). Set D = R/M.

Let M be a unit of S/M = M2(F). In order to apply Theorem 3.20 we must show that
there is a non-zero element d of D and a unit v of 5 such that ud is the image of v in S/M. We
need to consider three cases.

CASE (1). det(w) —f2 for s o m e / e F. Let d be the 2 by 2 scalar matrix with/"1 in the
diagonal positions. Then d € Fand hence d e D. We have det(ud) = 1, so that ud is a product
of transvections in M2(F) which lift to transvections in 5.

CASE (2). det(w) = —f2 for s o m e / e F. Let a be a unit of 5 with det(a) = — 1, and let b be
the image of a in M2(F). Then det(bu) =f2. Thus we can apply Case (1) to bu, and it follows
that M lifts to a unit of S.

CASE (3). Suppose that neither of the previous cases applies. Set a — det(«). Then neither
a nor — a is a square in F. It follows that we must have p = lmod(4). Working in M2{F) set

Then t2 = a, so that F(t) is a subfield of M2{F) with p2 elements. But D is also a subfield
of M2(F) with p2 elements. Therefore D = w~xF{i)w for some unit w of M2(F). Set
d = iir-'nv. Then d e D and det(d) = det(0 = -a. Hence det(wd~') = - 1 . But - 1 is a square
in F because p = lmod(4). Therefore we can apply Case (1) to ud~\

EXAMPLE 5.6. Let d be a negative square-free integer with d= lmod(4), and set
R = Z\d\ We shall show that R is a near-P.I.D. if and only if d = - 3 or d = - 7 . Let S be
the ring of integers of Q(di), i.e. S = {(a + b.dh)/2 : a, b e Z with a + b even}, and set
M = 25. Then M is an ideal of R. Also S/M has four elements, and R/M =* Z/2Z. Clearly
M is not a principal ideal of R. It follows from 3.14 that, if R is a near-P.I.D., then the M
considered here is the only possibility for M in 3.1 and similarly for S. We shall not need to
know all the values of d for which 5 is a P.I.D., but we remind the reader that these are the
numbers —3, - 7 , —11, —19, —43, —67, —163 (recall that we are assuming that dis negative
square-free with d= lmod(4)). We divide the argument into two cases.

CASE (1). d= 5mod(8). Let s e S. Then s=(a + b.d*\/2 for some a,beZ with a + b
even. The norm N(s) of s is given by N(s) = (a2 - db2)/A. Then N(s) e Z, and the condition
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that d = 5mod(8) implies that if N{s) e 2Z then s e 25. Because 4 divides the norm of any
element of 25, it now follows quite easily that 25 is a maximal ideal of 5. Therefore S/M is
the field with 4 elements. On the other hand the only units of 5 are 1 and -1 unless d = —3.
It follows from 3.20 that if d^ — 3 then R does not satisfy Definition 3.1. Now suppose that
d = —3. Set w = (\ + dn/2. Then w2 = w — 1. As in 5.1 it follows that the images of 1, w, w2

in S/M are the units of S/M, so that R is a near-P.I.D. by 3.20.

CASE (2). d= lmod(8). Set x = (\ +dl\/2. Then N(x) is even. Set P = 2S + xS and
P* = 25 + x*S, where x* is the complex conjugate of x. It is routine to check that PP* = 25
and that P^S^P*. Also P^P*. Hence 5/25 =* Z/2Z 8 Z/2Z, and it is trivial that the
units of 5/25 lift to units of 5. Thus we must determine when 5 is a P.I.D. This is well-
known to be so if d = —7 (in fact in this case 5 is a Euclidean domain). Now suppose that 5
is a P.I.D. Then P = uS for some u e 5. Because S/P =* Z/2Z we have N(u) = 2. But
w = (a + b.d^)/2 as above. Therefore a1 — db1 = 8, and for the sort of d which we are con-
sidering this forces d = —1.

Now suppose that d is a positive square-free integer with d= lmod(4), and set
R = Z[S]. For certain values of d, such as d = 5 and d — 13, it is possible to show that R is a
near-P.I.D., but there seems to be no hope of getting a complete list in this case.
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