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The peculiar migration and rotational dynamics of non-spherical particles in
non-Newtonian flows stem from the interplay between fluid rheology and fluid inertial
effects. In this paper, the cross-flow migration of a neutrally buoyant oblate spheroid
(aspect ratio AR = 0.5) immersed in the elasto-inertial duct flow is investigated by
particle-resolved simulations with the immersed boundary method. Different from
spherical particles, due to the orientation-dependent lift force, the oblate spheroid migrates
in an oscillating manner in the duct. The travelling period for particles reaching the duct
centreline undergoes a non-monotonic change with elastic number, revealing the existence
of a critical elastic number governing the migrating efficiency of oblate particles within the
present flow system. For the particle rotation and orientation, the present results indicate
that the particle rotation rate and orbit drifting rate are both hindered by the fluid elasticity.
With increasing the fluid elasticity, three different orientation modes – log-rolling mode,
kayaking-like mode and longside-flow alignment mode – are observed successively during
the elasto-inertial migration of the oblate spheroid. Potentially, the present results could
be used to design the rheology-based controlling strategy for guiding particles to achieve
optimal focusing and orientation in microfluidic applications without the need for external
forcing fields.

Key words: particle/fluid flows, viscoelasticity

1. Introduction

In viscoelastic fluids, it is well known that suspended particles experience an
elastic lift force due to the inhomogeneity of polymer deformation near the particle.
Recent experiments evidenced that such disparity in polymer deformation can induce
a one-million-fold enhanced lift force for a micrometre-sized spinning particle in
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viscoelastic fluids (Cao et al. 2023). This pronouncedly affects the particle travelling
trajectories. With such elastic lift force in viscoelastic fluids, particles will exhibit
fascinating dynamics, such as the cross-flow migration. This phenomenon provides a
useful functional operation preceding downstream particulate analysis. For example, in
biomedical fields, the viscoelasticity-induced cross-flow migration of particles has been
widely utilized for cell sorting, separation and cytometry (D’Avino, Greco & Maffettone
2017). Therefore, from the applied perspective, it is crucial to uncover the mechanism of
the particle cross-flow migration, which paves the way for the advancement of microfluidic
technologies for passive particle manipulation.

Overall, according to the types of lift forces acting on particles, the cross-flow
migration of particles can be classified into inertial, viscoelastic and elasto-inertial
migration. Different from the inertial migration induced by fluid shear-gradient lift force
in Newtonian (Segré & Silberberg 1961; Martel & Toner 2014) or shear-thinning (Chrit,
Bowie & Alexeev 2020; Jannesari Ghomsheh, Jafari & Funfschilling 2023) fluids, the
viscoelastic or elasto-inertial migration of particles is generated by the elastic lift force.
The state of the art has elucidated the fact that viscoelastic and elasto-inertial migrations
are indeed related to the non-uniform distribution of the first normal stress difference
(N1 = τ11 − τ22, where τ11 and τ22 are the diagonal components of the stress tensor
along the flow velocity and the velocity gradient directions, respectively) in the flow
field. Previous studies have demonstrated that the particles preferentially migrate to the
region with a small N1 or fluid shear rate (Karnis & Mason 1966; Leshansky et al. 2007;
Naillon et al. 2019). For instance, in the microchannel flow of viscoelastic fluids, particles
are principally attracted towards the channel centreline, i.e. the inverse Segré–Silberberg
scenario, during the viscoelastic migration (Karnis & Mason 1966; Leshansky et al.
2007; Villone et al. 2011b; Del Giudice et al. 2015; Del Giudice 2019; D’Avino 2021)
or elasto-inertial migration with highly fluid elasticity (Lim et al. 2014; Seo et al. 2014; Lu
& Xuan 2015). More interestingly, Chaparian et al. (2020) found that the particle can also
focus on the channel centre by entering into the unyielded core in the elastoviscoplastic
fluids at the specific ranges of Weissenberg and Bingham numbers.

The viscoelastic lateral migration of particles is governed by several parameters,
including channel geometry, suspension rheology and particle characteristics. The
exploration of the effects of these parameters on particle cross-flow migration originated
initially with the studies on spherical particles in viscoelastic fluids. Regarding the channel
geometry, previous results indicate that it affects the particle viscoelastic migration
through distinct distributions of N1 in viscoelastic channel flow. For ease of fabrication,
rectangular microchannels are widely utilized in microfluidic applications (Raoufi
et al. 2019), which motivates the previous abundant research on particle viscoelastic
migration in rectangular channel flow. Leshansky et al. (2007) found experimentally that
spherical particles suspended in viscoelastic fluids were attracted to the mid-plane of a
rectangular microslit with a large aspect ratio, and finally formed a plane focusing, i.e.
two-dimensional focusing (D’Avino et al. 2017). Later, this two-dimensional focusing
pattern has been verified by simulations (Villone et al. 2011a). Furthermore, Seo et al.
(2014) and D’Avino et al. (2012, 2017) also found that the migration direction of the
particle in viscoelastic fluids is dependent on the its initial positions. The aspect ratio of the
channel obviously affects the elastic stress distribution in the channel. With the aspect ratio
of the channel decreasing, the regions with small N1 are located in the channel centre and
the corner of the channel cross-section. This corresponds to the multi-focusing region of
particles in the flow field (Del Giudice et al. 2015). In another widely used microchannel,
i.e. the tube, particles have been observed to migrate towards the pipe centreline,
forming a ‘line-focusing’ pattern (so-called three-dimensional focusing). Additionally, the
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phenomenon of particle focusing propelled by fluid elasticity has recently been extended
to the viscoelastic channel flow with more complex geometries, including rhomb (Kwon
et al. 2020), semi-ellipse (Tang et al. 2019) and triangle (D’Avino 2021). With these
meticulously designed microchannels, the particles form a desired focusing pattern.

On the other hand, numerous polymeric fluids encountered in nature and realistic
applications generally exhibit viscoelasticity as well as shear-thinning rheology. This fact
prompted previous studies investigating the effect of suspension rheology on particle
migration. For example, the viscoelastic fluid with a non-zero second normal stress
difference (N2) can induce a secondary flow (Villone et al. 2013) within the channel with
a non-circle cross-section. Such secondary flow promotes particles to spirally approach
the equilibrium positions in the square channel filled with Giesekus fluids (Villone et al.
2013). Del Giudice et al. (2015) also reported experimentally that particles can be driven
towards the corners of the channel cross-section in highly shear-thinning viscoelastic
fluids. Apart from particle distribution in the channel, the simulation results highlighted
that the particle equilibrium position is also modulated by shear-thinning rheology.
Specifically, the shear-thinning effect tends to push particles away from the channel
centreline (Li, McKinley & Ardekani 2015). In theoretical studies, Wang, Tai & Narsimhan
(2020) examined the effect of the normal stress on the elastic migration of spheroids
in the second-order fluid. The above results inspired us to use suspension rheology and
channel geometry for manipulating the focusing pattern of flowing particles in microfluidic
applications.

Besides the channel geometry and suspension rheology, another prominent parameter
governing the particle cross-flow migration is the particle shape. Several studies have
already evidenced that the particle cross-flow migration can be greatly changed due to the
effect of particle shape. For instance, Lu & Xuan (2015) and Lu et al. (2015) reported
a pinched flow fractionation for continuous shape-based particle separation. In their
experiments, the equilibrium positions of spherical and peanut-shaped rigid particles are
different. More importantly, for a non-spherical particle, an interesting phenomenon is that
the spheroid can exhibit multi-orientation modes in viscoelastic shear flow with different
fluid elasticities (D’Avino & Maffettone 2015). Such orientation dynamics of spheroids
will introduce additional complexities into the particle cross-flow migration process,
thereby rendering the cross-flow migration of non-spherical particles more intricate.
For this point, D’Avino et al. (2019) investigated numerically the viscoelastic migration
of a single prolate spheroid in a wide-slit microchannel. Similar to spherical particles,
most prolate spheroids released from different initial positions migrate to the channel
centre plane and tend to orientate in the streamwise direction at the equilibrium position
(Langella et al. 2023). More recently, from the theoretical perspective, Tai & Narsimhan
(2022) derived a cross-flow migration model for spheroids in second-order fluid. Their
prediction model suggests that the particle migration velocity is proportional to the length
of particles projected in the velocity gradient direction (Tai, Wang & Narsimhan 2020a,b).
Consequently, the non-spherical particles exhibit slower migration compared to spheres.

Finally, as for the role of fluid inertia, unlike the inertial lateral migration of particles,
the viscoelastic lateral migration of particles is attributed to the nonlinear nature of the
constitutive equation of viscoelastic fluids. Thus the viscoelastic lateral migration does
not rely solely on the fluid inertia, and can appear in viscoelastic flow even with the
vanishing fluid inertia. Such facts motivate that most previous studies are often limited
to small-Reynolds-number (Re � 1) flow, obviously affecting the overall throughput of
particle delivery in the flow system (D’Avino et al. 2017). Increasing the fluid inertia in
the flow system can achieve high-throughput particle focusing in viscoelastic fluid flows
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(Lim et al. 2014), thus several researchers explored the combining effects of fluid inertia
and elasticity on the particle focusing in elasto-inertial flows. For instance, Lim et al.
(2014) reported experimentally on the deterministic focusing of particles in a microchannel
at extremely high flow rates, corresponding to Re ∼ 10 000; they found that the particle
viscoelastic focusing can also occur over a wide range of Reynolds numbers. Holzner,
Stavrakis & de Mello (2017) explored the elasto-inertial focusing of bio-particles within
the straight microfluidic channel flow of viscoelastic PEO solutions with low viscosities.
Li et al. (2015) simulated the elasto-inertial migration of a single spherical particle
in the viscoelastic channel flow with finite fluid inertia. Raffiee, Ardekani & Dabiri
(2019) investigated the particle elasto-inertial focusing patterns in viscoelastic channel
flow. These numerical studies elaborated that the particle equilibrium position is indeed
determined by the competition between fluid inertia and fluid elasticity. More importantly,
from these results, tuning the finite fluid inertia and fluid elasticity appears to be a prevalent
and feasible method for achieving an ‘optimal focusing’ for particles in microfluidic
devices (D’Avino et al. 2017; Raoufi et al. 2019). This also motivates the present study.

In summary, earlier studies on the elasto-inertial migration of particles are confined
mainly to spherical particles. The dynamics of the non-spherical particle during its
elasto-inertial migration is still not well understood. The main obstacle to further progress
is the lack of understanding of the physical picture in the elasto-inertial migration of
spheroids. How the spheroid orientation evolves, and how the spheroid elasto-inertial
migration is influenced by its orientation, are the key questions to be answered. The present
study is motivated by these questions and carried out by fully resolving the elasto-inertial
migration of a single neutrally buoyant oblate spheroid suspended in viscoelastic duct flow.
The focus on the oblate shape in the present study is motivated by the fact that the oblate
spheroid is a canonical shape for bio-particles (such as red blood cells) in biomedical
applications (Atwell et al. 2022; Jiang, Liu & Tang 2022), where microfluidic technologies
are employed extensively.

The paper is organized as follows. In § 2, we introduce the mathematical models
and numerical methods of fully resolved simulations of the particle migration in the
elasto-inertial duct flows. Then the elasto-inertial migration of the oblate particle is
discussed in § 3, including the ‘oscillating’ migration (§§ 3.1 and 3.2) and rotational
dynamics (§ 3.3) of the oblate particle. Finally, conclusions are drawn in § 4.

2. Methodology

In this section, a concise but complete summary of the simulation methodology is
provided. The elasto-inertial flow of Oldroyd-B fluid is simulated within a monolithic
projection framework (Li et al. 2022). The particle migration is tracked in the Lagrangian
frame. The interaction between fluid flow and particles is fully resolved by the immersed
boundary method (IBM).

2.1. Governing equations

2.1.1. Elasto-inertial flow of viscoelastic fluid
The governing equations for incompressible and isothermal viscoelastic fluid flow,
accounting for finite fluid inertia, are expressed as

∇ · u = 0, (2.1)
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ρf

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ s + ∇ · τ p + f IB, (2.2)

where u is the fluid velocity, ρf is the fluid density, p is the pressure, τ s is the solvent
stress, τ p is the polymer stress, and f IB is the momentum forcing due to the fluid–particle
interaction, representing the feedback forcing from the particle to fluid phase.

Generally, the solvent stress τ s satisfies the constitutive equation of Newtonian fluid:

τ s = βμ0
(∇u + (∇u)T

)
, μ0 ≡ μs + μp, β ≡ μs

μ0
, (2.3)

where μ0 denotes the zero-shear-rate dynamic viscosity, μs and μp represent solvent and
polymeric viscosity, respectively, and β is the viscosity ratio.

Based on the kinetic theory, the polymer stress τ p in Oldroyd-B fluid can be determined
by the conformation tensor B, which quantifies the deformation of the polymeric molecule
in the flow field:

τ p = μp

λ
(B − I), (2.4)

where λ is the polymer relaxation time. Then the evolution of the conformation tensor B
can be written as

∂B

∂t
+ u · ∇B − B · (∇u)− (∇u)T · B = 1

λ
(I − B). (2.5)

From the above governing equations, the nonlinearity in the elasto-inertial flow of
viscoelastic fluids arises from the fluid convection in (2.2) and the nonlinear deformation
of polymeric molecules described in (2.5).

2.1.2. Particle dynamics
To determine the intricate translation and rotation of an oblate spheroid induced by
the interaction between the fluid and particle, the following Newton–Euler equation is
employed to model particle motion:

mp
dup

dt
=
∮
Γp

τ · n ds + Vp(ρp − ρf )g, (2.6)

d(Ipωp)

dt
=
∮
Γp

r × (τ · n) ds, (2.7)

where up and ωp represent the particle translational and rotational velocities, respectively,
mp is the particle mass, Ip is the particle moment of the inertial matrix, Vp denotes the
particle volume enclosed by particle surface Γp, ρp is the particle density, τ represents the
hydrodynamic stress tensor, whose integration accounts for the fluid-particle interaction, n
denotes the unit normal vector pointing outwards on the particle surface, r is the position
vector on the particle surface from the particle’s centre, and g is the acceleration due to
gravity.

To accurately resolve the interplay between particle and viscoelastic flow, the IBM is
adopted in the present study. Within the IBM framework, the hydrodynamic force and
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torque acting on the particle are rewritten as∮
Γp

τ · n ds = d
dt

∫
Ωp

ρf u dv −
∫
Ωp

f IB dv, (2.8)

∮
Γp

r × (τ · n) ds = d
dt

∫
Ωp

ρf r × u dv −
∫
Ωp

r × f IB dv, (2.9)

whereΩp is the particle region bounded by surface Γp. With (2.8) and (2.9), the governing
equation of particle dynamics can be further approximated as

mp
dup

dt
≈ −

Nl∑
l

F IB,l�sl + ρf
d
dt

(∫
Ωp

u dv

)
+ Vp(ρp − ρf )g, (2.10)

d(Ipωp)

dt
≈ −

Nl∑
l

r × F IB,l�sl + ρf
d
dt

(∫
Ωp

r × u dv

)
, (2.11)

where �sl is the surface area of each Lagrangian element on the particle surface, and Nl
is the total number of Lagrangian points.

In the penalty IBM, the fluid–particle interaction forcing F IB is determined by (Huang,
Chang & Sung 2011)

F IB = −κ [(X IB − X )+�t (U IB − U)] , (2.12)

where κ is a large penalty constant in the penalty IBM (κ = 104 in the present simulations),
and X IB and U IB, i.e. the position and velocity of the massless counterpart of the material
Lagrangian points, respectively, are computed by

U IB =
∫
Ωp

u δ(X − x) dv (2.13)

and

X IB(t) = X IB(t = 0)+
∫ t

0
U IB(t) dt, (2.14)

where δ(·) is the Dirac delta function.
Correspondingly, X and U are the position and velocity of the material Lagrangian

points on the particle surface, respectively. They are calculated by (2.6) and (2.7),
U = up + ωp × r. Finally, the momentum forcing f IB in (2.2) is spread from F IB as

f IB =
∫
Γp

F IB δ(x − X ) ds. (2.15)

2.2. Numerical methods
The governing equations of viscoelastic fluid flow are discretized on the staggered grid
using the finite difference method. For temporal discretization of the momentum and
constitutive equations, all terms are integrated in time by the second-order Crank–Nicolson
scheme. To retain the second-order accuracy in time, the incremental form is used to treat
the pressure (δp form) and conformation tensor (δB form) with the staggered time scheme.
For spatial discretization, all terms are approximated by the second-order central difference
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scheme, except for the convective term in the constitutive equation, which is evaluated by
the high-resolution MINMOD scheme (Alves, Pinho & Oliveira 2000). By rearranging the
discretized governing equations into a monolithic matrix system⎡
⎣ AB 0 0

−DB Au G
0 D 0

⎤
⎦
⎡
⎣ δB
δu
δp

⎤
⎦ =

⎡
⎣ rn−1/2

B − ABBn−1/2

rn − Auun

0

⎤
⎦+

⎡
⎣ 0

mbcn+1

cbcn+1

⎤
⎦ , (2.16)

the pressure, conformation tensor and velocity can be decoupled sequentially from the
viscoelastic flow system based on the approximate factorization of the system coefficient
matrix, as depicted in⎡

⎣ AB 0 0
−DB Au G

0 D −�tDG

⎤
⎦
⎡
⎣ I 0 0

0 I �t G
0 0 I

⎤
⎦
⎡
⎣ δB
δu
δp

⎤
⎦

=
⎡
⎣ rn−1/2

B − ABBn−1/2

rn − Auun

0

⎤
⎦+

⎡
⎣ 0

mbcn+1

cbcn+1

⎤
⎦ , (2.17)

where Au and AB denote the coefficient matrix of the discretized governing equations of
un+1 and Bn+1/2, respectively, D and DB are the discrete divergence operators of un+1 and
Bn+1/2, respectively, G represents the discrete gradient operator of pressure, r and rB are
the right-hand sides of discretized governing equations of un+1 and Bn+1/2, respectively,
and mbc and cbc are the discretizations of the boundary conditions in the momentum and
continuity equations.

Then all flow quantities can be resolved without iteration within the present projection
framework. The detailed numerical method can be found in Li et al. (2022).

For the particle phase, by employing the fourth-order Runge–Kutta scheme, the particle
translation is tracked in the Eulerian inertial frame (x–y–z), while particle rotation and
orientation are simultaneously solved within the particle frame (x′–y′–z′), in which
the origin of the particle frame is in the particle centre, and the coordinate axes are
aligned with the principal directions of the spheroid particle. Moreover, the rotation
and orientation modes of the spheroids are presented in the particle co-moving frame
(x′′–y′′–z′′) whose coordinate axes are parallel to those of the Eulerian inertial frame. The
origin of the particle co-moving frame is attached at the mass centre of the particle. During
particle migration, the particle orientation is represented by the quaternions (Goldstein
1980), which are updated according to the particle angular velocity. The detailed validation
of the present numerical methods can be found in Appendix A.

2.3. Simulation set-up

2.3.1. Computational domain and particle size
In the present study, an individual oblate spheroid is suspended in a duct flow of
viscoelastic fluid, as illustrated in figure 1. The shear-thinning viscoelastic fluid (modelled
by Giesekus fluid), whose N2 is not null, can introduce a secondary flow in the duct
cross-section (Villone et al. 2013). Similar to the previous work (Yu et al. 2019), the
rheology of the viscoelastic fluid in this study is described by the Oldroyd-B model with
β = 0.1 to eliminate the effect of the secondary flow on the spheroid migration. The
size of the duct is set as W × H × L = 4D × 4D × 8D, where L is the duct length in the
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Flow
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t = T
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y ′
z′

z′′

x′′
y′′

t

x

z

Figure 1. Sketch of the flow configuration.

streamwise direction (z-axis), H and W are the height and width of the duct, respectively,
and D is the major diameter of the oblate spheroid, D = 1. Such a computational size
in the streamwise direction of the microchannel L/H = 2 is also utilized in previous
studies investigating the elasto-inertial migration of a sphere in Oldroyd-B fluid (Yu et al.
2019). The effect of the computational size is examined in Appendix B. The time step
is set as �t = 1 × 10−3, unless otherwise stated. The mesh resolution in this study is
set as Δ = 1/32D, indicating that the major diameter is resolved by 32 grids. The mesh
convergence test is also shown in Appendix B.

The confinement in the flow system of particle cross-flow migration is defined as D/H,
which generally takes values D/H = 0.1–0.5 for inertial migration in Newtonian fluid
(Hafemann & Fröhlich 2023) and elastic migration in viscoelastic fluid (Holzner et al.
2017; D’Avino et al. 2019; Naillon et al. 2019; Raffiee et al. 2019; Raoufi et al. 2019; Zhou
& Papautsky 2020) in previous studies. Considering the above typical confinement, the
present study focuses on the confinement as D/H = 0.25.

2.3.2. Non-dimensionalization of the simulation results
In the present flow system, the characteristic velocity and length are set as the fluid velocity
Uc at the duct centreline and the duct height H, respectively. The characteristic density is
fluid density ρf . Thus the non-dimensionalization of the simulation results in the present
study is realized as follows.

For fluid phase,

x∗ = x
H
, u∗ = u

Uc
, t∗ = t

H/Uc
, p∗ = p

ρU2
c
. (2.18a–d)

For particle phase,

X ∗
p = X p

H
, V ∗

p = V p

Uc
, ω∗

p = ωp

Uc/H
, D∗ = D

H
, (2.19a–d)

where X p = (Xp, Yp, Zp) and V p = (Up,Vp,Wp). The superscript ∗ represents the
dimensionless quantities; for conciseness, the superscript ∗ is dropped unless explicitly
stated otherwise.

Based on the above characteristic quantities, the dimensionless governing parameters in
the present flow configuration are defined as follows.
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The Reynolds number Re, which quantifies the fluid inertial effect, is defined as

Re = UcH/ν0, (2.20)

in which ν0 is the zero-shear-rate kinematic viscosity ν0 = μ0/ρf .
The Weissenberg number Wi, which represents the fluid elastic effect, reads

Wi = λUc/H. (2.21)

The elastic number El, representing the competition between fluid elastic and inertial
effect, is defined as

El = Wi/Re. (2.22)

For the particle phase, the particle shape is described by the particle aspect ratio

AR = a/b, (2.23)

where a and b are the polar and equatorial radii of the spheroid, respectively. As the
state of the art highlighted in § 1, the features of particle viscoelastic and elasto-inertial
migrations have been analysed extensively for both spheres (AR = 1) and prolate spheroids
(AR > 1). However, only a few works focus on the viscoelastic or inertial migrations
of oblate spheroids (AR < 1) (Nizkaya et al. 2020; Tai & Narsimhan 2022). Thus to
conveniently elucidate the unique behaviour of oblate spheroids in elasto-inertial flows, in
this study, we focus on the oblate spheroid with the same aspect ratio (AR = 0.5) used in
earlier studies concerning the inertial migration of oblate spheroids (Nizkaya et al. 2020).

The inertia of a particle is characterized by the particle size and density ratio:

ρr = ρp/ρf . (2.24)

In the present work, we focus on a neutrally buoyant particle, i.e. ρr = 1, which
represents the typical density of bio-particles commonly manipulated by microfluidic
technologies (Atwell et al. 2022).

2.3.3. Initial and boundary conditions
For the initial conditions, a rest spheroid with zero translational and rotational velocities is
initially released from (Xp0, Yp0, Zp0) = (0, 0.25, 0). The initial orientation of the oblate
particle is set by the Euler angle (φ0, θ0, ψ0) = (−1/4π, 1/2π, 0). For the viscoelastic
fluid phase, to eliminate the transient process during the start-up flow of viscoelastic
fluid, the initial flow is a fully developed viscoelastic duct flow driven by a constant
dp/dz = −Ucπ

3μ0/(4kH2), and the parameter k takes value k ≈ 0.571 for a
square-shaped duct flow (Li et al. 2015; Yu et al. 2019).

For the boundary conditions, the periodic boundary is set in the streamwise (z) direction
of the duct flow, and the no-slip boundary is applied at the duct walls, which are normal
to the x and y directions. The particle–fluid interface is set as a no-slip boundary realized
by the IB forcing.

3. Results and discussion

In this section, we analyse the coupling effect of fluid inertia and fluid elasticity on the
lateral migration (§ 3.1) and rotation modes (§ 3.2) of the neutrally buoyant oblate spheroid
(ρr = 1, AR = 0.5) in a viscoelastic duct flow driven by a constant pressure gradient
dp/dz = −3.6201. The above-mentioned governing parameters are set as Re = 5–60,
El = 0–0.1.
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Figure 2. Lateral migration of the oblate spheroid in elasto-inertial duct flows. (a) Particle position Yp in
the wall-normal direction. (b) Particle migration velocity Vp. The black dashed line represents the particle
initial position. The dots of different colours in (b) denote the final positions of particles in the flow at the
corresponding El.

3.1. Oscillating migration
First, the lateral migration of the oblate spheroid in the viscoelastic duct flow with different
El is depicted in figure 2. In figure 2(a), for the inertial migration of particles in Newtonian
fluids (El = 0), with the inertial lift force, the oblate spheroid gradually moves towards
the wall, and ultimately approaches its equilibrium position close to the wall. However,
the scenario becomes different in viscoelastic flows (El /= 0). The elastic lift force alters
the particle’s migration direction, causing it to be attracted to the duct centreline. The
specific focusing position of the particle is governed by the elastic number El: the larger
the fluid elasticity is, the closer the particle equilibrium position is to the duct centreline.
This observed spheroid focusing behaviour is similar to that of spherical particles
(Li et al. 2015). Note that Ypeq in the elasto-inertial flow at El = 0.01 is a quasi-equilibrium
position due to the perturbations induced by the particle rotation. The process of leaving
out the duct symmetry plane for the spheroid is sufficiently long: the particle just moves
∼ O(10−3)H in the x-axis direction after it translates ∼ O(103)H along the streamwise
direction. This indicates that the equilibrium position in the symmetry plane of the duct is
unstable or meta-stable in the flow at El = 0.01.

However, different from spherical particles, figure 2(a) further reveals a prominent
phenomenon: the time for the oblate particle approaching the duct centreline changes
non-monotonically with El. For instance, as the fluid elasticity increases from El = 0.03
to 0.05, the augmented elastic lift force exerted on the particle results in the faster particle
focusing on the duct centreline. However, if the fluid elasticity is further increased to
El = 0.1, then the migration of the oblate particle to its destination is retarded.
Alternatively, the particle focusing period in highly elastic flows (El = 0.1) is longer
compared to that in moderately elastic flows, i.e. El = 0.03 and 0.05.

In summary, the above results suggest the existence of three critical elastic numbers
within the present flow system: Elcr1 < Elcr2 < Elcr3, as illustrated in figure 3.
Specifically, the first elastic number Elcr1 determines the direction of particle migration.
When El < Elcr1, the fluid inertia is dominant in the flow system, causing the particle to
move towards the duct wall. When El > Elcr1, the particle migration direction is reversed
by the fluid elasticity, and the particle begins to migrate to the duct centreline. The
second elastic number Elcr2 represents the critical fluid elasticity, at which the fluid elastic
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Fluid inertia
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Figure 3. Sketch of the three critical elastic numbers in the present flow system.

El Migrating type Dominant factor

0 El < Elcr1 Inertial migration Inertia
0.01 Elcr1 < El < Elcr2 Elasto-inertial migration Elasticity inertia
0.03 Elcr2 � El < Elcr3 Elasto-inertial migration Elasticity
0.05 Elcr2 � El � Elcr3 Elasto-inertial migration Elasticity
0.1 El > Elcr3 Elasto-inertial migration Elasticity

Table 1. Dominant factors in the lateral migrations of spheroids shown in figure 2.

effect fully dominates in the flow system. The destination of particles occurs at the duct
centreline in the flow at Elcr2. These two critical elastic numbers span a specific range of
fluid elasticity, Elcr1 < El < Elcr2, where the fluid inertia and elasticity are comparable.
Within this range, the particle tends to focus on an equilibrium position between the
duct centreline and the wall. The third critical elastic number Elcr3 governs the migration
efficiency of oblate particles in highly elastic flows. If El > Elcr3, then the efficiency of
particle migration to the duct centreline is reduced. Consequently, it is deduced that the
oblate particle has the highest migration efficiency at El = Elcr3.

Similar to the elasto-inertial migration of spherical particles, the first two critical elastic
numbers (Elcr1 and Elcr2) can be regarded as the consequence of the competition between
fluid inertia and fluid elasticity. However, the mechanism responsible for Elcr3 has not
been reported yet. The present results in figure 2(b) evidence that the generation of Elcr3
is directly associated with the particle migration velocity. By increasing El, the oscillating
amplitude of particle migration velocity is also notably enlarged. The sign of the particle
wall-normal velocity changes alternately during the particle migration in the highly elastic
flow at El = 0.1. Such fluctuations of particle migration velocity result in the particle
migrating to its final equilibrium position in an oscillating way, which delays the particle
arrival at the duct centreline.

Based on the above analysis, the lateral migration of the oblate spheroid in figure 2 can
be classified into two types, i.e. inertial migration and elasto-inertial migration, as shown
in table 1. Moreover, table 1 also identifies the dominant factors in each migration type at
different El.

It is well known that the migration of oblate particles is significantly affected by
particle orientation. Tai & Narsimhan (2022) have demonstrated that the particle migration
velocity during its viscoelastic migration is proportional to the projection length of the
particle on the shear-gradient (x–y) plane. This fact is also reflected in figure 4, which
shows the relationship between the particle orientation and migration velocity. When the
particle symmetry axis is approaching the streamwise direction (increasing |cos(θz)|),
the wall-normal projection length of the particle, D |cos(θz)|, also increases, as shown in
figure 5. Consequently, according to the analysis of Tai & Narsimhan (2022), the particle
migration velocity is augmented. However, from figure 4, the particle migration velocity
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Figure 4. Time evolution of the particle orientation and migration velocity at (a) El = 0.05 and (b) El = 0.1.

0.50.5
0.30.3

0.10.1
–0.1–0.1

–0.3–0.3
–0.5

z′′/Dx′′/D

y′′
/
D

–0.5

–0.3

–0.1

0.1

0.3

0.5

0.50.5
0.30.3

0.10.1
–0.1–0.1

–0.3–0.3
–0.5

z′′/Dx′′/D

y′′
/
D

–0.5

–0.3

–0.1

0.1

0.3

0.5

(b)(a)

Figure 5. Two particle orientations during the particle migration in viscoelastic flows, El = 0.1. (a) Particle
symmetry axis is nearly perpendicular to the y′′-axis. (b) Particle symmetry axis is nearly parallel to the
streamwise y′′-axis. The particle orientation is represented in the co-moving frame (x′′–y′′–z′′) with its origin
in the particle centre. The coordinate axes of the co-moving frame are parallel to the corresponding axes of the
inertial frame.

is quickly reduced once the particle nearly aligns its major diameter along the wall-normal
direction (a configuration shown in figure 5a).

The above reduction of particle migration velocity observed when the particle symmetry
axis approaches the streamwise direction is attributed to the shear-gradient lift force
exerted on the particle. During the particle lateral migration in elasto-inertial flows,
the particle mainly experiences three kinds of hydrodynamic forces, including the
shear-gradient lift force, the wall-normal drag force and the elastic lift force. The
magnitude of the shear-gradient lift force on an oblate particle is formulated as (Nizkaya
et al. 2020)

Fsl = ρa3bG2
mCl, (3.1)

where Fsl is the magnitude of the shear-gradient lift force, Gm denotes the mean flow
shear rate on the particle surface, and Cl is the lift coefficient. Equation (3.1) suggests
that the shear-gradient lift force is proportional to the flow shear rate on the particle
surface Gm; when the particle symmetry axis approaches the streamwise direction, the
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Figure 6. Oscillating behaviour in the elasto-inertial migration of oblate particles, for (a) El = 0.05,
(b) El = 0.1.
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Figure 7. Lateral migration of the oblate spheroid with different Xp0 at Re = 15. (a,c) Time evolution of
particle position Yp0. (b, d) Particle trajectory projected on the cross-plane of the duct. Here, (a,b) El = 0.01,
(c,d) El = 0.1. The dots of different colours in (b,d) denote the different initial positions of the oblate spheroid.

projection length of the particle spanned in the shear plane is enlarged, thus the mean
flow shear rate Gm increases. This causes an increased shear-gradient lift force, which acts
as a resisting force during the particle migration, finally resulting in the reduction of the
particle migration velocity.

From the phenomenal point of view, the above features of particle migration velocity
induce the ‘oscillating’ behaviour in the elasto-inertial migration of oblate particles, as
shown in figure 6. It is found that the oscillation in particle position appears on the
transition point of particle orientation, consistent with the particle migration velocity
shown in figure 4. Compared to the spherical particle migration, the oscillating migration
is the most prominent feature for oblate particles in the elasto-inertial flows.

Finally, to clarify the effect of Xp0 on the oscillating migration of the oblate spheroid,
figure 7 shows the spatial trajectory of the spheroids released from different initial
positions, i.e. Xp0 = 0, −0.125, −0.25 and Yp0 = 0.25. In this simulation,�t = 2 × 10−3.
In figure 7, it is found that the initial Xp0 does not alter the oscillating characteristics
in the lateral migration of the oblate spheroid. In contrast, the focusing pattern of the
spheroid is determined by both the particle initial position and fluid elasticity. For example,
in the viscoelastic flow at El = 0.01, the spheroids with different Xp0 are attracted to
different equilibrium positions (figure 7b), including the diagonal equilibrium position
(Xpeq, Ypeq) = (−0.1638, 0.1635) and the centre equilibrium position (Xpeq, Ypeq) =
(0, 0.1180). This focusing pattern for the oblate spheroid with multiple equilibrium
positions in the present study is similar to that of spherical particles (Yu et al. 2019).
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Figure 8. Phase diagrams of the particle equilibrium position. (a) Particle equilibrium position in El–Re space.
(b) Particle equilibrium position in Re–Wi space. The symbol colour represents the y coordinate of the particle
equilibrium position Ypeq. The symbol shape represents the different particle focusing patterns: the square
symbol denotes the particle focusing on the position between the duct wall and the centreline, while the circle
symbol represents the particle being attracted to the duct centreline.

This phenomenon is attributed to the non-uniform distribution of the polymer deformation
(Del Giudice et al. 2015) and flow shear rate in the duct.

Moreover, figure 7(b) shows that the final equilibrium position of spheroids near the
duct side-wall (Xp0 = −0.125 and −0.25) is higher than that of the oblate spheroid within
the symmetry plane (Xp0 = 0). This result can be explained by the scaling analysis of
the shear-induced and elastic lift forces. By substituting the definition of the first normal
stress difference N1 = τ zz

p − τ
yy
p ∝ |B|, and the power-law function of N1 in the dilute

polymeric solution, where N1 = AGn
m (1 < n � 2) (Leshansky et al. 2007), and A is the

model parameter, the elastic lift force can be approximated as

Fel =
∮
Γp

τ p · n ds =
∮
Γp

μp

λ
(B − I) · n ds ∝ Gn

m (1 < n � 2). (3.2)

From the comparison between (3.1) and (3.2), it is concluded that the shear-induced
lift force grows more quickly than the elastic lift force with increasing flow shear rate
Gm. Therefore, the shear-induced lift force is enhanced more significantly than the elastic
lift force from the symmetry plane to the side-wall of the duct, resulting in a higher
equilibrium position for the spheroid released near the duct side-wall, i.e. Xp0 = −0.125
and −0.25.

3.2. Scaling of particle equilibrium position
From the applied perspective, the scaling law of the particle equilibrium position plays
an important role in the controlling strategy for non-spherical particles in microfluidic
applications. To this end, this subsection discusses the characteristics of the particle
equilibrium position in detail.

Figure 8 shows the phase diagram of the particle equilibrium position. As mentioned
in § 3.1, there are three critical elastic numbers in the elasto-inertial migration process of
oblate particles. We focus primarily on the second critical elastic number, Elcr2, which
represents the critical fluid elasticity corresponding to Ypeq = 0. First, from figure 8(a),
Elcr2 is affected by Re in the flow system: for Re > 15, Elcr2 is almost unchanged with Re.
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Figure 9. Effects of fluid elasticity and fluid inertia on the particle equilibrium position. (a) Effect of the
fluid elasticity El. (b) Effect of the fluid inertia on the particle equilibrium position in elasto-inertial flows at
El = 0.01 and 0.05. (c) Particle equilibrium position in Newtonian flows (El = 0) at different Re. In (b), ED
and FD denote the elasticity domination and fluid inertia domination regions, respectively.

However, in the low-Re flows (Re < 15), Elcr2 is larger than that in the viscoelastic
flow with higher Re. This phenomenon is similar to that observed in the elasto-inertial
migration of spherical particles (Li et al. 2015). More clearly, in figure 8(b), by the scaling
law Wi ∼ 0.012 Re in the Wi–Re space, the particle focusing patterns can be divided into
two regimes. Such a scaling law, corresponding to Elcr2 = 0.012, is close to that for
the spherical particles (Elcr2 = 0.01). This result implies a similarity in the critical fluid
elasticities required to achieve the duct-centring focusing for both spherical and spheroidal
particles.

To elaborate further on the effects of fluid elasticity El and fluid inertia Re on the particle
equilibrium position, figure 9 shows the modulation of the particle equilibrium position
by El and Re, respectively. Regarding the fluid elasticity El, figure 9(a) suggests that the
particle equilibrium position is a monotonic function of El. With increasing El, the fluid
elasticity is enhanced and promotes the particle equilibrium position, gradually covering
to Ypeq = 0.

In contrast to fluid elasticity, the effect of fluid inertia on the particle equilibrium
position becomes more compliant. From figure 9(b), it can be observed that when keeping
El = 0.01 in the flow system, the equilibrium position of the oblate particle varies
non-monotonically with Re. Such a non-monotonic response of the particle equilibrium
position to Re is also evidenced by experiments (Holzner et al. 2017). More specifically,
the variation of the particle equilibrium position to Re in figure 9(b) can be approximately
classified into two regions, including the fluid elasticity domination region (Re < 15) and
the fluid inertia domination region (Re > 15).

First, within the fluid elasticity domination region (Re < 15), different from the elastic
migration of particles, the particle equilibrium position increases when decreasing Re in
the elasto-inertial flows at a constant El = 0.01. In such a flow condition, the equilibrium
position of the spheroid is determined by the competition between fluid inertia and fluid
elasticity. With Re decreasing, Wi = El Re will also be attenuated, causing the effect of
fluid elasticity to gradually diminish in the flow system. Thus the elastic lift force on the
spheroid is reduced, and the curve of the spheroid equilibrium position increases. The
above discussion of the spheroid equilibrium position about Re effect in the constant El
flow can also be found for the spherical particles in the elasto-inertial duct flow (Li et al.
2015).

Moreover, although the fluid inertial effect is also suppressed as Re reduces (the weaker
fluid inertia helps the particle to focus towards the duct centreline), figure 9(b) suggests
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Figure 10. Contours of the flow field near the particle: (a) shear rate at Re = 5; (b) shear rate at Re = 15;
(c) conformation tensor Bzz at Re = 5; (d) conformation tensor Bzz at Re = 15. In (a,b), SR denotes the shear
rate, which is scaled by Wp/D.

that the fluid elasticity is dominant in the flow system at Re < 15 and El = 0.01. Thus
the equilibrium position of the spheroid is governed mainly by the variation of the fluid
elasticity in the small-Re flow at El = 0.01.

More physically, the above peculiar phenomenon is associated with the polymer
deformation near the particle. According to (2.5), the polymer conformation tensor B is
evolved by two effects: a polymer stretching-coiling term B · (∇u)+ (∇u)T · B, and a
relaxation term 1/λ(I − B). The first term represents the polymer deformation induced
by the flow shear rate, while the second term denotes the relaxation effect of the polymer.
Equation (2.5) indicates that the larger the flow shear rate (∇u), the stronger the polymeric
molecule is stretched near the particle surface, as shown in figures 10(a,b). On the other
hand, in the flow with a constant El, the relationship Wi = El Re implies that the larger
Re corresponds to the larger Wi or λ in the flow system. Both of the above two aspects
will generate the larger polymeric stress (figures 10c,d) near the particle in the flow at
higher Re. Thus in the first region (Re < 15), the reducing particle equilibrium position
occurs when increasing Re. In the second region (Re > 15), the dominant effect in the
flow system changes to the fluid inertia; the enhanced shear-gradient force induced by the
larger Re pushes the particle closer to the duct wall, corresponding to the larger particle
equilibrium position.

When El increases further to El = 0.05, the fluid elasticity is fully dominant in the flow
system, i.e. El > Elcr2 = 0.012; as shown in figure 8, the spheroid will be attracted to
the duct centreline at different Re. In Newtonian flows at El = 0, with Re increasing, the
enlarged fluid inertial effect causes the spheroid to get closer to the duct wall, thus the
equilibrium position of spheroids is increased by Re, as shown in figure 9(c).

3.3. Particle rotational dynamics during the cross-flow migration
In addition to the oscillating migration of the oblate particle, another prominent feature of
the non-spherical particles in elasto-inertial flow is the particle rotational dynamics, which
is essential for assembling non-spherical bio-particles to realize a desired orientation with
microfluidic technology. Thus this subsection analyses the rotation and orientation of the
oblate particle during its elasto-inertial migration.

3.3.1. Particle rotation
First, figure 11 shows the three-dimensional (3-D) trajectories of particle translation
and orientation. From figure 11, regardless of inertial (El = 0) or the elasto-inertial
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Figure 11. The 3-D trajectories of particle translation and rotation during its elasto-inertial migration,
Re = 15: (a) El = 0, (b) El = 0.01, (c) El = 0.03, (d) El = 0.05, (e) El = 0.1.

(El /= 0) migration, the oblate particle exhibits the oscillating migration. Meanwhile, the
particle shows the kayaking-like rotation mode, revealing the coupling nature between
the migration and rotation of non-spherical particles. Furthermore, figures 11(a–e) also
demonstrate that the final particle orientation modes are determined by the coupling effect
of fluid inertia and fluid elasticity. Note that although the final orientation of the oblate
particle during inertial (El = 0) and elasto-inertial (El = 0.1) migration is the same, the
specific particle rotation dynamics are different.

For the particle rotation, figure 12 shows the particle rotation rate around its symmetry
axis in the viscoelastic flow at different fluid elasticities. Overall, in the inertial migration
(El = 0), when the particle approaches its equilibrium position near the wall, the flow
shear rate on the particle increases, thus the particle rotation rate is enlarged. However,
the scenario becomes different in viscoelastic flows. By increasing fluid elasticity (El),
the average particle rotation rate is attenuated, causing a larger particle rotation period.
This phenomenon can be explained from two aspects: (1) the tension along the streamline
generated by fluid elasticity hinders the particle rotation rate; (2) as the particle moves
towards the duct centreline, the flow shear rate acting on the particle diminishes, further
contributing to the reduction of the particle rotation rate. Especially in the highly elastic
flows at El = 0.05 and 0.1, the particle rotation rate is reduced to zero, indicating
a rotationless state for particles. This rotationless state for the oblate particle at the
duct centreline is consistent with the previous experimental results on the elasto-inertial
migration of cells (Holzner et al. 2017).
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Figure 12. Rotation rate around the particle symmetry axis during its elasto-inertial migration with Re = 15.
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Figure 13. Orbit parameter of the oblate spheroid during its elasto-inertial migration at Re = 15.

Besides the above particle rotation rate, another important feature to characterize the
particle rotational dynamics is the orbit drift of the particle symmetry axis. Figure 13
shows the temporal evolution of orbit parameter Cb, which is defined as (Yu, Phan-Thien
& Tanner 2007)

Cb = C
C + 1

, (3.3)

C = AR−1 tan θ
√
(AR2 sin2 φ + cos2 φ), (3.4)

where θ and φ are the polar angle and azimuthal angle of the particle symmetry axis,
respectively.

Overall, similar to that in viscoelastic linear shear flows, Cb is a nonlinear function of
time. Compared to the inertial migration in Newtonian flow (El = 0), the drifting rate of
the particle orbit is suppressed by the effect of fluid elasticity. Moreover, figure 13 shows
that the effect of fluid elasticity on the drift of orbit is different during particle migration.
In the earlier stage of particle migration (t < 200), the stronger the fluid elasticity, the
larger the amplitude of Cb.
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Figure 14. Rotational dynamics of the oblate particle in the viscoelastic flow at El = 0.03 and Re = 15.
(a) A 3-D trajectory of the particle symmetry axis in the particle co-moving frame; the black and red orbits
represent the particle orbits in two rotation stages, respectively. (b) Particle angular velocities in the particle
frame. (c) Orbit parameter; the green dot denotes the particle orientation when Yp = 0 at t = 240.

The convergent value of the particle orbit parameter (Cbeq) reveals the equilibrium
rotation state of oblate particles. In the later stage of particle migration (t > 200), Cbeq is
almost unchanged with time in Newtonian (El = 0) and highly elastic (El > 0.05) flows.
This behaviour of Cbeq suggests that the particle can achieve a stable rotation state or
orientation at the particle equilibrium position. More importantly, the results in figure 13
inspire us to say that the orientation of complex-shaped particles can be controlled by
tuning the rheology of suspension fluid in microfluidic applications.

Different from highly elastic flow (El = 0.05 and 0.1), the particle rotation becomes
more complicated in the viscoelastic flow at El = 0.03. In figure 13, according to the
trend of orbit parameter Cb, it is obvious that the evolution of Cb at El = 0.03 can be
divided into two stages. To conveniently explain the above physical picture in figure 13,
figure 14 shows the 3-D rotational dynamics of the oblate particle at El = 0.03, including
the 3-D trajectory of the particle tip, particle rotation rate and orbit parameter Cb.
From figure 14(c), in the first stage (t < 240), the particle orbit parameter Cb gradually
decreases, representing that the particle symmetry axis approaches the vorticity direction
spirally (figure 14a). When t > 240, the particle rotation enters into the second stage,
where Cb begins to increase with time (figure 14c), indicating that the particle symmetry
axis crosses the shear plane (figure 14a). In figure 14(c), the comparison of particle
position Yp and orbit parameter Cb clearly shows that the second stage starts when particle
just reaches the duct centreline. Note that the second stage of particle rotation is a very
slow process, in which the angular velocity is nearly zero, as shown in figure 14(b).

In the duct centre region, the flow shear rate on the particle is weak, thus the particle
rotation is mainly affected by the fluid inertial torque and fluid elastic torque induced by the
particle slip velocity. To elaborate on the mechanism of the peculiar particle rotation mode
presented in figure 14, we compare the streamwise velocity of the fluid surrounding and
far away from the particle as shown in figure 15. Overall, figure 15 indicates that, similar
to the spherical particle in elasto-inertial flows (Li et al. 2015), the particle always slightly
lags the fluid at the same lateral position of the particle (Ypeq) due to the weak particle
inertia. Moreover, the presence of the oblate particle just modulates the fluid velocity in a
narrow region whose width is approximately one particle major diameter D. Beyond this
region, the fluid velocity quickly recovers to that of the fluid in the far field.

To quantify the relative importance of fluid inertial and fluid elastic effects, figure 15(c)
approximately measures the slip velocity between the particle centre and the far-field fluid
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Figure 15. Streamwise velocity of the fluid surrounding the particle and far undisturbed flow field with
Re = 15: (a) El = 0, (b) El = 0.01, (c) El = 0.05. The filled coloured dots and the dashed coloured lines
represent the equilibrium position of the particle centre. The coloured shaded area denotes the region with one
particle major diameter D.

as us = 0.0932. Then the particle Reynolds number and Weissenberg number can be
determined by Rep = usD/ν0 = 0.0874 and Wip = λus/D = 0.0419. The corresponding
elastic number is Elp = Wip/Rep ∼ 0.5. Dabade, Marath & Subramanian (2015) predicted
theoretically the critical elastic number as Elpcr = 1.337, at which the fluid elastic torque
fully governs the oblate particle (AR = 0.5) orientation. From the present relationship
Elp < Elpcr, it can be deduced that the fluid elasticity is not strong enough to be fully
dominant in the flow system. Consequently, the fluid inertial and elastic effects appear to be
comparable in the elasto-inertial duct flow at El = 0.03. From the previous pioneer studies,
it is well known that fluid inertial torque and fluid elastic torque induce opposite particle
orientation modes. Fluid inertial torque can induce the particle orientation maximizing
the drag force (the so-called broadside-on mode Dabade et al. 2015). Conversely, the
fluid elastic torque drives the particle to orientate with the minimum drag force, i.e.
longside-flow alignment mode, which is termed as the longside-on mode in Dabade et al.
(2015). Thus the competition between the above two comparable hydrodynamic torques
finally induces the unstable orientation: particle orientation gradually transitions between
broadside-on mode and longside-flow alignment mode. This unstable particle orientation
further generates the slight fluctuations in the particle equilibrium position shown in
figure 11(c).

3.3.2. Steady particle orientation
The previous subsubsection mainly focuses on the 3-D rotational dynamics of the
oblate particle during its migration. Figure 11 shows that the particle can also exhibit
multi-steady orientation modes in the elasto-inertial flows. As mentioned before, these
particle orientation modes are crucial to particle assembling in microfluidic applications.
This motivates the following study on the steady orientation modes of the oblate particle
in elasto-inertial duct flows with El = 0, 0.01, 0.05 and 0.1.

Figure 16 demonstrates the steady orientation mode of the oblate particle during its
elasto-inertial migration. With increasing the fluid elasticity from El = 0 to 0.1, there are
three kinds of steady orientation modes for the oblate particles.

(i) Log-rolling mode. The oblate spheroid is spinning around the vorticity direction in
the shear plane, as shown in figure 16(a).

(ii) Kayaking-like mode. The oblate spheroid performs both precession and nutation
around the vorticity direction (figure 16b), causing the spheroid to rotate in a
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Figure 16. Steady orientation mode of the oblate particle (AR = 0.5) in elasto-inertial duct flows with Re =
15: (a) log-rolling mode, El = 0; (b) kayaking-like mode, El = 0.01; (c) longside-flow alignment mode A,
El = 0.05; (d) longside-flow alignment mode B, El = 0.1. (a i,b i,c i,d i) The 3-D trajectories of the particle
symmetry axis in the particle co-moving frame. The 3-D trajectory of the particle symmetry axis is also
projected on the y′′–z′′ plane. The red and green dots represent the particle’s initial and finally steady
orientations, respectively. (a ii,b ii,c ii,d ii) The particle rotation rates (ω′

p=x,y,z) within the particle frame. The
corresponding flow velocity is sketched by the black arrows in each plot.

kayaking orbit. The kayaking resembles the motion of a kayak paddle (Rosén et al.
2015).

(iii) Longside-flow alignment mode. The major axis of the spheroid is along the
streamwise direction, as shown in figures 16(c,d). According to the alignment of the
spheroid symmetry axis in the channel cross-section, the longside-flow alignment
mode further includes longside-flow alignment mode A and longside-flow alignment
mode B.

The mechanisms governing the above spheroid orientation modes are described as
follows.

First, in the Newtonian duct flow (El = 0), the oblate particle finally orientates in the
log-rolling mode at its equilibrium position under the fluid shear effect, as shown in
figure 16(a). According to the stability analysis (Einarsson et al. 2015), the log-rolling
mode has been verified as a stable orientation mode for the oblate particle in the Newtonian
shear flow.

Second, in the weakly elastic flow (El = 0.01), when the fluid inertia and fluid elasticity
are comparable, a kayaking-like mode is observed for the oblate particle. Similarly, our
previous study has demonstrated a semblable orientation mode, i.e. asymmetry kayaking
mode, for the prolate spheroid in elasto-inertial shear flows (Li, Xu & Zhao 2023).
The mechanisms behind this orientation mode for spheroids in elasto-inertial flows are
similar. The fluid convective inertia prompts the spheroid to align its symmetry axis
to the vorticity direction (Einarsson et al. 2015), whereas the fluid elastic effect strives
to orient the spheroid symmetry axis perpendicular to the vorticity direction (Bartram,
Goldsmith & Mason 1975; D’Avino & Maffettone 2015). From the above opposite particle
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Figure 17. Microstructure of polymer deformation around the oblate particle with Re = 15.
(a) Longside-flow alignment mode A, El = 0.05. (b) Longside-flow alignment mode B, El = 0.1. The
grey contour surface represents trace(B) = 10.

orientation modes, it is clear that the present kayaking-like mode for the oblate particle
during its elasto-inertial migration originates from the competition between fluid inertial
and fluid elastic effects. Furthermore, comparing figures 16(a–c), it is found that fluid
elasticity leads to the orbit shape of the particle symmetry axis being thinner, which is
also evidenced by the orbit parameter Cb shown in figure 13.

Finally, for the longside-on mode observed in the highly elastic flow (El = 0.1), the
particle equilibrium position becomes the duct centreline, where the particle elastic
number is estimated as Elp = Wip/Rep ∼ 1.598. Compared to the critical elastic number
Elpcr = 1.337 predicted by Dabade et al. (2015), the fluid elastic torque is fully dominant
(Elp > Elpcr) in the flow system at El = 0.1. Thus the present longside-on mode for oblate
spheroids is induced by the fluid elastic torque. It is worthwhile to note that although
the configurations of particle steady orientation modes in Newtonian (El = 0) and highly
elastic (El = 0.1) flow are similar, as shown in figures 15(a,d), the particle rotational
behaviours in these two orientation modes are different. This can be distinguished by
the particle rotation rates in figure 15. It is found that the particle rotation rate finally
converged to ωz = −1.021 in the Newtonian flow, while ωz = 0 in the viscoelastic flow.
This difference in particle rotation states evidences that the particle rotation process is
greatly suppressed by the fluid elasticity.

Moreover, from the particle orientation modes in figures 16(c,d), the specific
configuration of the particle orientation mode in a highly elastic flow is affected by
the fluid elasticity. Although the oblate particle aligned its major diameter along the
streamwise direction, i.e. longside-flow alignment mode, in figures 16(c,d), the angles
between the particle symmetry axis and vorticity direction are different. In the flow at
El = 0.05, the particle aligned its symmetry axis along the diagonal of the duct
cross-section. However, with an increase in fluid elasticity (El = 0.1), the particle
symmetry axis is approximately attracted to the vorticity direction. These different
configurations within the same orientation mode can be attributed to the change in the
microstructure of polymer deformation in the flow field. The trace of the conformation
tensor represents the polymer deformation, as shown in figure 17. When fluid elasticity
is El = 0.05, figure 17(a) shows that the polymer is stretched along the diagonal of the
duct cross-section. With further increasing El to El = 0.1, the deformation of the polymer
is enhanced and is nearly uniform in the space with the same distance to the particle. In
other words, the polymer is stretched without a preferential direction around the particle
at El = 0.1, resulting in the configuration of longside-flow alignment mode presented in
figure 16(b).
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4. Conclusions

The cross-flow migration of particles in viscoelastic flows is widely used in microfluidic
applications. The focusing and orientational behaviours of spheroids in elasto-inertial flow
can be used potentially for high-throughput particle separation and orientation control
in microfluidic devices. To explore the physical picture in the elasto-inertial migration
and orientation of spheroids, in this study, we numerically investigated the elasto-inertial
migration of a single neutrally oblate particle (AR = 0.5) in the viscoelastic duct flow with
the immersed boundary method. The viscoelastic rheology is described by the Oldroyd-B
model. The characteristics of the elasto-inertial migration of the oblate particle are first
analysed. Then the mechanisms governing the particle rotational dynamics and orientation
modes during the particle migration are also elaborated on in this study.

The main conclusions for the elasto-inertial migration of the oblate particle are as
follows.

(i) Different from spherical particles, the lift force exerted on the oblate particle is
altered by the particle orientation; the oblate particle exhibits ‘oscillating’ migration
behaviour in elasto-inertial flows. The particle migration velocity is a nonlinear
function of time. The transition of the particle migration velocity occurs when the
particle symmetry axis approaches the streamwise direction.

(ii) The particle equilibrium position is determined by the elastic number (El): the
larger the fluid elasticity, the closer the particle equilibrium position is to the duct
centreline. The duration for the oblate particle to approach the duct centreline
changes non-monotonically with El, suggesting the existence of three critical elastic
numbers in the present flow system. Within the present parameter range, the
second critical elastic number Elcr2, which determines the critical fluid elasticity
corresponding to Ypeq = 0, satisfies a scaling law Wi ∼ 0.012 Re.

The main conclusions for the rotational dynamics and steady orientation modes of the
oblate particle are as follows.

(iii) The particle orientation modes during its elasto-inertial migration include stable and
unstable orientation modes. Due to the competition between the fluid inertial and
fluid elastic effects, the oblate particle shows an unstable rotation state at the duct
centreline. Additionally, the particle rotation rate and the drifting rate of the particle
orbit are both greatly hindered by the fluid elasticity.

(iv) We find three kinds of steady orientation modes for oblate particles: log-rolling
mode, kayaking-like mode and longside-flow alignment mode. The log-rolling mode
of the oblate particle in Newtonian flow (El = 0) is induced by the fluid convective
inertia. The kayaking-like mode is caused by the competition between fluid inertial
and fluid elastic effects. Finally, the longside-flow alignment mode in the highly
elastic flow originates from the fluid elastic torque. More interestingly, the specific
configuration of the longside-flow alignment mode is attributed to the microstructure
of polymer deformation in the flow field.

In summary, the main contributions of the present work are: (1) a first attempt
to elaborate numerically on the elasto-inertial migration of non-spherical particles in
viscoelastic duct flow; and (2) to give the link between the spheroid orientation and its
elasto-inertial migration. The results of the present study could shed new insights into
the cross-flow migration of complex particles in non-Newtonian fluids. Furthermore, from
the applied perspective, the present results could also be used potentially to design the
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rheology-based controlling strategy for guiding particles to achieve optimal focusing and
orientation in microfluidic applications without the need for external forcing fields.

Finally, several works are awaiting for future study: (1) exploring the effect of
other rheological parameters of viscoelastic fluids (viscosity ratio, shear-thinning
rheology, elastoviscoplastic fluids) on the migration of spheroids in complex fluid flows;
(2) surface-stress-based analysis of oscillating migration of spheroids in the elasto-inertial
flows; (3) identifying the exact critical elastic numbers, which are important for designing
the rheology-based controlling strategy for manipulating the spheroids in microfluidic
applications.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.572.
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Appendix A. Validation of the numerical approach

The present study aims to investigate the elasto-inertial migration of oblate particles in
viscoelastic duct flows. The particle dynamics is affected by the fluid inertial and elastic
effects simultaneously. Thus it is important to check the ability of the present numerical
approach to capture the effects of fluid inertia and fluid elasticity on the particle behaviour.
To this end, we validated the numerical methods from three aspects: (i) the elastic
migration of spheroids, (ii) the inertial migration of spheroids, and (iii) the elasto-inertial
migration of the sphere in viscoelastic duct flow.

A.1. Elastic migration of prolate spheroids
For the elastic migration of spheroids, the present study focuses on the prolate spheroids.
Although the elastic migration of the oblate spheroid has also been predicted theoretically,
the suspension fluid is modelled by second-order fluid, which is generally utilized to model
the polymeric fluid with weak fluid elasticity. Considering the significant fluid elasticity in
the elasto-inertial channel flow, it is thus necessary to check the capability of the present
numerical approach to capture the particle dynamics in highly elastic flows. D’Avino et al.
(2019) simulated the lateral migration of a single prolate spheroid in a viscoelastic fluid in
the wide-slit microchannel. Here, we first use it to validate the present numerical method.

In this validation case, the particle aspect ratio is set as AR = 2. Based on the channel
height and average flow velocity, the bulk Reynolds number is Re = 0.1, thus the fluid
inertial effect can be neglected in the flow system. The Weissenberg number is Wi = 0.5.
Other simulation parameters are consistent with the reference study (D’Avino et al. 2019).
The comparison of results is shown in figure 18, in which the calculated particle position
is consistent with the reference results from D’Avino et al. (2019). Similar to the spherical
particle, the prolate spheroids released from different initial positions can be attracted to
the channel centreline. Figure 18 indicates that the present numerical method can readily
estimate the elastic migration of the non-spherical spheroids in viscoelastic fluids.
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Figure 18. Comparison of calculated particle position with the reference results (D’Avino et al. 2019),
denoted by dots. The line represents the calculated results.
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Figure 19. Distribution of the first normal stress difference N1 in the flow field:
(a) t = 0, (b) t = 0.596, (c) t = 4.1969, (d) t = 7.1947, (e) t = 10.1925, ( f ) t = 69.5485.

Moreover, figure 19 further shows the distribution of the first normal stress difference N1
in the flow field during the particle elastic migration. The results suggest that N1 above the
particle region is always larger than that in the region below the particle. Such a gradient
of N1 in the flow field can generate an elastic lift, which pushes the prolate particle to the
channel centreline (Leshansky et al. 2007; Raoufi et al. 2019). Finally, for the orientation
of the prolate particle in figure 19, it is found that the prolate particle exhibits the flow
alignment mode at the channel centreline, which is consistent with the recent experimental
results (Langella et al. 2023). All the above results agree with the simulation from D’Avino
et al. (2019).
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Figure 20. Inertial migration of oblate (AR = 0.5) and spherical (AR = 1) particles: (a) particle equilibrium
position; (b) particle migration velocity. The open and filled coloured dots denote the initial and final particle
migration velocities, respectively.

A.2. Inertial migration of oblate spheroids
The inertial migration of the oblate spheroid in the Newtonian channel flow is used to
check the capability of the present method to capture the fluid inertial effect on particle
migration. In this test case, the Reynolds number is Re = 22, representing the finite
fluid inertia in the flow system. The particle aspect ratio is AR = 0.5, and the particle
blockage ratio is D/H = 0.3. For the simulation parameters, the mesh resolution is set
as Δ = 1/32D, and the time step is �t = 10−3. The comparison of results is shown in
figure 20. First, from figure 20(a), the evolution of the particle position calculated by the
present method agrees with the reference results (Nizkaya et al. 2020), indicating that the
present method is capable of determining the inertial migration of oblate spheroids. Note
that the small deviation between the two results might be caused by the different numerical
methods.

Figure 20(a) indicates that the sphere particle is faster than the oblate particle, but the
equilibrium positions of the two types of particles are almost the same. This suggests that
it is difficult to separate the spherical and oblate particles with the same major diameter by
the particle inertial migration. Moreover, figure 20(b) also compares the particle migration
velocity between oblate and spherical particles. Different from the spherical particle, the
particle migration velocity of the oblate particle shows ‘oscillating’ characteristics, which
reduce its migration efficiency.

Finally, figure 21 gives the 3-D rotational and migration behaviour of the oblate
particle during its inertial migration. It is clearly seen that the oblate particle exhibits a
‘kayaking-like’ rotation state during the inertial migration, and orientates in a ‘log-rolling’
mode at the its equilibrium position. These rotational dynamics are consistent with the
results reported by Nizkaya et al. (2020).

A.3. Elasto-inertial migration of spherical particles
As mentioned before, in the elasto-inertial migration of particles, particle behaviour
is determined by the competition between fluid inertia and fluid elasticity. Thus it
is necessary to validate the performance of the present method in simulating the
coupling effect on the particle dynamics. Considering that the elasto-inertial migration
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Figure 21. The 3-D rotation and migration of an oblate particle in the Newtonian channel flow at Re = 22.
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Figure 22. Comparison of the calculated elasto-inertial migration of spheres and reference results (Li et al.
2015). Here, α = 0.1 represents the Giesekus-type fluid with the shear-thinning rheology.

of non-spherical particles is still developing, here we used the elasto-inertial migration of
spherical particles to further validate our numerical approach. In this test case, to save the
computational cost, the present computation size is L = 8D in the streamwise direction,
which is much smaller than that (L = 16D) in the reference study (Li et al. 2015). Different
from Li et al. (2015), all the present simulations are conducted in the inertial frame with
the periodic condition in the streamwise direction. The mesh resolution is Δ = 1/32D,
and the time step is �t = 10−3. Other rheological parameters of viscoelastic fluid are
consistent with the reference study (Li et al. 2015).

The comparison results are demonstrated in figure 22. The particle position is generally
consistent with the reference results, especially for the time of the sphere reaching its
equilibrium position. The deviation is caused by the smaller computational size in the
present study. Overall, the comparison of results shows that the present numerical method
could estimate the dependence of particle migration on the coupling effect (El) of fluid
inertia and elasticity in elasto-inertial flows. More importantly, figure 22 shows that at
the same El, the shear-thinning effect of polymeric fluids (represented by α = 0.1 in the
Giesekus model) weakens the fluid elasticity, and increases the fluid inertial effect in the
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Figure 23. Effect of computational size in the streamwise direction on the particle migration, with Re = 15,
El = 0.1.

flow system. Thus the particle equilibrium position is closer to the channel wall than that
in the Oldroyd-B fluid (α = 0). These results further evidence that it is feasible to control
the particle positions in the flow field by tuning the rheology of suspension fluids.

Appendix B. Effect of the computational domain size and mesh convergence

As mentioned in § 3.2, the computational size of the microchannel is set as W × H × L =
4D × 4D × 8D. Considering the periodic boundary in the streamwise direction of the
channel flow, this appendix checks the effect of the computational size of L on the particle
elasto-inertial migration. In this test case, the computational size L in the streamwise
direction is set as L = 8D, 16D, 20D. The comparison of results simulated in three
different microchannels with different L is shown in figure 23. From figure 23, it is
found that the effect of L does not qualitatively change the present results calculated
with L = 2H. The present channel length is similar to that (L = H) in the previous
study on the elasto-inertial migration of spheres conducted by Yu et al. (2019). More
importantly, Yu et al. (2019) indicated that the shorter channel length (L = H) is important
in simulating the particle elasto-inertial migration, because the shorter channel length can
reveal the particle hydrodynamic interactions in practical particle focusing or separation
applications.

Compared to the particle migration in the fluid inertia or fluid elasticity dominant flows,
the elasto-inertial migration of the particle is more complex. Considering that the fluid
inertia and elasticity are comparable for the spheroid migration in the flow at El = 0.01
and Re = 15, we focused mainly on the effect of mesh resolution on the case of spheroid
migration in the elasto-inertial flow at El = 0.01 and Re = 15.

In the present test cases, we simulated the migration of the oblate spheroid in the
elasto-inertial duct flow on four types of meshes with different spatial resolution, and the
results are shown in figure 24. From figure 24(a), the time evolution of the particle mass
centre calculated on two finer meshes (Δ = 1/32D and 1/64D) agree well with each other.
Furthermore, figures 24(b,c) show the particle lateral velocities at different positions and
orientations during the particle migration. It is found that the effect of the mesh resolution
on the particle migration is negligible when Δ = 1/32D. These results suggest that the
present mesh resolution (Δ = 1/32D) is reliable in capturing the oscillating characteristics
of the oblate spheroid in the elasto-inertial migration.
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Figure 24. Effect of mesh resolution on the elasto-inertial migration of the oblate spheroid at El = 0.1 and
Re = 15. (a) Time evolution of particle position Yp. (b) Particle migration velocity at different position Yp.
(c) Particle migration velocity at different orientation.
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