Light element synthesis constraining the supernova neutrino spectrum

Takashi Yoshida¹, Toshitaka Kajino^{2,3}, and Dieter H. Hartmann⁴

¹Astronomical Institute, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan email: tyoshida@astr.tohoku.ac.jp

²National Astronomical Observatory, and The Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

³Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

⁴Department of Physics and Astronomy, Clemson University, Clemson, SC29634, USA

Abstract. We constrain energy spectra of supernova neutrinos using the ν -process light element synthesis in supernovae and the ¹¹B abundance during Galactic chemical evolution. We calculate supernova nucleosynthesis due to the ν -process assuming that neutrino energy spectra are Fermi-Dirac distributions with zero chemical potential. We investigate the dependence of the ¹¹B yield on the total neutrino energy and the temperature of $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$. From the obtained yields and the contribution to the ¹¹B yield from supernovae constrained by observed abundances and Galactic chemical evolution models, we find an acceptable range of the temperature of $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$ of 4.8 MeV to 6.6 MeV.

Keywords. Supernovae: general, nuclear reactions, nucleosynthesis, abundances, Galaxy: evolution

1. Introduction

Supernovae (SNe) are one of the important sites for light element (Li-Be-B) production during Galactic chemical evolution (GCE). SNe provide mainly ¹¹B and ⁷Li through the neutrino-nucleus interaction, referred to as the ν -process (Woosley, *et al.* 1990). Recent studies of GCE of light elements indicated that the contribution of ¹¹B from SNe derived from explosive nucleosynthesis models (Woosley & Weaver 1995; WW95) is larger by a factor of 2.5 ~ 5.6 than that evaluated from GCE models (e.g., Fields, *et al.* 2000). However, the ¹¹B and ⁷Li yields depend on supernova neutrino parameters which have not yet been precisely determined. We investigate the dependence of the ¹¹B and ⁷Li yields in SNe on the total neutrino energy and the neutrino energy spectra. Then, we constrain the SN neutrino parameters through limitations on the ¹¹B yield determined by input from GCE.

2. Supernova model

We assume that the energy spectra of SN neutrinos obey the form of Fermi-Dirac distributions with zero chemical potentials. The temperatures of $\nu_{\rm e}$ and $\bar{\nu}_{\rm e}$ are set to be 3.2 MeV and 5.0 MeV. The neutrino luminosity decreases exponentially with time with the decay time of ~3 s. We treat the total neutrino energy E_{ν} and the temperature of $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$, $T_{\nu_{\mu,\tau}}$, as free parameters. We use a 16.2 M_{\odot} presupernova star corresponding to SN 1987A (Shigeyama & Nomoto 1990) as a progenitor model. The

Figure 1. Contour lines of overproduction factor f_{ν} in the parameter plane of E_{ν} and $T_{\nu_{\mu,\tau}}$. The region between two vertical lines indicates the gravitational energy range relevant for ~ $1.4M_{\odot}$ neutron star. The point labeled WW95 indicates the specific parameter values used in WW95. The region between the two solid contour lines in ¹¹B panel is the f_{ν} range appropriate for GCE of ¹¹B. The shaded region is the part of parameter space in which both constraints (GCE ¹¹B yield and neutron star binding energy) are simultaneously satisfied. A similar box is drawn for the case of ⁷Li.

supernova explosion is calculated with the explosion energy of 1×10^{51} ergs and the mass cut of $1.6M_{\odot}$. Detailed nucleosynthesis during the explosion is calculated using a nuclear reaction network containing 291 nuclear species (Yoshida, *et al.* 2004).

3. Results

In our model, ¹¹B and ⁷Li are mainly produced in the He layer. In there, ⁷Li is produced through ⁴He($\nu, \nu' p$)³H(α, γ)⁷Li and ⁴He($\nu, \nu' n$)³H(α, γ)⁷Be(e⁻, ν_e)⁷Li. Most of ¹¹B is produced through ⁷Li(α, γ)¹¹B. Less abundant ¹¹B is produced through ¹²C($\nu, \nu' p$)¹¹B and ¹²C($\nu, \nu' n$)¹¹C(β^+)¹¹B in the O/C layer. When we set the total neutrino energy E_{ν} to 3×10^{53} ergs and the neutrino temperature $T_{\nu_{\mu,\tau}}$ equal to 6 MeV, the ¹¹B and ⁷Li yields are $1.92 \times 10^{-6} M_{\odot}$ and 7.37×10^{-7} . They are consistent with the yields of S20A model in WW95; the ¹¹B and ⁷Li yields are $1.85 \times 10^{-6} M_{\odot}$ and $6.67 \times 10^{-7} M_{\odot}$.

We constrain the neutrino temperature $T_{\nu_{\mu,\tau}}$ from GCE models of ¹¹B abundance and the constraint on the total neutrino energy. Figure 1 shows the dependence of the ¹¹B and ⁷Li yields in our model on the total neutrino energy E_{ν} and the neutrino temperature $T_{\nu_{\mu,\tau}}$. The overproduction factor f_{ν} is defined by the ratios of the yields of ¹¹B and ⁷Li to the corresponding yields presented in WW95. We evaluate the range of f_{ν} from GCE models of ¹¹B abundance (e.g., Fields, *et al.* 2000) as $0.18 < f_{\nu} < 0.40$. The appropriate range of E_{ν} is evaluated as 2.4×10^{53} ergs $< E_{\nu} < 3.5 \times 10^{53}$ ergs from the gravitational energy of a $\sim 1.4M_{\odot}$ neutron star (Lattimer & Prakash 2001). Therefore, the neutrino temperature range reproducing the SN contribution of ¹¹B in GCE is 4.8 MeV $< T_{\nu_{\mu,\tau}} < 6.6$ MeV; lower neutrino temperature is favorable. From this neutrino temperature range, we also constrain the ⁷Li yield in a $\sim 20M_{\odot}$ star SN between $1.3 \times 10^{-7}M_{\odot}$ and $2.9 \times 10^{-7}M_{\odot}$. We have also investigated the effect of nonzero chemical potential of the neutrino energy spectra on the production of ¹¹B (see Yoshida, *et al.* (2005)).

Acknowledgements

This work has been supported by COE Research "Exploring New Science by Bridging Particle-Matter Hierarchy" in Graduate School of Science, Tohoku University (22160028), by the Ministry of Education, Culture, Sports, Science and Technology, Grants-in-Aid for Specially Promoted Research (13002001), and by the Mitsubishi Foundation.

References

Fields, B.D., Olive, K.A., Vangioni-Flam, E. & Cassé, M. 2000, Astrophys J. 540, 930

Lattimer, J.M. & Prakash, M. 2001, Astrophys J. 550, 426

Shigeyama, T. & Nomoto, K. 1990, Astrophys J. 360, 242

Woosley, S.E., Hartmann, D.H., Hoffman, R.D. & Haxton, W.C. 1990, Astrophys J. 356, 272

Woosley, S.E. & Weaver, T.A. 1995, Astrophys J. Suppl. 101, 181 (WW95)

Yoshida, T., Kajino, T. & Hartmann, D.H. 2005, Phys. Rev. Lett. 94, 231101

Yoshida, T., Terasawa, M., Kajino, T. & Sumiyoshi, K. 2004, Astrophys J. 600, 204

Patrick François and Eric Depagne (LOC) at the welcome reception.

One of the many LOC annoucements at the conference, by Vanessa Hill.