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ABSTRACT. We perform a linear-stability analysis of a system of ordinary differential equations
describing the motion of dense flowing avalanches. The depth-averaged equations relate the mean
translational velocity of the avalanche to the production of turbulent kinetic energy associated with
the random motion of the snow granules. Flow friction is described by an extended Voellmy model,
where both the Coulomb and turbulent resistance are related to the random kinetic energy. We identify
two snow avalanche flow regimes: (1) an unstable frictional flow regime characterized by low random
kinetic energy production and (2) a stable, collisional flow regime at the avalanche front. Flow-regime
transitions are governed by the production of random kinetic energy, which is controlled by mass. The
unstable regime is characterized by a saddle point which the avalanche encounters at the onset of
motion and deposition. Depending on the release mass and/or mass growth, the avalanche head will
either fluidize, leading to far-reaching avalanches, or starve and die out. At the tail of the avalanche
this saddle point also controls the commencement of deposition and therefore the stopping behaviour
of avalanches. We discuss the conditions for flow-regime transitions and the enhanced mobility of
snow avalanches.

INTRODUCTION
Recent experimental measurements of the vertical velocity
distribution (normal to the flow direction) in full-scale dry
and wet snow avalanches obtained from the Swiss Vallée
de la Sionne test site (Kern and others, 2009) have been
used to develop a constitutive model of flowing snow
(Buser and Bartelt, 2009). The idea behind this model is
that the internal avalanche velocity is governed by the
production of random kinetic energy, which, in turn, is
governed by the frictional work rate (Bartelt and others,
2006), itself a function of the avalanche velocity. Higher
avalanche velocities, typically found at the avalanche front,
are associated with higher random kinetic energy density.
The cyclic, nonlinear feedback between the translational
velocity (translational kinetic energy, K ) of the avalanche
and the random velocity of the snow granules controls the
evolution of internal shearing between the front and tail
of the avalanche. The constitutive model has been used
within the framework of depth-averaged continuum models
to predict avalanche run-out, spatial distribution of avalanche
deposits, internal and frontal avalanche velocity and impact
pressure in general three-dimensional terrain (Christen and
others, 2010). The model explains why calibrated Voellmy
friction coefficients are required to model extreme avalanche
run-out (Buser and Frutiger, 1980; Bartelt and Buser, 2010),
a problem of great practical interest (Salm and others, 1990).
In this paper we further examine the role of random kinetic

energy, R, in snow avalanches. If the production of R is
related to the evolution of shear between the front and tail of
the slide, it should also be related to observed flow-regime
transitions, casually defined as the transition between high-
velocity/low-density avalanche fronts and low-velocity/high-
density tails. Indeed, the concepts of shear evolution and
flow-regime transitions appear to be complementary in
the sense that their mechanical origin and effect are the
same, differing only in the terminology of the description,
though the concept of a flow-regime transition necessitates

a more precise mathematical definition. In the following
we define a flow-regime transition as a movement between
equilibrium states in the R–K phase plane, derived from a
linear-stability analysis of a simplified system of autonomous
ordinary differential equations describing avalanche flow.
We investigate the stability of the equilibrium points to
deduce the solution trajectories in the R–K phase plane
and show how these solutions depend, most importantly,
on avalanche mass per unit area. Flow-regime transitions
appear to exist in all avalanche flow types, both dry and
wet. The magnitude of the excursion from equilibrium (the
very idea of an avalanche) is controlled by the constitutive
parameters characterizing the production and dissipation of
random energy.

AVALANCHE MODEL
The snow avalanche mass per unit area,M(s, t ), at time t and
location s is given by

M(s, t ) = ρh(s, t ). (1)

The variable s is the arc length along the track profile
parameterized by the coordinates x(s) and y (s), h is the mean
avalanche flow height and ρ is the density of the avalanche.
The avalanche mass can increase or decrease according to

dM
dt

= Q (s, t ) = Qe −Qd, (2)

where Q (s, t ) represents the mass change rate per unit area.
Since we consider the stability of stationary solutions we take
Q (s, t ) = 0, indicating the mass influx,Qe, is in balance with
the mass loss, Qd, or Qe = 0 and Qd = 0. The equation of
motion for the avalanche is

d
dt
(Mu) = Mg|| − S, (3)

where u is the mean avalanche velocity in the direction
parallel to the slope with angle φ(s), and g|| is the
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gravitational acceleration in the direction of u, g|| =
g sinφ(s) with g the gravitational constant (9.81m s−2).
Gravitational acceleration normal to the track is denoted g⊥,
with g⊥ = g cosφ(s). The angle φ(s) is defined by the track
profile, tanφ(s) = dy/dx. The frictional stress, S, is the well-
known Voellmy flow resistance (Voellmy, 1955; Salm, 1993)

S = μMg⊥ +
Mg
hξ
u2, (4)

where the parameters μ and ξ represent the dry Coulomb and
turbulent friction coefficients derived from the observation of
avalanche run-out distances (Buser and Frutiger, 1980; Salm
and others, 1990; Bartelt and others, 1999).
Avalanching snow consists of rounded snow granules

(Bartelt and McArdell, 2009). The kinetic energy associated
with the random movement of the snow granules is defined
as R (Bartelt and others, 2006). The total random kinetic
energy, R, changes along the avalanche track in accordance
with the production and decay equation discussed in detail
by Buser and Bartelt (2009)

dR
dt
= αSu − βR. (5)

Parameter α ∈ [0, 1] controls the generation of random
energy from the shear work of the mean flow, while
parameter β (with β ≥ 0) accounts for the dissipation of
random energy. The value of β depends on moisture content
and ranges between 0.65 s−1 for dry avalanches and 1.25 s−1

for wet snow avalanches (Buser and Bartelt, 2009; Bartelt
and Buser, 2010). The value of α appears to be a function of
the properties of the running surface of the avalanche track.
At the Vallée de la Sionne site, we find dry and wet snow
avalanches have α = 0.10 (Christen and others, 2010).
The fundamental idea behind this model is to divide the

total flow velocity into two separate flows, i.e. the mean flow
with kinetic energy K

K =
M
2
u2 (6)

and the fluctuating flow with random energy R, although
both flows are associated with the same mass, M. The
fluctuation velocities have zero mean, by definition, and
can be considered random, especially when far away from
the flow boundaries (the bottom and top surface of the
avalanche). We disregard the vertical expansion of the flow
due to the dispersive pressure associated with R, so R
effectively does not do mechanical work (Bartelt and others,
2006). At present, we do not allow dispersive pressure (the
interaction of R with the basal boundary) to raise the height
of the avalanche or to change the flow density. Energy
fluxes associated with the production and dissipation of R
are therefore irreversible. We account for the influence of
random energy on the frictional resistance by formulating
Voellmy–Salm parameters μ(R) and ξ(R) that change with R,
(Gubler, 1987) according to the relationships:

μ(R) = μ0 exp
(
− R
R0

)
and ξ(R) = ξ0 exp

(
R
R0

)
. (7)

This is a plausible (but heuristic) function to test if we
can simulate the changes of μ and ξ with R, where R is
given by Equation (5). The fluctuation energy scale, R0, that
determines the change of the frictional coefficients as a
function of R has values in the range 5 ≤ R0/h ≤ 15 kJm−3,
according to measurements at Vallée de la Sionne (Bartelt

and Buser, 2010; Christen and others, 2010). The friction
coefficients, μ0 and ξ0, represent the static Coulomb and
turbulent friction coefficients, respectively

μ(R = 0) = μ0 and ξ(R = 0) = ξ0. (8)

This provides μ values in the range of snow-chute experi-
ments (Platzer and others, 2007). Static dry Coulomb values
can be deduced from deposition angles at the front of the
avalanche, typically 0.40 ≤ μ0 ≤ 0.55 (20–30◦), and ξ0
(500 ≤ ξ0 ≤ 700m s−2) can be determined from avalanche
tail velocities. These ξ0 values are similar to values derived by
Voellmy (1955); they are smaller than values recommended
by the Swiss guidelines (Salm and others, 1990; Gruber and
Bartelt, 2007).
Equations (1–3) with constitutive relations Equations (4),

(5) and (7) completely specify the dynamics of our system,
with the random kinetic energy, R, playing a central role. The
model requires five constitutive parameters, three limiting
the kinetic energy, K , (μ0, ξ0 and R0) and two describing the
production (α) and dissipation (β) of R.

STABILITY POINTS IN THE R–K PHASE PLANE
We now perform a linear-stability analysis (Boyce and
DiPrima, 1977) of the autonomous system of governing
differential equations, Equations (3) and (5),

d (Mu)
dt

= F (R, u) and
dR
dt
= G(R, u). (9)

The variables in Equations (3) and (5) are u and R. A
steady-state (R, u) is reached when all the variables are time
independent, Ṙ = 0 and u̇ = 0. Beside the trivial solution
(R,u) = (0, 0), we seek nontrivial, steady-state points.
By first solving Equation (3) with Equation (4) for u we find

u2 = u20
(
exp r sinφ− μ0 cosφ

)
, (10)

where u20 = ξ0h and r = R/R0. The relation for u2 can be
substituted into Equation (5) to find a dimensionless equation
for r ,

H(r ) ≡ exp r − c − dr2 = 0, (11)

with c = μ0/ tanφ and

d =
(

β

αMg||

)2(
R0
u0

)2
1
sinφ

. (12)

The function H(r ) is plotted for several values of c and d in
Figure 1. For flat slopes (c > 1 and d very large) we find
that H(r ) has only one root at high r . This indicates that to
sustain a steady flow state at low slope angles requires a
high R production. When the avalanche cannot produce the
required R, it will stop. Where μ0 = tanφ (c = 1), we have
two steady-state cases and the static equilibrium, u = r =
0, if d is large enough. For slopes with tanφ slightly higher
or lower than μ0 we have two nonzero equilibrium points,
depending on the value of d . These two points are associated
with an upper and lower r value. We cannot determine the
stability of these equilibrium points analytically. However,
numerical solutions reveal the lower equilibrium point is
a saddle point and the higher-velocity equilibrium point is
stable. This result indicates that for the same slope angle, we
can have two different flow regimes appearing at the front or
tail of the avalanche. Finally, for steeper slope angles, c < 1,
it is possible to have no equilibrium, depending on the value
of d , and therefore the avalanche can attain no steady state.
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Fig. 1. The function H(r ) for different values of c and d . No, one,
two or three roots exist, (R, u), depending on the value of c and d .

The number of equilibrium points depends on the slope angle
and μ0.
To investigate the stability of the system, we construct

the Jacobian matrix, J, of the Equation (9) system at the
equilibrium (steady-state) point R and u

J =
( ∂F

∂R (R,u)
∂F
∂u (R,u)

∂G
∂R (R,u)

∂G
∂u (R,u)

)
. (13)

The stability of the system Equation (9) at (R,u) is determined
by the eigenvalues of J. To reach this equilibrium state,
the mass, M, must be constant and therefore, as stated
earlier, Q (s, t ) = 0. Because one cannot solve Equation (11)
analytically and because we are interested in a qualitative
understanding of our system, we consider the two limiting
cases of our friction law separately. The present paper
analyzes the two limiting cases μ0 = 0 and ξ0 → ∞
(described in the two subsections below).

Coulomb friction
If the ξ-dependent friction term is neglected, the total friction,
S, is given by the Coulomb term, S = μ(R)(Mg⊥) (case 1).
For this case, the equilibrium node is

R
R0
= ln

(
μ0
g⊥
g||

)
and u =

βR0
αMg||

R
R0

. (14)

The eigenvalues, e, of J are

e = −β(R + R0)
2R0

±

√
β2(R + R0)2 + 4αg2||R0M

2R0
. (15)

Since the square root of this expression is always positive,
the eigenvalues, e, are real and of opposite sign, indicating
a saddle point. Solution curves approach (R,u) and then
diverge (Fig. 2). At low velocity, u(0), and low R(0) initial
conditions, solutions converge to the stopped avalanche
case (R, u) = (0, 0). For higher initial velocities or random
kinetic energies, the avalanche fluidizes, always increasing
its velocity and random kinetic energy. This saddle point can
be encountered either at the very onset of motion (steep
slope) or in the run-out zone (flat slope). The existence of
a saddle point indicates that for a particular mass height, h,

Fig. 2. Numerical solutions of Equations (3) and (5) with differing
initial conditions for u and R for the Coulomb friction case. (a) The
R–u phase plane. Solution trajectories diverge from an unstable
saddle point (R, u). (b) Saddle point in the R–K phase plane.
(c) Velocity trajectories. The saddle point separates the stopping or
deposition regime from the accelerating, fluidization regime. The
stopping regime is encountered at the onset of avalanche motion
and controls the beginning of deposition at the avalanche tail.
Solution trajectories for a 25◦ slope with additional parameters:
ρ = 300 kgm−3, h = 1m, μ0 = 0.55, α = 0.1, β = 0.8 s−1,
R0 = 5 kJm−3.
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Fig. 3. A series of small avalanches near Davos, Switzerland. A small
avalanche has starved on the steep slope. Larger avalanches run
out. The mobility of avalanches that begin and stop on slopes with
the same slope angle cannot be explained with constant Coulomb
friction values.

there exists a slope angle at initiation at which the avalanche
will fluidize (fluidized regime; see Equations (14) or (20)),
where R varies linearly with velocity, mass and the sine
of the slope angle. This slope angle varies with avalanche
height: lower slope angles are required for fluidization for
avalanches with higher flow heights (see Fig. 3). Similarly,
in the run-out zone, there exists a slope angle at which
avalanche motion will cease (stopping or starving regime;
Fig. 2). Cessation of motion can begin at or behind the
avalanche front (at the tail), when velocities and random
kinetic energy (R, u) decrease to values at which solution
trajectories converge to (0, 0). Because run-out zone slopes
are steeper above the valley bottom, stopping will typically
propagate from the slope angle upwards towards the tail,
in the form of a stopping front. The relationship between
avalanche deposition heights and slope angle reflects the
properties of the terrain and the size of avalanche as well
as the dissipative properties of the random kinetic energy.

Turbulent friction
When the avalanche is moving at high speed and turbulent
friction is much larger than the Coulomb contribution, S =
(Mg )u2/hξ(R) (case 2). This high-velocity case is somewhat
more difficult to solve since numerical solutions are required
to find the equilibrium point, (R, u), and eigenvalues, e.
However, the system can be approximated by performing
a quadratic expansion of the exponential, ξ(R),

ξ(R) = ξ0 exp
(
R
R0

)
≈ ξ0

[
1 +

R
R0
+
1
2

(
R
R0

)2
+ · · ·

]
(16)

and solving for u in the resulting quadratic equation,

(
a2b
2
− 1

)
u2 + abu + b = 0, (17)

with

a =
αMg||
βR0

and b = ξ0h sinφ. (18)

The approximate solution for u is

u =
ab ±

√
a2b2 + 4b

(
1− a2b

2

)
2
(
1− a2b

2

) , (19)

while the solution for R is (cf. Equation (14))

R =
αMg||
β

u. (20)

We note that real equilibrium steady-state velocities exist
only for a

2b
2 < 2. Substituting the parameter constants a and

b into this relation, we find the following condition for slope
angle φ:

4
(

βR0
αMg||

)2
1
ξ0h

> sinφ. (21)

One conclusion that we can draw is that on steep slopes no
steady solution can be found for large flow heights, h (Fig. 4).
To find the eigenvalues of J we rely on numerical solutions

which reveal that the eigenvalues are both real and both
negative, indicating an asymptotically stable node (see
Fig. 5). Thus, once the avalanche has passed the saddle
point given by the Coulomb friction, solution trajectories
will be attracted to a high-velocity, high-R equilibrium
(R,u). The analysis reveals the importance of the relationship
between flow height and slope angle in combination with
the ratio βR0/α, describing the production and decay of
random kinetic energy. Steady velocities can be found on
flat slopes, especially for large flow heights. When the slope
flattens, the flow height can increase and there still exists a
steady solution.

DISCUSSION AND CONCLUSION
The insertion of random kinetic energy fluxes (Equation (5))
into a well-known avalanche dynamics model (Equation (3))
facilitates the mathematical description of flow regimes and
flow-regime transitions in snow avalanches. The description
allows many salient features of avalanche behaviour to be
modelled with simple frictional relationships. We modified
the Voellmy (1955) flow law to include the effect of random
kinetic energy fluxes. This is in the sense of Voellmy, who
remarked in his landmark paper (Voellmy, 1955) that the
mobility of flowing snow is similar to vibrated concrete:
mobility increases with shaking. Reversible, dilative volume
changes, resulting from R, produce significant changes in
shear strength. This suggests that the constitutive model
to describe shear is less important than a mathematical
description of how shear strength evolves as a function of
the random kinetic energy fluxes.
Our analysis reveals that the regimes are controlled by

the production of R. The critical equilibrium values of R are
in both cases directly proportional to the gravitational work
rate, Ẇg,

R =
α

β
Ẇg =

α

β
Mg||u, (22)

(cf. Equations (14) and (20)) and therefore depend directly
on the mass per unit area and the flow height. This helps
explain the extreme mobility of avalanches starting with
large fracture heights. The larger the flow height, the more
likely flow fluidization will occur. If, at the onset of motion
of a small slide, the influx of mass is sufficiently large,
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Fig. 4. Numerical solutions of Equations (3) and (5) with differing
initial conditions for u and R for the turbulent friction case with
no steady solutions. (a) The R–u phase plane. Solution trajectories
can diverge (R, u) for large slope angles and large flow heights.
(b) R–K phase plane. (c) Divergent velocity trajectories. The
solution trajectories for 33◦ slope with additional parameters: ρ =
350 kgm−3, h = 1m, ξ0 = 500ms−2, α = 0.1, β = 0.75 s−1,
R0 = 5 kJm−3.

Fig. 5. Numerical solutions of Equations (3) and (5) with differing
initial conditions for u and R for the turbulent friction case.
(a) The R–u phase plane. Solution trajectories converge to a stable
node (R, u). (b) Stable node in the R–K phase plane. (c) Velocity
trajectories. The stable node exists only for moderate slope angles.
Solution trajectories for a 25◦ slope with additional parameters:
ρ = 350 kgm−3, h = 1m, μ0 = 0.55, ξ0 = 500m s−2, α = 0.1,
β = 0.75 s−1, R0 = 5 kJm−3.
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the avalanche can also pass the saddle point, defined by
Coulomb friction, and fluidize. Therefore, release zone size
and fracture height, as well as entrainment thresholds, are
necessary to predict avalanche run-out and danger, a fact
well known to avalanche mitigation experts. The saddle point
also helps explain why small avalanches may stop on steep
slopes: at the tail of the avalanche, the gravitational work rate,
and therefore the production of random energy, decreases.
At some point, solution trajectories will recede to the critical
node (0, 0). The avalanche will starve as the tail deposits
(Fig. 3) (Bartelt and others, 2007). Our analysis indicates that
the frictional flow regime of snow avalanches is inherently
unstable in the sense that any disturbance at the saddle point
will cause the avalanche to fluidize or stop.
The terminal speed of an avalanche varies linearly with R;

the translational kinetic energy varies with R2. This indicates
how random energy fluxes, controlled by mass uptake and
surface roughness, can control the propagation speed of
the avalanche. The collisional flow regime, characterized
by turbulent friction, is stable for unchanging boundary
conditions. We note that videogrammetric measurements of
mixed-powder snow avalanches at the Vallée de la Sionne
test site exhibit steady leading-edge velocities (Turnbull and
McElwaine, 2007). However, an avalanche might run into
conditions where this stable, fluidized regime is lost. This
can occur on steep slopes with large flow heights. No steady
state is reached and the avalanche will accelerate, reaching
high velocities. In that case other dissipation processes must
be considered, such as loss of mass (energy) by producing a
powder cloud. Such processes are clearly outside the scope
of this simple model.
Flow-regime transitions are related to flow density fluc-

tuations. When R does mechanical work at a boundary,
density changes, and therefore flow-regime transitions, will
result. Flow density cannot decrease without expanding the
volume (raising the flow height) of the avalanche, keeping the
mass constant. Presently, we do not consider the acceleration
that must accompany a rise in the avalanche’s centre of
mass. We assume R is constant (Ṙ = 0) and therefore the
density remains constant. However, the interaction of R with
the basal boundary will necessarily result in pushing the
bulk of the flow mass upwards. Therefore, density variations
are also related to the production of R. Higher production
rates correspond to lower flow densities. The equilibrium
node (attractor) found by considering the turbulent friction,
ξ, implies an equilibrium flow density at the avalanche
front. Thus, the inclusion of random energy fluxes offers the
possibility of including density variations, i.e. the movements
of the centre of mass in the direction perpendicular to
the flow direction. This movement includes an acceleration
which in turn produces a reactive, dispersive pressure at the
bottom.We suspect that these changes of pressure are within
the resolution of our measuring equipment. Our findings will
be the subject of a subsequent paper.
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