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Abstract

We develop the Springer theory of Weyl group representations in the language of
symplectic topology. Given a semisimple complex group G, we describe a Lagrangian
brane in the cotangent bundle of the adjoint quotient g/G that produces the perverse
sheaves of Springer theory. The main technical tool is an analysis of the Fourier
transform for constructible sheaves from the perspective of the Fukaya category. Our
results can be viewed as a toy model of the quantization of Hitchin fibers in the geometric
Langlands program.

1. Introduction

The primary aim of this paper is to develop Springer’s theory [Spr76, Spr78, Spr82] of
Weyl group representations in the language of symplectic topology. Let G be a semisimple
complex group with Lie algebra g, nilpotent cone N ⊂ g, Springer resolution µ : Ñ →N , and
Weyl group W . In a form due to Lusztig [Lus81] and Borho–MacPherson [BM81] (building on the
topological setting introduced by Kazhdan–Lusztig [KL80]), Springer theory identifies the group
algebra C[W ] with the (degree zero) endomorphisms of the perverse sheaf SN =Rµ∗CÑ [dimC N ].
We explain here how one can tell this story via the Fukaya category of the cotangent bundle
of the adjoint quotient g/G. An initial motivation for this is the relative accessibility of objects of
the Fukaya category (smooth Lagrangian submanifolds with structure) versus objects such as
perverse sheaves (complexes of sheaves living on a singular variety). For example, the object of the
Fukaya category corresponding to SN (or, to be precise, its Fourier transform) is a regular fiber
of a particular instance of the Hitchin fibration. The Weyl group action arises from Hamiltonian
isotopies coming from motions of the regular parameter.

The approach to Springer theory adopted here is via the Fourier transform for constructible
sheaves. According to Ginzburg [Gin83] and Hotta–Kashiwara [HK84], the Fourier transform of
the Springer sheaf SN can be identified with the intersection cohomology of g with coefficients
in the regular C[W ] local system over the regular semisimple locus grs ⊂ g. (Here we have
identified g and its dual g∗ using the Killing form.) In general, given a finite-dimensional real
vector space V , the Fourier transform exchanges conic constructible sheaves on V and its dual V ∗.
The Fourier transform F∧ of a constructible sheaf F encodes the Morse groups (or vanishing
cycles) of F along rays through the origin. When V is a complex vector space, the (shifted)
Fourier transform exchanges conic perverse sheaves on V and its dual V ∗. Its structure is most
transparent from the perspective of D-modules via the Riemann–Hilbert correspondence. The
Fourier transform for D-modules exchanges conic DV -modules with conic DV ∗-modules by the
elementary change of variables x 7→ −∂x, ∂x 7→ x, where x is a coordinate on V and ∂x is the dual
coordinate on V ∗. In other words, it is nothing more than a ‘90◦ rotation’ of the phase space.
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There is a dictionary between constructible sheaves on a manifold and the Fukaya category of
its cotangent bundle (see [Nad09, NZ09]). The main technical result of this paper describes how
the Fourier transform for constructible sheaves on V and V ∗ appears from the perspective of the
Fukaya category of V × V ∗. We can identify V × V ∗ as a symplectic target with T ∗V and also
with T ∗V ∗. (If x, ξ denote coordinates on T ∗V , v, λ coordinates on V × V ∗, and y, η coordinates
on T ∗V ∗, then our identifications take the form x= v =−η, ξ = λ= y.) In this way, one can
associate to a Lagrangian brane L ↪→ V × V ∗ constructible sheaves πV (L) and πV ∗(L) living on
V and V ∗, respectively. We introduce a class of Lagrangian branes in V × V ∗, called balanced
branes, such that the conic limits of πV (L) and πV ∗(L) are Fourier transforms of each other.
Thus, for balanced branes, the operation underlying the Fourier transform is again nothing more
than a ‘90◦ rotation’ of the target. With this theory in hand, we construct the Fourier transform
of the Springer sheaf SN by identifying the corresponding balanced brane in T ∗g.

The primary motivation for this paper is the study of the Hitchin fibration within the
framework of the geometric Langlands program (see Beilinson–Drinfeld [BD] and Kapustin–
Witten [KW07]). Fix a smooth projective complex curve C. Let g∗//G= Spec(Sym g)G be
the affine coadjoint quotient, (g∗//G)ωC its twist by the canonical bundle of C, and BG(C) =
Γ(C, (g∗//G)ωC ) the Hitchin base. Consider the moduli BunG(C) of G-bundles over C, its
cotangent bundle T ∗ BunG(C) with fibers

T ∗P BunG(C) = Γ(C, g∗P ⊗ ωC) for P ∈ BunG(C),

where g∗P denotes the P-twist of g∗, and the Hitchin fibration

H : T ∗ BunG(C)→ BG(C), H(P, Φ) = Φ

induced by the morphism g∗P ⊗ ωC → (g∗//G)ωC . One of the main goals of the geometric
Langlands program is the quantization of the Hitchin fibers. Given a parameter [ ∈ BG(C), with
Hitchin fiber L[ =H−1([)⊂ T ∗ BunG(C), we seek a D-module on BunG(C) whose ‘support’
is equal to L[. In physical terms, we would like to understand the structure of the A-brane
wrapping L[.

In the toy case when C is a cuspidal elliptic curve, the moduli of semistable G-bundles
(equivalently, bundles whose pullbacks to the normalization P1 are trivializable) reduces to g/G,
and the Hitchin fibration reduces to a form of the moment map. To simplify the discussion, let
us use the Killing form to identify g and its dual g∗, and fix a Cartan subalgebra h⊂ g. Then,
under the resulting induced identifications

T ∗(g/G)' {(x, ξ) ∈ g× g | [x, ξ] = 0}/G, g∗//G' h//W,

the restriction of the Hitchin fibration takes the form

H : T ∗(g/G)→ h//W, H(x, ξ) = ξ,

where ξ ∈ h//W denotes the class of ξ ∈ g. As an application of our main result, we show that
for a regular parameter λ ∈ h//W , the semistable Hitchin fiber Lλ =H−1(λ)⊂ T ∗(g/G) is the
balanced brane corresponding to the Fourier transform of the Springer sheaf SN . Motions of
the regular parameter provide a braid group action that descends to the usual Weyl group
action of Springer theory.

1.1 Outline

Here is a further outline of the contents and arguments of the paper.
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In § 2, we develop for our purposes some foundational material on the constructible derived
category Dc(X) of a real analytic manifold X. We explain how to form the standard differential
graded (dg) category Shc(X) with cohomology category Dc(X). We then collect background
material on the Fourier transform for constructible sheaves. To formulate our main theorem, we
need to take certain limits of constructible sheaves. Let V be a real finite-dimensional vector
space with dilation action αt : V → V for scalars t ∈ R+. For F a constructible sheaf on V , we
construct a sheaf Υ(F) that formalizes the notion of the conic limit ‘limt→0 α

t
∗(F)’. We describe

its sections over certain cones in V as needed in our main theorem.

In § 3, we review the Fukaya category of the cotangent bundle T ∗X of a compact real analytic
manifold X following [Nad09, NZ09]. We review the microlocalization quasi-equivalence

µX : Shc(X) ∼ // F (T ∗X)

from constructible sheaves to the triangulated envelope of the Fukaya category. We will not need
the full import of this result, only that µX is a quasi-embedding. But, we will need the main
ingredient in the proof: the invariance of Floer calculations under non-characteristic motions
explained in [Nad09, § 3.7]. This is the fact that Hamiltonian isotopies of non-compact branes
during which no critical event occurs near infinity lead to quasi-isomorphic calculations.

Section 4 contains the main technical work of the paper. Given a real finite-dimensional vector
space V with dual V ∗, we study non-compact Lagrangian branes L ↪→ V × V ∗. We describe how
such an object L gives rise to constructible sheaves πV (L) and πV ∗(L) on the respective factors
V and V ∗. We isolate a class of Lagrangian branes, which we call balanced branes, to which our
main theorem applies. Recall that for F a constructible sheaf on a vector space, Υ(F) denotes
its conic limit ‘limt→0 α

t
∗(F)’. Our main result, Theorem 4.4.2, is the following.

Theorem 1.1.1. Let L ↪→ V1 × V2 be a balanced brane. The Fourier transform and its inverse

exchange the conic limits of the corresponding constructible sheaves

(Υ(πV (L)))∧ 'Υ(πV ∗(L)), (Υ(πV ∗(L)))∨ 'Υ(πV (L)).

In its most succinct form, the proof of the theorem takes the following shape. One observes
that a pair of constructible sheaves are exchanged by the Fourier transform if and only if certain
invariants of the sheaves are exchanged. Namely, the sections of the Fourier transform of a sheaf
over an open convex cone are equal to the sections of the original sheaf within the closed polar
cone. One shows that for a pair of sheaves coming from a single brane, these invariants can be
understood as a single invariant within the Fukaya category. Namely, for a given pair of an open
convex cone and its closed polar cone, there is a single brane such that pairing with it realizes
both spaces of sections. The argument involves a delicate application of the invariance of Floer
calculations under non-characteristic motions. To help the reader, we include a version of the
argument in the case dim V = 1, where one can gently acclimatize to some of the intricacies
involved.

Finally, in § 5, we apply the preceding theory to the adjoint quotient g/G. We first give a brief
synopsis of Springer theory in the language of perverse sheaves. We then review the standard
formalism for working with the cotangent bundle of a stack such as g/G. We then introduce the
Hitchin fibration in the case of the cotangent bundle T ∗(g/G). Finally, we show that its regular
fibers define balanced branes in T ∗(g/G). We use our main result to deduce that these branes
give rise to the perverse sheaves of Springer theory.
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2. Constructible sheaves

In this section, we first review background material on the constructible derived category and
then recall a differential graded model of it. Finally, we review the Fourier–Sato transform.

2.1 Derived category

In this section, we briefly recall the construction of the constructible derived category of a real
analytic manifold. For a comprehensive treatment of this topic, the reader could consult the
book of Kashiwara–Schapira [KS94].

Let X be a topological space. Let Top(X) be the category whose objects are open sets U ↪→X
and morphisms are inclusions U0 ↪→ U1 of open sets:

homTop(X)(U0, U1) =

{
pt when U0 ↪→ U1,
∅ when U0 6↪→ U1.

Let ‘Vect’ be the abelian category of complex vector spaces.
The derived category of sheaves of complex vector spaces on X is traditionally defined via

the following sequence of constructions.

(1) Presheaves. Presheaves on X are functors F : Top(X)◦→Vect, where Top(X)◦ denotes
the opposite category. Given an open set U ↪→X, one writes F(U) for the sections of F
over U and, given an inclusion U0 ↪→ U1 of open sets, one writes ρU1

U0
: F(U1)→F(U0) for the

corresponding restriction map.

(2) Sheaves. Sheaves on X are presheaves F : Top(X)◦→Vect, which are locally determined
in the following sense. For any open set U ↪→X and covering U = {Ui} of U by open subsets
Ui ↪→ U , there is a complex of vector spaces

0 // F(U) δ //
∏
i F(Ui)

δ0 //
∏
i,j F(Ui ∩ Uj),

where δ =
∏
i ρ

U
Ui

and δ0 =
∏
i,j(ρ

Ui
Ui∩Uj − ρ

Uj
Ui∩Uj ). A sheaf is a presheaf for which ker(δ) =

ker(δ0)/im(δ) = 0 for all open sets and coverings of open sets.

Sheaves on X form an abelian category and thus one can continue with the following sequence
of general homological constructions.

(3) Complexes. Let C(X) be the abelian category of complexes of sheaves on X with
morphisms the degree zero chain maps. Given a complex of sheaves F , one writes H(F) for
the (graded) cohomology sheaf of F .

(4) Homotopy category. Let K(X) be the homotopy category of sheaves on X with objects
complexes of sheaves and morphisms homotopy classes of maps. This is a triangulated category
whose distinguished triangles are isomorphic to the standard mapping cones.

(5) Derived category. The derived category D(X) of sheaves on X is defined to be the
localization of K(X) with respect to homotopy classes of quasi-isomorphisms (maps inducing
isomorphisms on cohomology). Acyclic objects form a null system in K(X) and thus D(X)
inherits the structure of triangulated category.

With the derived category D(X) in hand, one can define many variants by imposing
topological and homological conditions on objects.
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(6) Bounded derived category. The bounded derived category D[(X) is defined to be the full
subcategory of D(X) of bounded complexes.

Two standard equivalent descriptions are worth keeping in mind: first, there is the more
flexible description of D[(X) as the full subcategory of D(X) of complexes with bounded
cohomology; second, there is the computationally useful description of D[(X) as the homotopy
category of complexes of injective sheaves with bounded cohomology.

(7) Constructibility. Assume that X is a real analytic manifold. Fix an analytic–geometric
category C in the sense of [vM96]. For example, one could take C(X) to be the subanalytic subsets
of X as described in [BM88].

Let S = {Sα} be a Whitney stratification of X by C-submanifolds iα : Sα ↪→X. An object F
of D(X) is said to be S-constructible if the restrictions i∗αH(F) of its cohomology sheaf to the
strata of S are finite rank and locally constant.

The S-constructible derived category DS(X) is the full subcategory of D(X) of S-constru-
ctible objects. The constructible derived category Dc(X) is the full subcategory of D(X) of
objects which are S-constructible for some Whitney stratification S.

Note that if the stratification S is finite (for example, if X is compact), then the finite-rank
condition implies that all S-constructible objects have bounded cohomology. In other words,
within D(X), every object of DS(X) is isomorphic to an object of D[(X).

2.2 Differential graded category
The derived category D(X) is naturally the cohomology category of a differential graded
(dg) category Sh(X). To define it, we will return to the sequence of homological construc-
tions listed above and perform some modest changes. Two principles guide such definitions:
(1) structures (such as morphisms and higher morphisms) should be defined at the level of
complexes not their cohomologies and (2) properties (such as constructibility) should be imposed
at the level of cohomologies rather than complexes. The first principle ensures that we will not
lose important information, while the second ensures we will have sufficient flexibility. As an
example of the latter, we prefer the realization of the bounded derived category D[(X) as the full
subcategory of D(X) of complexes with bounded cohomologies rather than of strictly bounded
complexes.

The reader could consult [Dri04, Kel06] for background on dg categories; in particular, a
discussion of the construction of dg quotients.

Recall that sheaves on X form an abelian category. The following sequence of homological
constructions can be performed on any abelian category.

(1) Dg category of complexes. Let Cdg(X) be the dg category with objects complexes of
sheaves and morphisms the usual complexes of maps between complexes. In particular, the
degree zero cycles in such a morphism complex are the usual degree zero chain maps, which are
the morphisms of the ordinary category C(X).

(2) Dg derived category. The dg derived category Sh(X) is defined to be the dg quotient
of Cdg(X) by the full subcategory of acyclic objects. This is a triangulated dg category whose
cohomology category H(Sh(X)) is canonically equivalent (as a triangulated category) to the
usual derived category D(X).

One can cut out full triangulated dg subcategories of Sh(X) by specifying full triangulated
subcategories of its cohomology category H(Sh(X))'D(X).
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(3) Bounded dg derived category. The bounded dg derived category Sh[(X) is defined to be
the full dg subcategory of Sh(X) of objects projecting to D[(X).

(4) Constructibility. Assume that X is a real analytic manifold and fix an analytic–geometric
category C. The constructible dg derived category Shc(X) is the full dg subcategory of Sh(X) of
objects projecting to Dc(X). For a Whitney stratification S of X, the S-constructible dg derived
category ShS(X) is the full dg subcategory of Sh(X) of objects projecting to DS(X).

The formalism of Grothendieck’s six (derived) operations f∗, f∗, f!, f
!,Hom,⊗ can be lifted

to the constructible dg derived category Shc(X) (see for example [Dri04] for a general discussion
of deriving functors in the dg setting). In our case, one concrete approach is to recognize that
the natural map Cdg,c(Inj(X))→ Shc(X) from the dg category Cdg,c(Inj(X)) of complexes of
injective sheaves with constructible cohomology is a quasi-equivalence. With this in hand, one
can define derived functors by evaluating their naive versions on Cdg,c(Inj(X)). Since we will
only consider derived functors, we will denote them by the above unadorned symbols.

Throughout the remainder of this paper, we fix an analytic–geometric category C. All subsets
will be C-subsets unless otherwise stated.

2.3 Fourier transform for sheaves
We recall here the Fourier–Sato transform following [KS94, § 3.7]. We will describe the general
parameterized version over a base manifold X, though our application will involve only the
absolute version over X = pt.

When working with constructible complexes on a non-compact manifold E, it is often
technically convenient to fix a relative compactification i : E ↪→ E and work with constructible
complexes on E. In the case of a vector bundle E→X, we will always take the relative spherical
compactification

E = ((E × R>0)\(X × {0}))/R+.

By a constructible complex on E, we will mean a complex F on E such that its extension
i∗F to E is constructible. Throughout this section, we will abuse notation and write Shc(E)
for the full dg subcategory of such complexes. Note in particular that for the natural dilation
R+-action on E, any R+-equivariant complex on E that is constructible in the usual sense is
also constructible in the above extended sense.

2.3.1 Definition of Fourier transform. Let π1 : E→X be a real finite-rank vector bundle
and let π2 : E∗→X be the dual vector bundle. For e ∈ E and e∗ ∈ E∗, let 〈e, e∗〉 ∈ R denote the
natural pairing.

Consider the Cartesian diagram of vector bundles.

E ×X E∗

p1

zzuuu
uuu

uuu
u

p2

$$JJJJJJJJJ

E

π1
$$JJJJJJJJJJ E∗

π2
yytttttttttt

X

Consider the closed subset of non-positive pairs

κ :K = {(e, e∗) ∈ E ×X E∗ | 〈e, e∗〉6 0} � � // E ×X E∗
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and define the integral kernel

K = κ!CK ∈ Shc(E ×X E∗).

Define integral transforms by the formulas

ΦK : Shc(E)→ Shc(E∗), ΨK : Shc(E∗)→ Shc(E),

F∧ = ΦK(F) = p2!(K ⊗ p∗1F) = p2!κ!κ
∗p∗1F ,

G∨ = ΨK(G) = p1∗Hom(K, p!
2G) = p1∗κ∗κ

!p!
2G.

By the usual formalism (independent of the particular kernel K), the functors form an adjoint
pair (ΦK,ΨK).

2.3.2 Conic sheaves. Let R+ ⊂ R× denote the multiplicative group of positive real numbers.
For a compact manifold X with an R+-action, let α : R+ ×X →X be the action map, X/R+

the quotient stack, and p :X →X/R+ the natural projection.
We refer to Shc(X/R+) as the R+-equivariant constructible dg derived category. Since R+ is

contractible, R+-equivariance is a property not a structure. Thus, pullback (or, in other words,
the forgetful functor) p∗ : Shc(X/R+)→ Shc(X) identifies Shc(X/R+) with the full subcategory
of Shc(X) of R+-equivariant objects. We will often refer to R+-equivariant objects as conic
objects.

We have the induction functors

γ = p![−1] : Shc(X)→ Shc(X/R+), Γ = p∗ : Shc(X)→ Shc(X/R+).

By the usual formalism, γ is a left adjoint to the forgetful functor p∗ and Γ is a right adjoint.
(For the former, we have used that R+ is smooth, one dimensional, and has a canonical ‘positive’
orientation.)

We will next describe an alternative way to construct conic objects by taking the limit at zero
of ordinary ones. To informally describe this, let αt :X →X denote the action α : R+ ×X →X
evaluated at t ∈ R+. Then, given an object F ∈ Shc(X), we would like to make sense of the limit
limt→0 α

t
∗F as an object of Shc(X).

To make this precise, let R>0 ⊂ R denote the non-negative real numbers. Consider the diagram

X X × R+αoo � � i+ // X × R>0 X × {0} 'X? _j0oo

where α is the action map and i+ and j0 are the obvious inclusions. There is a natural R+-action
on the above diagram where R+ acts trivially on the X at the left, diagonally on X × R+ and
X × R>0, and by the action α on the X at the right. Thus, we can pass to the quotient diagram

X (X × R+)/R+αoo � � i+ // (X × R>0)/R+ X × {0}/R+ 'X/R+.? _j0oo

Now we define the limit functor to be the composition

Υ = j∗0i+∗α
∗ : Shc(X)→ Shc(X/R+).

Let us relate this construction to the usual nearby cycles functor. Suppose that X is a complex
manifold and the R+-action on X extends to a C×-action α :X × C×→X. Then we can use the
action map α together with the nearby cycles

Rψ : Shc(X × C×)→ Shc(X),
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with respect to the canonical projection X × C→ C, to define a functor

Rψ ◦ α∗[1] : Shc(X)→ Shc(X).

In fact, since the action map α is naturally C×-equivariant for the trivial action on X and
diagonal action on X × C×, and the nearby cycles Rψ makes sense in the equivariant setting,
the functor Rψ ◦ α∗[1] canonically lifts to a functor Shc(X)→ Shc(X/C×).

With the usual conventions (so that Rψ preserves perverse sheaves), the limit construction
and nearby cycles construction are equivalent:

Υ'Rψ ◦ α∗[1].

2.3.3 Properties of Fourier transform. Consider the natural R+-action on the vector bundles
E, E∗. Since K ⊂ E ×X E∗ is R+ × R+-invariant, and so K = κ!CK is R+ × R+-equivariant, the
Fourier transforms ΦK, ΨK land in the full subcategories of conic objects.

Here are two main properties of the Fourier transforms.

(1) [KS94, Theorem 3.7.9] The restrictions of the Fourier transforms ΦK, ΨK to the full
subcategories Shc(E/R+), Shc(E∗/R+) of conic objects are inverse equivalences.

(2) [KS94, Proposition 10.3.18] Suppose that X is a complex manifold and E is a complex
vector bundle. Then the restrictions of the shifted Fourier transforms ΦK[dimC E], ΨK[−dimC E]
to the full subcategories Perv(E/R+), Perv(E∗/R+) of conic perverse sheaves are inverse
equivalences.

Finally, the Fourier transforms are compatible with equivariantization: by standard identities
among functors, there are canonical quasi-isomorphisms

ΦK(γ(F))' ΦK(F), ΨK(Γ(F))'ΨK(F).

2.3.4 Characterizing calculations. It will be useful to recall the explicit result of evaluating
the Fourier transform on basic objects. In particular, in the proof of our main theorem, we will
need the following elementary calculation.

Recall that small open convex subsets b :B ↪→ E generate the topology of E. To identify an
object F ∈ Shc(E), it suffices to know its sections Γ(B, F)' homShc(E)(b!CB, F) over small open
convex subsets, along with the restriction maps among the sections.

By a cone u : U ↪→ E, we will mean an R+-invariant subset (or, in other words, the inverse
image of a subset U/R+ ↪→ E/R+). To identify an object F ∈ Shc(E/R+), it suffices to know its
sections Γ(U, F)' homShc(E)(u!CU , F) over open convex cones, along with the restriction maps
among the sections.

We have the following useful description (see [KS94, Proposition 3.7.12]) of the sections of
the Fourier transform over convex open subsets.

For u : U ↪→ E∗ a subset, define the closed polar cone

v : U◦ = {e ∈ E ×X π2(U) | 〈e, e∗〉> 0 for all e∗ ∈ {π1(e)} ×X U} ↪→ E.

Now if u : U ↪→ E∗ is an open convex cone with polar cone v : U◦ ↪→ E, then (see [KS94,
Proposition 3.7.12]) there is a quasi-isomorphism

π2∗u
∗ΦK(F)' π1∗v

!F for all F ∈ Shc(E/R+).
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Note that U is open, so u∗ ' u!, and U◦ is closed, so u∗ ' u!. By adjunction, we can interpret
this as a quasi-isomorphism of morphism complexes

homShc(E∗)(u!CU , ΦK(F))' homShc(E)(v∗CU◦ , F).

In particular, one can deduce the above identification from the calculation ΦK(v∗CU◦)' u!CU

(see [KS94, Lemma 3.7.10]).
Furthermore, an inclusion of open convex cones U0 ↪→ U1 ↪→ E∗ leads to an inclusion

morphism u0!CU0 → u1!CU1 and an inclusion morphism v1!ωU◦1 → v0!ωU◦0 . In turn, for all F ∈
Shc(E/R+), these induce a commutative (at the level of cohomology) square.

homShc(E∗)(u1!CU1 , ΦK(F)) ∼ //

��

homShc(E)(v1∗CU◦1
, F)

��
homShc(E∗)(u0!CU0 , ΦK(F)) ∼ // homShc(E)(v0∗CU◦0

, F)

In conclusion, we see that for F ∈ Shc(E/R+), the Fourier transform ΦK(F) is characterized
by the above calculations.

Before moving on, it will be convenient to go one step further and note the following. Suppose
that u : U ↪→ E∗ is an open convex cone but does not contain any fiber of E∗. Then the interior
int(v) : int(U◦) ↪→ E of the closed polar cone v : U◦ ↪→ E is an open convex submanifold. We have
a quasi-isomorphism v∗CU◦ ' int(v)∗Cint(U◦) and thus a quasi-isomorphism

homShc(E∗)(u!CU , ΦK(F))' homShc(E)(int(v)∗Cint(U◦), F)

for all F ∈ Shc(E/R+). (Also, when u : U ↪→ E∗ equals all of E, the closed polar cone v : U◦ ↪→ E
is the zero section X ↪→ E.) On both sides of the above identification, we have a pairing with
the standard or costandard sheaf of a submanifold. It is this form of the calculation that we will
use to characterize the Fourier transform.

2.3.5 Sections of limit. For future reference, we collect here the calculation of the sections of
the limit Υ(F) ∈ Shc(Rn/R+) of an object F ∈ Shc(Rn) with respect to the dilation R+-action.

For t ∈ R+, let αt : Rn→ Rn denote the dilation R+-action. For each ε ∈ R, consider the open
quadrant

qε :Qε = {(x1, . . . , xn) ∈ Rn | xi > ε} ↪→ Rn.

We will write q :Q ↪→ Rn for the open cone q0 :Q0 ↪→ Rn. Note that linear transformations of Q,
together with Rn itself, form a basis for the conic topology of Rn.

Lemma 2.3.1. For any object F ∈ Shc(Rn) and any ε ∈ R+, there exists δ(ε) ∈ R+ such that for
any δ ∈ (0, δ(ε)), there are canonical identifications

homShc(E)(q!CQ,Υ(F))' homShc(E)(q
ε
! CQε , α

δ
∗(F)),

homShc(E)(q∗CQ,Υ(F))' homShc(E)(q
−ε
∗ CQ−ε , α

δ
∗(F)).

Proof. Recall that i : Rn ↪→ Rn denotes the spherical compactification and, by assumption, there
is a stratification S of Rn such that i∗F is S-constructible.

Consider the R+-conic stratification C(S) of Rn × R+ obtained by taking the cone over S
together with the origin. Observe that the object i+∗α∗F appearing in the definition of Υ(F) is
C(S)-constructible.
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Fix any ε0 ∈ R+. Let Q±ε0 be the stratification of Rn given by the facets of Q±ε0 and let
Q±ε0 × {R+, {0}} be the product stratification of Rn × R>0.

Let R±ε0 be a stratification of Rn × R>0 that extends to Rn × R>0 and refines C(S) and
Q±ε0 × {R+, {0}}. The restriction of the projection Rn × R>0→ R>0 to the strata of R±ε0
will have discrete critical values. In particular, there exists δ(ε0) ∈ R+ such that there are no
critical values in the interval (0, δ(ε0)). Thus, by the Thom isotopy lemma, there is a stratified
homeomorphism of Rn × (0, δ(ε0)) taking the restriction of the stratification R±ε0 to a product
stratification.

Observe that the above constructions behave well with respect to dilation. For t ∈ R+ and
ε= tε0, we can take the dilation of the above stratifications and homeomorphism for ε0. In
particular, for δ(ε) = tδ(ε0), there is a stratified homeomorphism of Rn × (0, δ(ε)) taking the
restriction of the stratification R±ε to a product stratification.

With the above system of open neighborhoods in hand, standard sheaf identities establish
the identifications for any δ ∈ (0, δ(ε)). 2

3. Microlocal branes

In this section, we review some basic aspects of the Fukaya category of a cotangent bundle
T ∗X of a compact real analytic manifold X following [Nad09, NZ09]. In particular, we recall
the quasi-equivalence between constructible sheaves on X and the triangulated envelope of the
Fukaya category of T ∗X. For the foundations of the Fukaya category, we refer the reader to
the fundamental work of Fukaya–Oh–Ohta–Ono [FOOO09] and Seidel [Sei08].

3.1 Preliminaries

In what follows, we work with a fixed compact real analytic manifold X with cotangent bundle
π : T ∗X →X. We often denote points of T ∗X by pairs (x, ξ), where x ∈X and ξ ∈ T ∗xX. The
material of this section is a condensed version of the discussion of [NZ09].

Let θ ∈ Ω1(T ∗X) denote the canonical one-form θ(v) = ξ(π∗v) for v ∈ T(x,ξ)(T ∗X) and let
ω = dθ ∈ Ω2(T ∗X) denote the canonical symplectic structure. For a fixed Riemannian metric on
X, let |ξ| : T ∗X → R denote the corresponding fiberwise linear length function.

3.1.1 Compactification. To better control non-compact Lagrangians in T ∗X, it is useful to
work with the cospherical compactification π : T ∗X →X of the projection π : T ∗X →X obtained
by attaching the cosphere bundle at infinity π∞ : T∞X →X.

Concretely, we can realize the compactification T
∗
X as the quotient

T
∗
X = ((T ∗X × R>0)\(X × {0}))/R+,

where R+ acts by dilations on both factors. The canonical inclusion T ∗X ↪→ T
∗
X sends a covector

ξ to the class of [ξ, 1]. The boundary at infinity T∞X = T
∗
X\T ∗X consists of classes of the form

[ξ, 0] with ξ a non-zero covector. Given a Riemannian metric on X, one can identify T ∗X with
the closed unit disk bundle D∗X and T∞X with the unit cosphere bundle S∗X via the map

[ξ, r] 7→ (ξ̂, r̂), where |ξ̂|2 + r̂2 = 1.

The boundary at infinity T∞X carries a canonical contact distribution κ⊂ T (T∞X) with a
well-defined notion of positive normal direction. Given a Riemannian metric on X, under the
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induced identification of T∞X with the unit cosphere bundle S∗X, the distribution κ is the
kernel of the restriction of θ.

3.1.2 Conical almost complex structure. To better control holomorphic disks in T ∗X, it is
useful to work with an almost complex structure Jcon ∈ End(T (T ∗X)), which near infinity
is invariant under dilations.

A fixed Riemannian metric on X provides a canonical splitting T (T ∗X)' Tb ⊕ Tf , where Tb
denotes the horizontal base directions and Tf the vertical fiber directions, along with a canonical
isomorphism j0 : Tb→Tf of vector bundles over T ∗X. We refer to the resulting almost complex
structure

JSas =
(

0 j−1
0

−j0 0

)
∈ End(Tb ⊕ Tf )

as the Sasaki almost complex structure since, by construction, the Sasaki metric on T ∗X is given
by gSas(v, v) = ω(u, JSasv).

Fix positive constants r0, r1 > 0, a bump function b : R→ R such that b(r) = 0 for r < r0 and
b(r) = 1 for r > r1, and set w(x, ξ) = |ξ|b(|ξ|), where as usual |ξ| denotes the length of a covector
with respect to the original metric on X. We refer to the compatible almost complex structure

Jw =
(

0 w−1j−1
0

−wj0 0

)
∈ End(Tb ⊕ Tf )

as a (asymptotically) conical almost complex structure since, near infinity, Jcon is invariant
under dilations. The corresponding metric gcon(u, v) = ω(v, Jconv) presents T ∗X near infinity as
a metric cone over the unit cosphere bundle S∗X equipped with the Sasaki metric.

One can view the conical metric gcon as being compatible with the compactification T
∗
X in

the sense that near infinity it treats base and angular fiber directions on equal footing. Near
infinity, the metrics on the level sets of |ξ| are given by scaling the Sasaki metric on the unit
cosphere bundle by the factor |ξ|1/2.

3.2 Brane structures
By a Lagrangian j : L ↪→ T ∗X, we mean a closed (but not necessarily compact) half-dimensional
submanifold such that TL is isotropic for the symplectic form ω. One says that L is exact if the
pullback of the one-form j∗θ is cohomologous to zero.

By a brane structure on a Lagrangian L ↪→ T ∗X, we mean a three-tuple (E , α̃, [) consisting
of a flat (finite-dimensional) vector bundle E → L along with a grading α̃ : L→ R (with respect
to the canonical bicanonical trivialization) and a relative pin structure [ (with respect to the
background class π∗(w2(X)). To remind the interested reader, we include below a short summary
of what the latter two structures entail.

3.2.1 Gradings. The almost complex structure Jcon ∈ End(T (T ∗X)) provides a holomorphic
canonical bundle κ= (∧dimXT hol(T ∗X))−1. According to [NZ09], there is a canonical
trivialization η2 of the bicanonical bundle κ⊗2 (and a canonical trivialization of κ itself if X is
assumed oriented). Consider the bundle of Lagrangian planes LagT ∗X → T ∗X and the squared
phase map

α : LagT ∗X → U(1),
α(L) = η(∧dimXL)2/|η(∧dimXL)|2.
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For a Lagrangian L ↪→ T ∗X and a point x ∈ L, we obtain a map α : L→ U(1) by setting
α(x) = α(TxL). The Maslov class µ(L) ∈H1(L, Z) is the obstruction class µ= α∗(dt), where dt
denotes the standard one-form on U(1). Thus, α has a lift to a map α̃ : L→ R if and only if
µ= 0, and choices of a lift form a torsor over the group H0(L, Z). Such a lift α̃ : L→ R is called
a grading of the Lagrangian L ↪→ T ∗X.

3.2.2 Relative pin structures. Recall that the group Pin+(n) is the double cover of O(n)
with center Z/2Z× Z/2Z. A pin structure on a Riemannian manifold L is a lift of the structure
group of TL to Pin+(n). The obstruction to a pin structure is the second Stiefel–Whitney class
w2(L) ∈H2(L, Z/2Z), and choices of pin structures form a torsor over the group H1(L, Z/2Z).

A relative pin structure on a submanifold L ↪→M with background class [w] ∈H2(M, Z/2Z)
can be defined as follows. Fix a Čech cocycle w representing [w] and let w|L be its restriction to L.
Then a pin structure on L relative to [w] can be defined to be a w|L-twisted pin structure on TL.
Concretely, this can be represented by a Pin+(n)-valued Čech 1-cochain on L whose coboundary
is w|L. Such structures are canonically independent of the choice of Čech representatives.

For Lagrangians L ↪→ T ∗X, we will always consider relative pin structures [ on L with respect
to the fixed background class π∗(w2(X)) ∈H2(T ∗X, Z/2Z).

3.3 Fukaya category
We recall here the construction of the Fukaya A∞-category of the cotangent bundle T ∗X of a
compact real analytic manifold X. Our aim is not to review all of the details, but only those
relevant to our later proofs. For more details, the reader could consult [NZ09] and the references
therein.

3.3.1 Objects. An object of the Fukaya category of T ∗X is a four-tuple (L, E , α̃, [) consisting
of an exact (not necessarily compact) closed Lagrangian submanifold L ↪→ T ∗X equipped with
a brane structure: this includes a flat vector bundle E → L along with a grading α̃ : L→ R (with
respect to the canonical bicanonical trivialization) and a relative pin structure [ (with respect
to the background class π∗(w2(X)).

To ensure reasonable behavior near infinity, we place two assumptions on the Lagrangian L.
First, consider the compactification T

∗
X obtained by adding to T ∗X the cosphere bundle at

infinity T∞X. Then we fix an analytic–geometric category C once and for all, and assume that
the closure L ↪→ T

∗
X is a C-subset. Along with other nice properties, this implies the following

two key facts.

(i) The boundary at infinity

L∞ = L ∩ T∞X
is an isotropic subset of T∞X with respect to the induced contact structure.

(ii) There is a real number r > 0 such that the restriction of the length function

|ξ| : L ∩ {|ξ|> r}→ R

has no critical points.

As discussed below, the above properties guarantee that we can make sense of ‘intersections at
infinity’.

Second, to have a manageable theory of pseudoholomorphic maps with boundary on such
Lagrangians, we also assume the existence of a perturbation ψ that moves the initial Lagrangian L
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to a nearby Lagrangian tame (in the sense of [Sik94]) with respect to the conical metric gcon. As
explained in [Nad09, Appendix], all such perturbations lead to equivalent calculations, though
not necessarily by the most direct comparison of equations. For a recollection of the basic idea,
see § 3.5 below. It is worth commenting that the above encompasses all restrictions placed on
the objects of the Fukaya category studied herein. In particular, though it is often convenient to
think of an object as ‘asymptotically conical’, the proofs do not appeal to such an independent
notion, only the technical assumptions above.

We use the term Lagrangian brane to refer to objects of the Fukaya category. When there is
no chance for confusion, we often write L alone to signify the Lagrangian brane.

3.3.2 Morphisms. To define the morphisms between two branes, we must perturb
Lagrangians so that their intersections occur in some bounded domain. To organize the
perturbations, we recall the inductive notion of a fringed set Rd+1 ⊂ Rd+1

+ . A fringed set R1 ⊂ R+

is any interval of the form (0, r) for some r > 0. A fringed set Rd+1 ⊂ Rd+1
+ is a subset satisfying

the following.

(i) Rd+1 is open in Rd+1
+ .

(ii) Under the projection π : Rd+1→ Rd forgetting the last coordinate, the image π(Rd+1) is
a fringed set.

(iii) If (r1, . . . , rd, rd+1) ∈Rd+1, then (r1, . . . , rd, r
′
d+1) ∈Rd+1 for 0< r′d+1 < rd+1.

A Hamiltonian function H : T ∗X → R is said to be controlled if there is a real number r > 0
such that in the region |ξ|> r we have H(x, ξ) = |ξ|. The corresponding Hamiltonian isotopy
ϕH,t : T ∗X → T ∗X equals the normalized geodesic flow γt in the region |ξ|> r.

As explained in [NZ09], given Lagrangian branes L0, . . . , Ld ⊂ T ∗X and controlled
Hamiltonian functions H0, . . . , Hd, we may choose a fringed set R⊂ Rd+1 such that for
(δd, . . . , δ0) ∈R, there is a real number r > 0 such that for any i 6= j, we have

ϕHi,δi(Li) ∩ ϕHj ,δj (Lj) lies in the region |ξ|< r.

By a further compactly supported Hamiltonian perturbation, we may also arrange so that the
intersections are transverse.

We consider finite collections of Lagrangian branes L0, . . . , Ld ⊂ T ∗X to come equipped
with such perturbation data, with the brane structures (Ei, α̃i, [i) and taming perturbations ψi
transported via the perturbations. Note that the latter makes sense since the normalized geodesic
flow γt is an isometry of the metric gcon. Then, for branes Li, Lj with i < j, the graded vector
space of morphisms between them is defined to be

homF (T ∗X)(Li, Lj) =
⊕

p∈ψi(ϕHi,δi (Li))∩ψj(ϕHj,δj (Lj))

Hom(Ei|p, Ej |p)[−deg(p)],

where the integer deg(p) denotes the Maslov grading of the linear Lagrangian subspaces at the
intersection.

It is worth emphasizing that near infinity the salient aspect of the above perturbation
procedure is the relative position of the perturbed branes rather than their absolute position.
The following informal viewpoint can be a useful mnemonic to keep the conventions straight.
In general, we always think of morphisms as ‘propagating forward in time’. Thus, to calculate
the morphisms homF (T ∗X)(L0, L1), we have required that L0, L1 are perturbed near infinity by
normalized geodesic flow so that L1 is further in the future than L0. But, what is important
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is not that they are both perturbed forward in time, only that L1 is further along the timeline
than L0. So, for example, we could perturb L0, L1 near infinity by normalized anti-geodesic flow
as long as L0 is further in the past than L1.

3.3.3 Compositions. Signed counts of pseudoholomorphic polygons provide the differential
and higher composition maps of the A∞-structure. We use the following approach of
Sikorav [Sik94] (or, equivalently, Audin–Lalonde–Polterovich [ALP94]) to ensure that the
relevant moduli spaces are compact and hence the corresponding counts are finite.

First, as explained in [NZ09], the cotangent bundle T ∗X equipped with the canonical
symplectic form ω, conical almost complex structure Jcon, and conical metric gcon is tame in
the sense of [Sik94]. To see this, one can verify that gcon is conical near infinity, and so it is easy
to derive an upper bound on its curvature and a positive lower bound on its injectivity radius.

Next, given a finite collection of branes L0, . . . , Ld, denote by L the union of their
perturbations ψi(ϕHi,δi(Li)) as described above. By construction, the intersection of L with
the region |ξ|> r is a tame submanifold (in the sense of [Sik94]) with respect to the structures
ω, Jcon, and gcon. Namely, there exists ρL > 0 such that for every x ∈ L, the set of points y ∈ L of
distance d(x, y)6 ρL is contractible, and there exists CL giving a two-point distance condition
dL(x, y)6 CL d(x, y) whenever x, y ∈ L with d(x, y)< ρL.

Now, consider a fixed topological type of pseudoholomorphic map

u : (D, ∂D)→ (T ∗X, L).

Assume that all u(D) intersect a fixed compact region and there is an a priori area bound
Area(u(D))<A. Then, as proven in [Sik94], one has compactness of the moduli space of such
maps u. In fact, one has a diameter bound (depending only on the given constants) constraining
how far the image u(D) can stretch from the compact set.

In the situation at hand, for a given A∞-structure constant, we must consider
pseudoholomorphic maps u from polygons with labeled boundary edges. In particular, all such
maps u have image intersecting the compact set given by a single intersection point. The area
of the image u(D) can be expressed as the contour integral

Area(u(D)) =
∫
u(∂D)

θ.

Since each of the individual Lagrangian branes making up L is exact, the contour integral only
depends upon the integral of θ along minimal paths between intersection points. Thus, such
maps u satisfy an a priori area bound. We conclude that for each A∞-structure constant, the
moduli space defining the structure constant is compact, and its points are represented by maps
u with image bounded by a fixed distance from any of the intersection points.

Finally, as usual, the composition map

md : homF (T ∗X)(L0, L1)⊗ · · · ⊗ homF (T ∗X)(Ld−1, Ld)→ homF (T ∗X)(L0, Ld)[2− d]

is defined as follows. Consider elements pi ∈ hom(Li, Li+1), for i= 0, . . . , d− 1 and pd ∈
hom(L0, Ld). Then the coefficient of pd in md(p0, . . . , pd−1) is defined to be the signed sum
over pseudoholomorphic maps from a disk with d+ 1 counterclockwise cyclically ordered marked
points mapping to the pi and corresponding boundary arcs mapping to the perturbations of Li+1.
Each map contributes according to the holonomy of its boundary, where adjacent perturbed
components Li and Li+1 are glued with pi.
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Continuation maps with respect to families of perturbed branes ensure the consistency of all
of our definitions. For a recollection of the basic idea, see § 3.5 below.

One should also note that it is not immediately evident that we have a well-defined
A∞-category. Bounding the behavior of each moduli space involves fixing the complexity of
the input data of which branes, intersection points, and structure constants are in play. There
are potentially (at least) two more or less equivalent ways to proceed. The first is very formal
and somewhat standard: as explained by Stasheff [Sta63], there is a family of operads called
An which parameterize ‘partial’ A∞-structures. Compatible An-categories, for all n, provide an
A∞-category since the A∞-operad is the union of the An-operads. Second, and more
geometrically, to make any given calculation, we may need to insist upon smaller and smaller
perturbation data. This leads one to think of each object as the ‘limit’ of a brane under smaller
and smaller perturbation data. Either formulation can be implemented with the invariance of
Floer calculations established in [Nad09, NZ09] and reviewed in § 3.5 below. For an alternative
geometric (rather than homotopical) approach, one could consult Oh’s paper [Oh] for a detailed
analysis of the relevant pseudoholomorphic disk theory.

Consider the dg category of right modules over the Fukaya category of T ∗X. Throughout
this paper, we write F (T ∗X) for the full subcategory of twisted complexes of representable
modules, and refer to it as the triangulated envelope of the Fukaya category. We use the term
Lagrangian brane to refer to an object of the Fukaya category, and brane to refer to an object
of its triangulated envelope F (T ∗X).

3.4 Microlocalization
We review here the microlocalization quasi-equivalence constructed in [NZ09]. Some useful
notation: for a function m :X → R and a number r ∈R, we write Xm=r for the subset
{x ∈X |m(x) = r} and similarly for inequalities.

Let i : U ↪→X be an open submanifold that is a C-subset of X. Since the complement X\U
is a closed C-subset of X, we can find a non-negative function m :X → R>0 such that X\U is
precisely the zero-set of m. Since the complement of the critical values of m forms an open C-
subset of R, the subset Xm>η is an open submanifold with smooth hypersurface boundary Xm=η

for any sufficiently small η > 0.
Now let iα : Uα ↪→X, for α= 0, . . . , d, be a finite collection of open submanifolds that are

C-subsets of X. Fix a non-negative function mα :X → R>0, for α= 0, . . . , d, such that X\Uα is
precisely the zero-set of mα. There is a fringed set R⊂ Rd+1

+ such that for any (ηd, . . . , η0) ∈R,
the following holds. First, the hypersurfaces Xmα=ηα are all transverse. Second, for α < β, there
is a quasi-isomorphism of complexes

homShc(X)(iα∗CUα , iβ∗CUβ )' (Ω(Xmα>ηα ∩Xmβ>ηβ , Xmα=ηα ∩Xmβ>ηβ ), d),

where (Ω, d) denotes the relative de Rham complex which calculates the cohomology of the pair.
Furthermore, the composition of morphisms in Shc(X) corresponds to the wedge product of
forms.

Next, let fα :Xmα>ηα → R, for α= 0, . . . , d, be the logarithm fα = log mα. While choosing
the sequence of parameters (ηd, . . . , η0), we can also choose a sequence of small positive
parameters (εd, . . . , ε0) such that the following holds. For any α < β, consider the open
submanifold Xmα>ηα,mβ>ηβ =Xmα>ηα ∩Xmβ>ηβ with corners equipped with the function fα,β =
εβfβ − εαfα. Then there is an open set of Riemannian metrics on X such that for all α < β,
it makes sense to consider the Morse complex M(Xmα>ηα,mβ>ηβ , fα,β), and there is a
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quasi-isomorphism

(Ω(Xmα>ηα ∩Xmβ>ηβ , Xmα=ηα ∩Xmβ>ηβ ), d)'M(Xmα>ηα,mβ>ηβ , fα,β).

Furthermore, homological perturbation theory provides a quasi-isomorphism between the A∞-
composition structure on the collection of Morse complexes and the dg structure given by the
wedge product of forms.

Finally, we define the microlocalization functor

µX : Shc(X) // F (T ∗X)

as follows. The standard objects i∗CU associated to open submanifolds i : U ↪→X generate the
constructible dg derived category Shc(X). Thus, to construct µX , it suffices to find a parallel
collection of standard objects of F (T ∗X).

Given an open submanifold i : U ↪→X and a function m :X → R>0 with zero-set the
complement X\U , define the standard Lagrangian LU,f∗ ↪→ T ∗X|U to be the graph

LU,f∗ = Γdf ,

where df denotes the differential of the logarithm f = log m.
The standard Lagrangian LU,f∗ comes equipped with a canonical brane structure (E , α̃, [)

and taming perturbation ψ. Its flat vector bundle E is trivial, and its grading α̃ and relative pin
structure [ are the canonical structures on a graph. Its taming perturbation ψ is given by the
family of standard Lagrangians

LXm=η ,fη∗ = Γdfη for sufficiently small η > 0,

where fη = log mη is the logarithm of the shifted function mη =m− η.
Now one can extend the fundamental result of Fukaya–Oh [FO97] identifying Morse moduli

spaces and Fukaya moduli spaces to the current setting. Namely, one can show that for any finite
ordered collection of open submanifolds iα : Uα ↪→X, for α= 0, . . . , d, and any finite collection
of A∞-compositions respecting the order, there is a fringed set R⊂ Rd+1 such that for any
parameters (ηd, . . . , η0) ∈R, the Morse moduli spaces of the ordered collection of functions fηα
are isomorphic to the Fukaya moduli spaces of the ordered collection of standard branes LXm=η ,fη∗
(after further variable dilations of the functions and branes).

Once and for all, for each U ⊂X, let us choose a non-negative function m :X → R>0 such
that the complement X\U is the zero-set of m. We denote the resulting standard brane LU,f∗,
where f = log m, by the abbreviated notation LU∗. We define the functor µX so that on objects
we have

µX(i∗CU ) = LU∗.

The arguments of [NZ09] outlined above show that calculations among standard branes are
equivalent to calculations among corresponding standard sheaves. In particular, given U ⊂X,
there is no preference as to which function m :X → R>0 is used, and hence no preference as to
which standard brane is used. It follows that any standard brane for U ⊂X will have the same
structure with respect to other standard branes. For example, a standard brane and its dilations
will have the same structure with respect to other standard branes.

Theorem 3.4.1 [Nad09, NZ09]. Microlocalization is a quasi-equivalence

µX : Shc(X) ∼ // F (T ∗X).
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One can rephrase the equivalence of the theorem to say that every brane can be expressed in
terms of standard branes. Thus, to understand properties of branes it suffices to study collections
of standard branes. It follows from the discussion immediately preceding the theorem that all of
the standard branes for a given subset are equivalent to each other (since the arguments of [NZ09]
show that they lead to the same calculations as the unambiguous standard sheaves), and all
branes are equivalent to themselves under dilation (since the dilation of a standard brane is
equally well a standard brane and thus leads to the same calculations).

The theorem admits the following refinement. Given a conical Lagrangian Λ⊂ T ∗X, let
FΛ(T ∗X)⊂ F (T ∗X) denote the full subcategory generated by branes L⊂ T ∗X whose boundary
L∞ = L ∩ T∞X lies in the boundary Λ∞ = Λ ∩ T∞X.

For any stratification S = {Sα} of X, let ΛS ⊂ T ∗X denote the union of conormal bundles
ΛS =

⋃
α T
∗
Sα
X. By construction, the microlocalization µX takes the full subcategory ShS(X)⊂

Shc(X) to the full subcategory F (T ∗X)ΛS ⊂ F (T ∗X).
Conversely, given an object L of F (T ∗X), let Λ⊂ T ∗X be a conical Lagrangian such that the

boundary L∞ lies in the boundary Λ∞ (for instance, one can minimally take Λ to be the cone
over L∞). Then, for any object F of Shc(X) such that µX(F)' L, and for any stratification
S = {Sα} of X such that Λ⊂ ΛS =

⋃
α T
∗
Sα
X, the object F belongs to ShS(X).

One proves the theorem and the above refinement by studying non-characteristic families of
branes. By a one-parameter family of closed (but not necessarily compact) submanifolds (without
boundary) in T ∗X, we mean a closed submanifold

L ↪→ R× T ∗X

satisfying the following.

(i) The restriction of the projection pR : R× T ∗X → R to the submanifold L is non-singular.
(ii) There is a real number r > 0 such that the restriction of the product pR × |ξ| : R× T ∗X →

R× [0,∞) to the subset {|ξ|> r} ∩ L is proper and non-singular.
(iii) There is a compact interval [a, b] ↪→ R such that the restriction of the projection

pX : R× T ∗X → T ∗X to the submanifold p−1
R ([R\[a, b]) ∩ L is locally constant.

Note that conditions (1) and (2) will be satisfied if the restriction of the projection pR : R×
T
∗
X → R to the closure L ↪→ T

∗
X is non-singular as a stratified map, but the weaker condition

stated is a useful generalization. It implies in particular that the fibers Ls = p−1
R (s) ∩ L ↪→ T ∗X

are all diffeomorphic, but imposes no requirement that their boundaries at infinity should all be
homeomorphic as well.

By a one-parameter family of tame Lagrangian branes in T ∗X, we mean a one-parameter
family of closed submanifolds L ↪→ R× T ∗X in the above sense such that the fibers Ls =
p−1

R (s) ∩ L ↪→ T ∗X also satisfy:

(i) the fibers Ls are exact tame Lagrangians with respect to the usual symplectic structure and
any almost complex structure conical near infinity;

(ii) the fibers Ls are equipped with a locally constant brane structure (Es, α̃s, [s) with respect
to the usual background classes.

Note that if we assume that L0 is an exact Lagrangian, then Ls being an exact Lagrangian
is equivalent to the family L being given by the flow ϕHs of the vector field of a time-dependent
Hamiltonian Hs : T ∗X → R. Note as well that a brane structure consists of topological data, so
it can be transported unambiguously along the fibers of such a family.
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Fix a conical Lagrangian Λ⊂ T ∗X with boundary Λ∞ = Λ ∩ T∞X. As above, let FΛ(T ∗X)
be the full subcategory of F (T ∗X) generated by Lagrangian branes L whose boundary L∞ =
L ∩ T∞X lies in Λ∞.

Suppose that L ↪→ R× T ∗X is a one-parameter family of tame Lagrangian branes. We will
say that L is Λ-non-characteristic if

Ls ∩ Λ∞ = ∅ for all s ∈ R.

Proposition 3.4.2 [Nad09]. Suppose that L ↪→ R× T ∗X is a Λ-non-characteristic one-
parameter family of tame Lagrangian branes. For any test object P of FΛ(T ∗X), there are
functorial quasi-isomorphisms among the Floer complexes

homF (T ∗X)(P, Ls) for all s ∈ R.

The proof of the proposition is very general and does not use that X is compact in any serious
way. For example, it holds when X is complete, or in fact for tame Lagrangian branes in more
general exact symplectic targets. We will use it in later sections for the contangent bundle of a
vector space.

3.5 Floer invariance

In the definition of the Fukaya category of T ∗X recalled in § 3.3, as well as in the microlocalization
quasi-equivalence recalled in § 3.4, we have appealed to results of [Nad09, NZ09] on the invariance
of Floer calculations under suitable motions of non-compact branes. To make the current paper
as self contained as possible, we include here a brief section reviewing the (somewhat ad hoc)
arguments which establish the following basic example of this invariance. One could also consult
Oh’s paper [Oh], which contains a detailed analysis of the canonical structures provided by
pseudoholomorphic disk theory.

Proposition 3.5.1. Suppose that Ls is a family of objects of F (T ∗X). Suppose that L′ is a
fixed test object which is disjoint from Ls near infinity for all s. Suppose that Ls is transverse
to L′ except for finitely many points.

Then, for any a, b with La and Lb transverse to L′, the Floer chain complexes CF (La, L′)
and CF (Lb, L′) are quasi-isomorphic.

Before proving the proposition in full, it is convenient to first prove the following special case.

Lemma 3.5.2. Suppose that Ls is a family of objects of F (T ∗X). Suppose that L′ is a fixed test
object which is disjoint from Ls near infinity for all s.

Fix s0 and assume that Ls0 is transverse to L′. Then there is an ε > 0 so that for all s1 ∈
(s0 − ε, s0 + ε), the Floer chain complexes CF (Ls0 , L

′) and CF (Ls1 , L
′) are quasi-isomorphic.

Proof. By our assumptions on the tame behavior (in the sense of [Sik94]) of Ls0 and L′ near
infinity, the moduli spaces giving the differential of CF (Ls0 , L

′) are compact. This follows from
the a priori C0-bound: there is some r0� 0 such that no disk in the moduli space leaves the
region |ξ|< r0, where (x, ξ) are local coordinates on T ∗X and |ξ| is the Riemannian metric.

Choose some r1 > r0. Then, for very small ε > 0 and any s1 ∈ (s0 − ε, s0 + ε), we may
decompose the motion Ls0  Ls1 into two parts: first, a motion Ls0  L supported in the region
|ξ|> r0; and then second, a compactly supported motion L Ls1 . We must show that each of
the above two motions leads to a quasi-isomorphism.
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First, for the motion Ls0  L, since we have not changed Ls0 or L′ in the region |ξ|< r0,
the same a priori C0-bounds of [Sik94] hold (they only depend on the Lagrangians in the region
|ξ|< r0), and the pseudoholomorphic strips for the pair (Ls0 , L

′) and for the pair (L, L′) are in
fact exactly the same (we could perversely attach ‘wild’ non-intersecting ends to either and it
would not make a difference). Thus, we can take the ‘continuation map’ to be the identity.

(One should probably not use the term ‘continuation map’ for such a construction. Rather, it
is an example of the more general setup of parameterized moduli spaces. In the above setting, one
can obtain a uniform C0-bound over the family, so the parameterized moduli space is compact,
and hence one can apply standard cobordism arguments to prove that the matrix coefficients
at the initial and final times are the same. We thank an anonymous referee for this perspective
on the argument.)

Second, the motion L Ls1 is compactly supported, so standard partial differential equation
(PDE) techniques provide a continuation map. 2

Proof of Proposition 3.5.1. By the previous lemma, it suffices to show that for any s0 with Ls0
not (necessarily) transverse to L′, there is a small ε > 0 such that the Floer chain complexes
CF (Ls0−ε, L

′) and CF (Ls0+ε, L
′) are quasi-isomorphic.

To see this, let Hs(x, ξ) be a (time-dependent) Hamiltonian giving the motion Ls. Choose
a bump function b(|ξ|) which is 0 near infinity and 1 on a compact set containing all of the
(possibly non-transverse) intersection points Ls0 ∩ L′.

The product Hamiltonian H̃(x, ξ) = b(|ξ|)Hs(x, ξ) gives a family L̃s through the base object
Ls0 satisfying: (1) L̃s is transverse to L′ whenever |s− s0| is small and non-zero and (2) L̃s is
equal to Ls0 near infinity. Therefore, since the motion of L̃s is compactly supported, standard
PDE techniques provide a continuation map giving a quasi-isomorphism between CF (L̃s0−ε, L

′)
and CF (L̃s0+ε, L

′) for small enough ε > 0.
Finally, returning to the bump function b(|ξ|), one can construct motions Ls0−ε L̃s0−ε and

L̃s0+ε Ls0+ε which are supported near infinity and thus in particular always transverse to L′.
Thus, we may apply the previous lemma to obtain quasi-isomorphisms between CF (Ls0−ε, L

′)
and CF (L̃s0−ε, L

′) and, similarly, between CF (L̃s0+ε, L
′) and CF (Ls0+ε, L

′). Putting together
the above, we obtain a quasi-isomorphism between CF (Ls0−ε, L

′) and CF (Ls0+ε, L
′). 2

Remark 3.5.3. The above proposition (which is a condensed form of arguments of [Nad09,
NZ09]) is closely related to Question 1.3 of Oh’s paper [Oh], which asks whether a homology-level
continuation map constructed by a careful limiting argument with PDE techniques is induced
by a chain-level morphism. While we have not investigated this, it is not hard to believe that
the quasi-isomorphism of the above proposition provides the desired lift.

4. Fourier transform for branes

In this section, we study the symplectic topology of the cotangent bundle of a real finite-
dimensional vector space V . Our aim is to describe a Fukaya theory of branes in T ∗V ' V × V ∗
that treats the horizontal and vertical directions as symmetrically as possible. Wherever possible,
we will appeal to arguments of the preceding section and restrict the discussion here to the new
aspects which arise.

4.1 Preliminaries
Fix a real finite-dimensional vector space V .
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We will write V1 in place of V , and V2 for its dual V ∗. Let Rn
x denote standard Euclidean space

with coordinate x= (xi), and let Rn
ξ denote the dual Euclidean space with coordinate ξ = (ξi),

so that 〈x, ξ〉=
∑n

i=1 xiξi. By choosing an isomorphism V1 ' Rn
x, we obtain a dual isomorphism

V2 ' Rn
ξ . For concreteness, we will often assume such identifications have been fixed (though our

constructions will not depend on the specific identifications).

Let ω1, ω2 denote the respective canonical exact symplectic forms on T ∗V1, T ∗V2. Under the
canonical identifications

T ∗V1 ' V1 × V2 ' T ∗V2,

the canonical exact symplectic forms are related by ω1 =−ω2 since, in local coordinates, we have

ω1 =
n∑
i=1

dξi dxi, ω2 =
n∑
i=1

dxi dξi.

In what follows, unless otherwise stated, we will break symmetry and work with the symplectic
structure ω1. Thus, to identify V1 × V2 and T ∗V2 as symplectic manifolds, we will compose the
above canonical identification with the negation map on the first factor: x 7→ −x, ξ 7→ ξ. When
it is not clear from context, we will write

ι : T ∗V2
∼→ V1 × V2

for the symplectic identification.

Given a positive-definite quadratic form on V1, we obtain an identification V1 ' V2. For vectors
v1 ∈ V1, v2 ∈ V2, we write |v1|, |v2| for the respective lengths of v1, v2.

4.1.1 Symmetric compactification. To control non-compact Lagrangians in V1 × V2, we will
work with a symmetric product compactification.

Given a vector space V , consider the spherical compactification

V = (V × R>0\{(0, 0)})/R+,

where R+ acts by dilations on both factors. The canonical inclusion V ↪→ V sends a vector v
to the class of [v, 1]. The boundary sphere at infinity V∞ = V \V consists of classes of the form
[v, 0] with v a non-zero vector.

Now let V 1, V 1 be the spherical compactifications of V1, V2 with spheres at infinity V∞1 , V∞2 .
We will work with the symmetric product compactification V 1 × V 2. Its boundary at infinity is
the disjoint union of a codimension one boundary

B = (V1 × V∞2 )
∐

(V∞1 × V2),

along with a codimension two corner

C = V∞1 × V∞2 .

4.1.2 Symmetric almost complex structure. To control holomorphic disks in V1 × V2, we will
work with a symmetric almost complex structure.

Fix a positive-definite quadratic form on V1 and let j0 : V1
∼→ V2 be the corresponding

identification.
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Fix 0< r1 < r2 and a smooth increasing function b : R→ R satisfying b(r) = 0 for r < r1 and
b(r) = 1 for r2 < r. Consider the functions

w(v1, v2) =
1 + |v2|
1 + |v1|

, ρ(v1, v2) = |v1|2 + |v2|2

and define the ω1-compatible almost complex structure

Jsym =
(

0 w−b(ρ)j−1
0

−wb(ρ)j0 0

)
∈ End(T (V1 ⊕ V2)).

We refer to Jsym as a symmetric (asymptotically) conical almost complex structure. The
corresponding metric gsym(v, v) = ω1(v, Jsymv) is complete and tame.

4.2 From branes to sheaves

In this section, we explain how to associate constructible sheaves to branes in V1 × V2.

4.2.1 Branes in V1 × V2. To define Lagrangian branes in V1 × V2, we must first fix
background structures. Of course, the background class for relative pin structures is trivial since
it lies in H2(V1 × V2, Z/2Z)' 0. Thus, the only background structures of note are the bicanonical
bundle and its trivialization. We will break symmetry and work with the bicanonical bundle κ⊗2

1

and trivialization η2
1 coming from the canonical identification T ∗V1 ' V1 × V2.

By a Lagrangian brane L ↪→ V1 × V2, we mean a four-tuple (L, E , α̃, [) consisting of an exact
(not necessarily compact) closed Lagrangian submanifold L ↪→ V1 × V2 equipped with a brane
structure: this includes a flat vector bundle E → L along with a grading α̃ : L→ R (with respect
to the bicanonical trivialization η2

1 of the bicanonical bundle κ⊗2
1 ) and a pin structure [.

Furthermore, we place two assumptions on the Lagrangian L. Recall the symmetric product
compactification V 1 × V 2, and the symmetric conical almost complex structure Jsym and
corresponding metric gsym. First, we assume that the closure L ↪→ V 1 × V 2 is a C-subset. Second,
we assume the existence of a perturbation ψ that moves the initial Lagrangian L to a nearby
Lagrangian tame (in the sense of [Sik94]) with respect to the symmetric conical metric gsym.

Let us take a moment to comment on the asymmetry of the above definition. Recall that
to identify T ∗V2 and V1 × V2 as symplectic manifolds, we compose the canonical identification
with the negation map on the first factor: x 7→ −x, ξ 7→ ξ. Thus, the bicanonical bundle κ⊗2

2

coming from the resulting identification ι : T ∗V2
∼→ V1 × V2 is canonically identified with κ⊗2

1 . The
bicanonical trivialization η2

2 arising via ι satisfies η2
2 =−η2

1. We will identify the two bicanonical
trivializations via the path η2

1  η2
2 induced by the positively oriented path 1 −1 inside C×.

Example 4.2.1. Suppose that V1 = Rx, V2 = Rξ, and let L ↪→ Rx × Rξ be the Lagrangian L=
{xξ = 1}. Then the canonical grading of L as a graph in T ∗Rx coincides with its canonical grading
as a graph in T ∗Rξ. Note that if we write η for the dual coordinate of ξ, then, as a graph in
T ∗Rξ ' Rξ × Rη, we have L= {ξη =−1}.

4.2.2 Fukaya A∞-structures. Suppose that we have a collection of Lagrangian branes in
V1 × V2 that are pairwise transverse and whose boundaries at infinity are disjoint.

We define a Fukaya pre-A∞-category structure (or partially define an A∞-category structure)
on the collection as follows. The graded vector space of morphisms between distinct branes is
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defined to be

hom(L0, L1) =
⊕

p∈L0∩L1

Hom(E0|p, E1|p)[−deg(p)],

where the integer deg(p) denotes the Maslov grading of the linear Lagrangian subspaces at the
intersection.

Signed counts of pseudoholomorphic polygons provide the differential and higher composition
maps of the pre-A∞-structure. To ensure that the relevant moduli spaces are compact, we appeal
to the same arguments used for cotangent bundles in § 3.3. First, the target V1 × V2 with the
symplectic form ω1, almost complex structure Jsym, and corresponding metric gsym is tame.
Next, let L ↪→ V1 × V2 be the union of any finite number of branes from the collection. By
assumption, the intersection of L with the region ρ(x, ξ) = |x|2 + |ξ|2 > r, for large r > 0, is a
tame submanifold. Since our branes are exact, for a given A∞-structure constant, the relevant
pseudoholomorphic maps

u : (D, ∂D)→ (V1 × V2, L)

satisfy an a priori area bound. Thus, we have a diameter bound on their images u(D), and hence
the moduli space of all such maps is compact.

Finally, for distinct branes, the composition map

md : homF (T ∗X)(L0, L1)⊗ · · · ⊗ homF (T ∗X)(Ld−1, Ld)→ homF (T ∗X)(L0, Ld)[2− d]

is defined as follows. Consider elements pi ∈ hom(Li, Li+1), for i= 0, . . . , d− 1, and pd ∈
hom(L0, Ld). Then the coefficient of pd in md(p0, . . . , pd−1) is defined to be the signed sum
over pseudoholomorphic maps from a disk with d+ 1 counterclockwise cyclically ordered marked
points mapping to pi and corresponding boundary arcs mapping to the perturbations of Li+1.
Each map contributes according to the holonomy of its boundary, where adjacent perturbed
components Li and Li+1 are glued with pi.

Our key technical tool for understanding calculations in F (V1 × V2)pre is their invariance
under certain motions of branes. The following is a direct generalization of Proposition 3.4.2 and
the discussion preceding it.

By a one-parameter family of closed (but not necessarily compact) submanifolds (without
boundary) in V1 × V2, we mean a closed submanifold

L ↪→ R× V1 × V2

satisfying the following.

(i) The restriction of the projection pR : R× V1 × V2→ R to the submanifold L is non-
singular.

(ii) There is a real number r > 0 such that the restriction of the product pR × ρ : V1 × V2→
R× [0,∞) to the subset {ρ > r} ∩ L is proper and non-singular.

(iii) There is a compact interval [a, b] ↪→ R such that the restriction of the projection
pX : R× T ∗X → T ∗X to the submanifold p−1

R ([R\[a, b]) ∩ L is locally constant.

By a one-parameter family of tame Lagrangian branes in V1 × V2, we mean a one-parameter
family of closed submanifolds L ↪→ R× V1 × V2 in the above sense such that the fibers Ls =
p−1

R (s) ∩ L ↪→ V1 × V2 are exact tame Lagrangians equipped with a locally constant brane
structure (Es, α̃s, [s).
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Fix a biconical Lagrangian Λ⊂ V1 × V2 with boundary Λ∞. Let FΛ(V1 × V2)pre be the pre-
A∞-category of Lagrangian branes L whose boundary L∞ lies in Λ∞. Suppose that L ↪→
R× V1 × V2 is a one-parameter family of tame Lagrangian branes. We will say that L is Λ-
non-characteristic if

Ls ∩ Λ∞ = ∅ for all s ∈ R.

As with Proposition 3.4.2, one can repeat the proof from [Nad09] to establish the following
assertion. In fact, the same argument gives a further generalization for tame Lagrangian branes
in other exact symplectic targets.

Proposition 4.2.2. Suppose that L ↪→ R× V1 × V2 is a Λ-non-characteristic one-parameter
family of tame Lagrangian branes. For any test object P of FΛ(V1 × V2)pre, there are functorial
quasi-isomorphisms among the Floer complexes

homF (V1×V2)pre
(P, Ls) for all s ∈ R.

4.2.3 Functionals on sheaves. Let us single out a special class of branes in V1 × V2. Consider
the situation from the perspective of V1, so that we have T ∗V1 ' V1 × V2. We say that a brane
L is compact along the first factor if its projection to V1 is compact or, equivalently, the closure
L lies in T

∗
V1 ' V1 × V 2.

Consider the collection of branes in V1 × V2 that are compact along the first factor. Then
we can regard them as branes in T ∗V1, and accordingly define an honest Fukaya A∞-category
structure on them repeating our constructions for cotangent bundles in § 3.3. In particular, we
can find a fringed set parameterizing controlled Hamiltonian perturbations that move the branes
so that they do not intersect at infinity. We write F (T ∗V1)κ for the triangulated envelope of the
Fukaya category of such branes.

Consider the full subcategory Shc(V1)κ ⊂ Shc(V1) of compactly supported objects. Since V1

is complete (though non-compact), we can repeat the construction of microlocalization to obtain
a quasi-embedding

µV1 : Shc(V1)κ ↪→ F (V1)κ.

Now fix a brane L ↪→ V1 × V2, without any assumption on whether it is compact in either
direction. Let us measure the structure of L using the quasi-embedding µV1 . Namely, we can
consider the right module

π̃V1(L) : Shc(V1)op
κ → Ch, π̃V1(L)(F) = homF (V1×V2)pre

(µV1(F), L).

By definition, if the boundary of µV1(F) intersects the boundary of L, then we simply perturb
the former according to our usual conventions for cotangent bundles. Thus, we can always
unambiguously make the necessary calculations to define an honest module.

By Proposition 3.4.2 and the results on quasi-representability from [Nad09], the module
π̃V1(L) is quasi-represented by an object of Shc(V1), which we denote by πV1(L). Given a relatively
compact open submanifold i : U ↪→ V1, we have quasi-isomorphisms of complexes

πV1(L)(U)' homShc(V1)(i!CU , F)' homF (V1×V2)pre
(LU ! ⊗ orV1 [−dim V1], L).

Fix a conical (with respect to the second factor) Lagrangian Λ ↪→ T ∗V1 such that the part of the
boundary L∞ that lies in V1 × V∞2 in fact lies in the boundary Λ∞. Then, for any stratification
S = {Sα} of V1 such that Λ⊂ ΛS =

⋃
α T
∗
Sα
V1, the object πV1(L) lies in ShS(V1).
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Similarly, we say that a brane L is compact along the second factor if its projection to V2

is compact or, equivalently, the closure L lies in T
∗
V2 ' V 1 × V2. We can define a Fukaya A∞-

structure on the collection of branes in V1 × V2 that are compact along the second factor. We
write F (T ∗V2)κ for the triangulated envelope of the Fukaya category of such branes. Consider
the full subcategory Shc(V2)κ ⊂ Shc(V2) of compactly supported objects. In parallel with the
above discussion, we have a quasi-embedding

µV2 : Shc(V2)κ ↪→ F (T ∗V2)κ

that leads to a right module

π̃V2(L) : Shc(V2)op
κ → Ch, π̃V2(L)(F) = homF (V1×V2)pre

(µV2(F), L)

that is quasi-represented by an object of Shc(V2), which we denote by πV2(L). Fix a conical (with
respect to the first factor) Lagrangian Λ ↪→ T ∗V2 such that the part of the boundary L∞ that
lies in V∞1 × V2 in fact lies in the boundary Λ∞. Then, for any stratification S = {Sα} of V2 such
that Λ⊂ ΛS =

⋃
α T
∗
Sα
V2, the object πV2(L) lies in ShS(V2).

4.2.4 Dilation invariance. Recall that for X a compact manifold, the natural dilation R+-
action on T ∗X is not a symplectomorphism, but, as explained immediately after Theorem 3.4.1,
any brane L ↪→ T ∗X is quasi-isomorphic to its dilations.

The target V1 × V2 admits two commuting R+-dilation actions, which we denote by αt1, αt2,
for any t ∈ R+. In general, given a brane L ↪→ V1 × V2, its dilations along either factor will not
define quasi-isomorphic sheaves on the corresponding factor.

Example 4.2.3. Suppose that V1 = Rx, V2 = Rξ, and let L ↪→ Rx × Rξ be a brane with underlying
Lagrangian L= {ξ = 1}. Then πV1(L) is quasi-isomorphic to its dilations, but πV2(L) is not.

Proposition 4.2.4. There are quasi-isomorphisms

πV1(αt2(L))' πV1(L), πV2(αt1(L))' πV2(L),
πV1(αt1(L))' αt1∗(πV1(L)), πV2(αt2(L))' αt2∗(πV2(L)).

Proof. We prove the left-hand column of assertions; the right-hand column is the same.
For the first assertion, observe that the microlocalization µV1 is independent of the dilation

αt2. To be precise, rather than scale the module L, we can scale the image of µV1 by the inverse.
But, such scalings lead to quasi-isomorphic calculations among standard branes.

For the second assertion, observe that the linear diffeomorphism αt1 of the base V1 induces
the scaling αt1 ◦ αt

−1

2 of its cotangent T ∗V1 ' V1 × V2. Thus, we have a quasi-isomorphism

πV1(αt1α
t−1

2 (L))' αt1∗(πV1(L))

since all of our constructions are invariant under linear diffeomorphisms. On the other hand, by
the first assertion applied to αt1(L), we have a quasi-isomorphism

πV1(αt
−1

2 αt1(L))' πV1(αt1(L)).

Combining the above quasi-isomorphisms proves the second assertion. 2

4.3 Balanced branes
Our main theorem will not apply to all branes L ↪→ V1 × V2, but rather those satisfying a technical
assumption which we explain here. (The main theorem fails without it.)
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Recall that the compactification V 1 × V 2 has a codimension one boundary B = (V1 ×
V∞2 )

∐
(V∞1 × V2) and a codimension two corner C = V∞1 × V∞2 .

Given a brane L ↪→ V1 × V2, let LC = L ∩ C ↪→ L∞ be the intersection of the closure L with
the corner C. Consider the cone

Cone(LC) = {(v1, v2) ∈ (V 1\{0})× (V 2\{0}) | ([v1], [v2]) ∈ LC} ↪→ (V 1\{0})× (V 2\{0})

of non-zero elements whose projectivizations lie in LC . By definition, it is invariant under the
two commuting dilations αt1, αt2.

For δ1, δ2 ∈ R+, consider the dilated brane L(δ1, δ2) = αδ11 α
δ2
2 L. We would expect that as

δ1, δ2→ 0, the dilated brane L(δ1, δ2) would consist of two parts: a limit that collects along the
closure of the axes V 1 × {0}, {0} × V2, and the conical trace Cone(LC). In general, the situation
is much more complicated.

By a balanced Lagrangian brane L ↪→ V1 × V2, we mean a Lagrangian brane satisfying the
following additional hypothesis: the intersection LC of its closure L with the corner C is of the
expected dimension:

dim LC = dim L− 2.

This implies that for every neighborhood Naxes of the closure of the axes V 1 × {0}, {0} × V2,
and every neighborhood Ncone of the cone Cone(LC), there exist δ1, δ2 ∈ R+ such that the dilated
brane L(δ1, δ2) lies in the union of the neighborhoods:

L(δ1, δ2)⊂Naxes ∪Ncone.

Example 4.3.1. Suppose that V1 = Rx, V2 = Rξ, and let L ↪→ Rx × Rξ be a Lagrangian brane.
Then L is symmetric if and only if the closure L ↪→ Rx × Rξ is disjoint from the four corners
{(±∞,±∞)} ⊂ Rx × Rξ. For instance, the Lagrangian {ξ = 1/x} can underlie a balanced brane,
but the Lagrangian {x= ξ} cannot underlie a balanced brane.

The above example explains our use of the term balanced. The intersection of the closure L
with the corners C is unstable, and threatens to teeter over in the direction of either factor.

4.4 Main theorem
This section contains the main technical result of this paper. In order to help the reader follow
our arguments, we have isolated the case when dim V1 = 1. Furthermore, the arguments of the
general case are best understood as a product of copies of the dimension one case.

4.4.1 Case of dimension one. The fearless reader could skip this section, and continue in
the next section with the general case. But, many of the intricacies of the general case already
appear here. Furthermore, the constructions of the general case can be understood as a product
of constructions described here. With this in mind, our aim here is not to give the most concrete
proof possible, but rather to argue in parallel with what will be required for the general case.

We will write Rx to denote V1 with coordinate x, and Rξ to denote V2 = V ∗1 with dual
coordinate ξ. Recall that a brane L ↪→ Rx × Rξ is balanced if its closure L ↪→ Rx × Rξ is disjoint
from the four corners {(±∞,±∞)} ⊂ Rx × Rξ.

Theorem 4.4.1. Let L ↪→ Rx × Rξ be a balanced brane. Then there are quasi-isomorphisms

(Υ(πRx(L)))∧ 'Υ(πRξ(L)), (Υ(πRξ(L)))∨ 'Υ(πRx(L)).
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Proof. We prove the first identity; the second follows immediately by applying the inverse Fourier
transform to the first.

Consider an object F ∈ Shc(Rx/R+) and its Fourier transform F∧ ∈ Shc(Rξ/R+). Recall
that for any open convex cone u : U ↪→ Rξ, with closed polar cone v : U◦ ↪→ Rx with interior
int(v) : int(U◦) ↪→ Rx, we have a quasi-isomorphism

homShc(Rξ)(u!CU , F∧)' homShc(Rx)(int(v)∗Cint(U◦), F).

Furthermore, for the inclusion of open convex cones U0 ↪→ U1 ↪→ Rξ, the above quasi-
isomorphisms fit into a commutative (at the level of cohomology) square. The resulting
compatible collection of quasi-isomorphisms characterizes F∧.

Thus, to prove the first assertion, it suffices to establish the formula

homShc(Rξ)(u!CU ,Υ(πRξ(L)))' homShc(Rx)(int(v)∗Cint(U◦),Υ(πRx(L))) (†)

compatibly for all open convex cones.
In dimension one, it is possible to list all of the open convex cones

U = R+
ξ , U = R−ξ , U = Rξ,

U◦ = R+
x , U◦ = R−x , U◦ = {0}.

We will establish formula (†) for U = R+
ξ , U◦ = R+

x . We leave it to the reader to modify the
arguments for the other cases, and to check that the constructions are compatible with inclusions.

Thus, our aim is to show that there is a quasi-isomorphism

homShc(Rξ)(u!CR+
ξ
,Υ(πRξ(L)))' homShc(Rx)(u∗CR+

x
,Υ(πRx(L))). (‡)

Our strategy will be to construct a brane in Rx × Rξ such that both sides of formula (‡) are
quasi-isomorphic to its Floer pairing with a dilation of L.

Fix a pair εx, εξ ∈ R (soon to be specialized to the case εx < 0, εξ > 0), and consider the open
subsets

q(εx) :Q(εx) = {x ∈ Rx | x > εx} ↪→ Rx, q(εξ) :Q(εξ) = {ξ ∈ Rξ | ξ > εξ} ↪→ Rξ

and the Lagrangian

P (εx, εξ) = {(x, ξ) ∈ Rx × Rξ | x > εx, (x− εx)(ξ − εξ) = 1} ↪→ Rx × Rξ.

We equip P (εx, εξ) with the brane structure coming from its identification with the standard
brane LQ(εx)∗ ↪→ T ∗Rx or, equivalently, its identification with the costandard brane LQ(εξ)! ↪→
T ∗Rξ. Note that the boundary of P (εx, εξ) inside Rx × Rξ consists of the two points (εx,+∞)
and (+∞, εξ).

For any δx, δξ ∈ R+, consider the dilated brane

L(δx, δξ) = αx(δx)αξ(δξ)L ↪→ Rx × Rξ.

By assumption, L is balanced, so the boundary of L inside Rx × Rξ is disjoint from the corners
{(±∞,±∞)}. Thus, for small δx, δξ ∈ R+, the boundary of L(δx, δξ) is arbitrarily close to
the points {(±∞, 0), (0,±∞)}. In particular, the boundary of L(δ1, δ2) does not intersect the
boundary of P (εx, εξ). Thus, for sufficiently small δx, δξ ∈ R+, it makes sense to consider the Floer
complex

homF (Rx×Rξ)(P (εx, εξ), L(δx, δξ)). (Fl)
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We claim that for fixed εx < 0, εξ > 0, and sufficiently small δx, δξ ∈ R+, both sides of
formula (‡) are quasi-isomorphic to the Floer complex (Fl). We will first explain why the right-
hand side of (‡) is quasi-isomorphic to (Fl), and then give the parallel arguments for the left-hand
side.

Thus, our immediate aim is to show that for fixed εx < 0, εξ > 0, and sufficiently small
δx, δξ ∈ R+, there is a quasi-isomorphism

homF (Rx×Rξ)(P (εx, εξ), L(δx, δξ))' homShc(Rx)(u∗CR+
x
,Υ(πRx(L))). (rhs)

Let us unpack the right-hand side of the sought-after identity (rhs). To that end, for large
rx ∈ R+, consider the intervals

[εx, r)
� � c // [εx, r]

� � d // Rx

and define the pushforward

R(εx, rx) = d∗c!C[εx,r) ∈ Shc(Rx).

Consider the corresponding brane R(εx, rx) = µRx(R(εx, rx)) with underlying Lagrangian

R(εx, rx) = {(x, ξ) ∈ Rx × Rξ | x ∈ (εx, rx), ξ(x− εx)(rx − x) = 1} ↪→ Rx × Rξ.

As long as δξ ∈ R+ is sufficiently small, by Lemma 2.3.1, Proposition 4.2.4, standard
adjunctions, and the definition of πRx , we have quasi-isomorphisms

homShc(Rx)(u∗CR+
x
,Υ(πRx(L))) ' homShc(E)(R(εx, rx), πRx(L(δx, δξ)))

' homF (Rx×Rξ)(R(εx, rx), L(δx, δξ)).

Thus, to establish the sought-after identity (rhs), it suffices to establish a quasi-isomorphism

homF (Rx×Rξ)(P (εx, εξ), L(δx, δξ))' homF (Rx×Rξ)(R(εx, rx), L(δx, δξ)). (?x)

Again, since L is balanced, for small δx, δξ ∈ R+, the boundary of L(δx, δξ) inside Rx × Rξ

is arbitrarily close to the points {(±∞, 0), (0,±∞)}. Thus, we can find a [0, 1]-family of branes
Pt ↪→ Rx × Rξ such that

P0(εx, εξ) = P (εx, εξ), P1(εx, εξ) =R(εx, rx),

and Pt is non-characteristic with respect to L(δx, δξ). In other words, the boundary of Pt is
disjoint from the boundary of L(δx, δξ), for all times t ∈ [0, 1].

Thus, by Proposition 4.2.2, we have the sought-after identity (?x), and in turn the
identity (rhs).

Our next aim is to give parallel arguments explaining why the left-hand side of (‡) is quasi-
isomorphic to (Fl). So, we need to verify that for fixed εx < 0, εξ > 0, and sufficiently small
δx, δξ ∈ R+, there is a quasi-isomorphism

homF (Rx×Rξ)(P (εx, εξ), L(δx, δξ))' homShc(Rξ)(u!CR+
ξ
,Υ(πRξ(L))). (lhs)

Let us unpack the right-hand side of the sought-after identity (lhs). To that end, for large
rξ ∈ R+, consider the interval c : (εξ, rξ) ↪→ Rξ and define the pushforward

T (εξ, rξ) = c!C(εξ,rξ) ∈ Shc(Rξ).
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Consider the corresponding costandard brane T (εξ, rξ) = µRξ(T (εξ, rξ)) with underlying
Lagrangian

T (εξ, rξ) = {(x, ξ) ∈ Rx × Rξ | ξ ∈ (εξ, rξ), x(ξ − εξ)(rξ − ξ) = 2ξ − rξ − εξ} ↪→ Rx × Rξ.

As long as δx ∈ R+ is sufficiently small, by Lemma 2.3.1, Proposition 4.2.4, standard
adjunctions, and the definition of πRξ , we have quasi-isomorphisms

homShc(Rξ)(u!CR+
ξ
,Υ(πRξ(L))) ' homShc(E)(T (εξ, rξ), πRξ(L(δx, δξ)))

' homF (Rx×Rξ)(T (εξ, rξ), L(δx, δξ)).

Thus, to establish the sought-after identity (lhs), it suffices to establish a quasi-isomorphism

homF (Rx×Rξ)(P (εx, εξ), L(δx, δξ))' homF (Rx×Rξ)(T (εξ, rξ), L(δx, δξ)). (?ξ)

Again, since L is balanced, for small δx, δξ ∈ R+, the boundary of L(δx, δξ) inside Rx × Rξ

is arbitrarily close to the points {(±∞, 0), (0,±∞)}. Thus, we can find a [0, 1]-family of branes
Pt ↪→ Rx × Rξ such that

P0(εx, εξ) = P (εx, εξ), P1(εx, εξ) = T (εξ, rξ),

and Pt is non-characteristic with respect to L(δx, δξ). In other words, the boundary of Pt is
disjoint from the boundary of L(δx, δξ), for all times t ∈ [0, 1].

Thus, by Proposition 4.2.2, we have the sought-after identity (?ξ), and in turn the
identity (lhs).

Putting the preceding together, we have identified the left (lhs) and right-hand (rhs) sides
of formula (‡) with the Floer complex (Fl). As mentioned above, we leave the reader to modify
the arguments to establish formula (†) in the other cases, and to check its compatibility with
inclusions. This establishes the first assertion of the theorem. 2

4.4.2 General case. Now we arrive at the main technical result of this paper in
Theorem 4.4.2. We hope that the reader has followed the arguments of the preceding section
in the case of dimension one. Here we return to the general setting of an arbitrary real finite-
dimensional vector space V1 with dual V2.

Theorem 4.4.2. Let L ↪→ V1 × V2 be a balanced brane. Then there are quasi-isomorphisms

(Υ(πV1(L)))∧ 'Υ(πV2(L)), (Υ(πV2(L)))∨ 'Υ(πV1(L)).

Before giving the proof, let us record the following special case, which we will apply in the
context of Springer theory.

Corollary 4.4.3. Suppose that L is conical along the second factor in the sense that αt2L= L
for all t ∈ R+. Then we have (Υ(πV1(L)))∧ ' πV2(L).

Proof. This follows from the theorem, Proposition 4.2.4, and the fact that Υ is the identity
functor on conic objects. 2

Proof of Theorem 4.4.2. We prove the first identity; the second follows immediately by applying
the inverse Fourier transform to the first.

Consider an object F ∈ Shc(V1/R+) and its Fourier transform F∧ ∈ Shc(V2/R+). Recall
that for any convex open cone u : U ↪→ V2, with closed polar cone v : U◦ ↪→ V1 with interior
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int(v) : int(U◦) ↪→ V1, we have a quasi-isomorphism

homShc(V2)(u!CU , F∧)' homShc(V1)(int(v)∗Cint(U◦), F).

Furthermore, for the inclusion of open convex cones U0 ↪→ U1 ↪→ V2, the above quasi-
isomorphisms fit into a commutative (at the level of cohomology) square. The resulting
compatible collection of quasi-isomorphisms characterizes F∧.

Thus, to prove the first assertion, it suffices to establish the formula

homShc(V2)(u!CU ,Υ(πV2(L)))' homShc(V1)(int(v)∗Cint(U◦),Υ(πV1(L))) (†)

compatibly for all open convex cones.
In fact, it suffices to establish formula (†) for any collection of open cones as long as they

generate the conic topology. For technical convenience, we will focus on open cones u : U ↪→ V2

which become identified U 'Qnξ with the standard open quadrant

q :Qnξ = {(ξ1, . . . , ξn) ∈ Rn
ξ | ξi > 0} ↪→ Rn

ξ

under some linear isomorphism V2 ' Rn
ξ . We refer to such open cones as open quadrant cones.

Note that the interior of the closed polar cone of the standard open quadrant q :Qnξ ↪→ Rn
ξ is

nothing other than the standard open quadrant q :Qnx ↪→ Rn
x. The collection of open quadrant

cones, together with V2 itself, generate the conic topology.
It will be useful to specialize further to a particular collection of open quadrant cones. For

any δx, δξ ∈ R+, consider the dilated brane

L(δx, δξ) = αx(δx)αξ(δξ)L ↪→ V1 × V2.

Recall that since L is balanced, there exists a biconic Lagrangian Λ ↪→ V1 × V2 such that for
every neighborhood Naxes of the closure of the axes V 1 × {0}, {0} × V2, and every neighborhood
Ncone of Λ, there exist δ1, δ2 ∈ R+ such that the dilated brane L(δ1, δ2) lies in the union of the
neighborhoods

L(δ1, δ2)⊂Naxes ∪Ncone.

Given an open quadrant cone u : U ↪→ V2, consider the biconic Lagrangian

ΛU ↪→ T ∗Rn
ξ ' V1 × V2

obtained by taking the union of the conormals to the facets of the boundary ∂U ↪→ Rn
ξ . We will

focus on open quadrant cones u : U ↪→ V2 such that ΛU is disjoint from Λ away from Naxes. By a
dimension count, one can check that this is a generic condition. Hence, the collection of all such
open quadrant cones, together with V2 itself, generate the conic topology.

Now, without loss of generality, to establish formula (†) for a given generic quadrant cone
u : U ↪→ V2, it suffices to choose an identification V2 ' Rn

ξ , and to establish (†) for the standard
open quadrant q :Qnξ ↪→ Rn

ξ . This case of formula (†) will occupy the remainder of our arguments.
We leave it to the reader to handle the case U = Rn

ξ itself, and to check that our constructions
are compatible with inclusions.

Thus, our aim is to show that there is a quasi-isomorphism

homShc(Rnξ )(q!CQnξ
,Υ(πV2(L)))' homShc(Rnx)(q∗CQnx ,Υ(πV1(L))). (‡)

Our strategy will be to construct a brane in Rn
x × Rn

ξ such that both sides of formula (‡) are
quasi-isomorphic to its Floer pairing with a dilation of L.
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Fix a pair εx, εξ ∈ R (to be specialized to the case εx < 0, εξ > 0 momentarily) and consider
the open subsets

q(εx) :Qnx(εx) = {x ∈ Rn
x | xi > εx, for i= 1, . . . , n} ↪→ Rn

x,

q(εξ) :Qnξ (εξ) = {ξ ∈ Rn
ξ | ξi > εξ, for i= 1, . . . , n} ↪→ Rn

ξ .

By definition, we have Qnx(0) =Qnx and Qnξ (0) =Qnξ .
Consider inside of Rn

x × Rn
ξ the Lagrangian

P (εx, εξ) = {(x, ξ) ∈ Rn
x × Rn

ξ | xi > εx, (xi − εx)(ξi − εξ) = 1, for i= 1, . . . , n}

equipped with the brane structure coming from its identification with the standard brane

LQnx(εx)∗ ↪→ T ∗Rn
x

or, equivalently, its identification with the costandard brane

LQnξ (εξ)! ↪→ T ∗Rn
ξ .

By construction, for fixed εx < 0, εξ > 0, and sufficiently small δx, δξ ∈ R+, the boundary of
the dilated brane L(δ1, δ2) does not intersect the boundary of P (εx, εξ). Thus, it makes sense to
consider the Floer complex

homF (Rnx×Rnξ )(P (εx, εξ)L(δx, δξ)) for sufficiently small δx, δξ ∈ R+. (Fl)

We claim that both sides of formula (‡) are quasi-isomorphic to the Floer complex (Fl). We
will first explain why the right-hand side of (‡) is quasi-isomorphic to (Fl), and then give the
parallel arguments for the left-hand side.

Thus, our immediate aim is to show that for fixed εx < 0, εξ > 0, and sufficiently small
δx, δξ ∈ R+, there is a quasi-isomorphism

homF (Rnx×Rnξ )(P (εx, εξ), L(δx, δξ))' homShc(Rnx)(q∗CQnx ,Υ(πV1(L))). (rhs)

Let us unpack the right-hand side of the sought-after identity (rhs). To that end, let us
introduce the translated variables x̂i = xi − εx for i= 1, . . . , n. For large rx ∈ R+, consider the
truncations

Qnx(εx) ∩ {|x̂|2 < rx} � � c // Qnx(εx) ∩ {|x̂|2 6 rx} � � d // Rn
x

and define the pushforward

R(εx, rx) = d∗c!CQnx(εx)∩{|x̂|2<rx} ∈ Shc(Rn
x).

Consider the corresponding brane R(εx, rx) = µRnx (R(εx, rx)) with underlying Lagrangian

R(εx, rx) = {(x, ξ) ∈ Rn
x × Rn

ξ | x̂i > 0, ξx̂i(rx − |x̂|2) = 1, |x̂|2 < rx} ↪→ Rn
x × Rn

ξ .

As long as δξ ∈ R+ is sufficiently small, by Lemma 2.3.1, Proposition 4.2.4, standard
adjunctions, and the definition of πV1 , we have quasi-isomorphisms

homShc(Rnx)(q∗CQnx ,Υ(πRnx (L))) ' homShc(E)(R(εx, rx), πV1(L(δx, δξ)))
' homF (Rnx×Rnξ )(R(εx, rx), L(δx, δξ)).

Thus, to establish the sought-after identity (rhs), it suffices to establish a quasi-isomorphism

homF (Rnx×Rnξ )(P (εx, εξ), L(δx, δξ))' homF (Rnx×Rnξ )(R(εx, rx), L(δx, δξ)). (?x)
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By construction, we can find a [0, 1]-family of branes Pt ↪→ Rn
x × Rn

ξ such that

P0(εx, εξ) = P (εx, εξ), P1(εx, εξ) =R(εx, rx),

and Pt is non-characteristic with respect to L(δx, δξ). In other words, the boundary of Pt is
disjoint from the boundary of L(δx, δξ) for all times t ∈ [0, 1]. To explicitly define Pt, one can
exploit that an open quadrant cone is a product of one-dimensional cones.

Thus, by Proposition 4.2.2, we have the sought-after identity (?x), and in turn the
identity (rhs).

Next, we give parallel arguments explaining why the left-hand side of (‡) is quasi-isomorphic
to (Fl). So, we need to verify that for fixed εx < 0, εξ > 0, and sufficiently small δx, δξ ∈ R+,
there is a quasi-isomorphism

homF (Rnx×Rnξ )(P (εx, εξ), L(δx, δξ))' homShc(Rnξ )(u!CR+
ξ
,Υ(π2(L))). (lhs)

Let us unpack the right-hand side of the sought-after identity (lhs). To that end, let us
introduce the translated variables ξ̂i = ξi − εξ for i= 1, . . . , n. For large rξ ∈ R+, consider the
truncation

c :Qnξ (εξ) ∩ {|ξ̂|2 < rξ} ↪→ Rn
ξ

and define the pushforward

T (εξ, rξ) = c!CQnξ (εξ)∩{|ξ̂|2<rξ} ∈ Shc(Rn
ξ ).

Consider the corresponding costandard brane T (εξ, rξ) = µRnξ (T (εξ, rξ)) with underlying
Lagrangian

T (εξ, rξ) = {(x, ξ) ∈ Rn
x × Rn

ξ | ξ̂i > 0, ξ̂ixi(rξ − |ξ̂|2) = rξ − |ξ̂|2 + 2ξ̂2
i , |ξ̂|2 < rξ}.

As long as δx ∈ R+ is sufficiently small, by Lemma 2.3.1, Proposition 4.2.4, standard
adjunctions, and the definition of πV2 , we have quasi-isomorphisms

homShc(Rnξ )(u!CR+
ξ
,Υ(π2(L))) ' homShc(E)(T (εξ, rξ), πV2(L(δx, δξ)))

' homF (Rnx×Rnξ )(T (εξ, rξ), L(δx, δξ)).

Thus, to establish the sought-after identity (lhs), it suffices to establish a quasi-isomorphism

homF (Rnx×Rnξ )(P (εx, εξ), L(δx, δξ))' homF (Rnx×Rnξ )(T (εξ, rξ), L(δx, δξ)). (?ξ)

By construction, we can find a [0, 1]-family of branes Pt ↪→ Rn
x × Rn

ξ such that

P0(εx, εξ) = P (εx, εξ), P1(εx, εξ) = T (εξ, rξ),

and Pt is non-characteristic with respect to L(δx, δξ). In other words, the boundary of Pt is
disjoint from the boundary of L(δx, δξ) for all times t ∈ [0, 1]. To explicitly define Pt, one can
exploit that an open quadrant cone is a product of one-dimensional cones.

Thus, by Proposition 4.2.2, we have the sought-after identity (?ξ), and in turn the
identity (lhs).

Putting the preceding together, we have identified the left (lhs) and right-hand (rhs) sides
of formula (‡) with the Floer complex (Fl). As mentioned above, we leave the reader to modify
the arguments to establish formula (†) in the other cases, and to check its compatibility with
inclusions. This establishes the first assertion of the theorem, and consequently the second. 2
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5. Springer theory

In this section, we give an application of the preceding theory to branes in the cotangent bundle
of a Lie algebra.

5.1 Springer theory via sheaves

We begin with a brief review of the Springer theory of Weyl group representations following
Lusztig [Lus81], Borho–MacPherson [BM81], Ginzburg [Gin83], and Hotta–Kashiwara [HK84].
For a expanded summary, the reader could consult the discussion in [Gri98].

Let G be a reductive complex algebraic group with Lie algebra g and Weyl group W . Let
B be the flag variety of Borel subalgebras b⊂ g. For a Borel subalgebra b⊂ g, let u⊂ b be its
unipotent radical and let h = b/u be the universal Cartan algebra.

Let g̃ = {(X, b) | x ∈ b ∈ B} be the Grothendieck–Springer space of pairs. Let N ⊂ g be the
nilpotent cone and Ñ = {(x, b) | x ∈ b ∩N , b ∈ B} the Springer resolution. The following diagram
summarizes some of the well-known relations among these spaces.

B T ∗B ' Ñ
µN

��

poo ı̃ // g̃
q̃ //

µg

��

h

s

��
N i // g

q // h//W

Here p, µN , µg, and s are the obvious projections, ı̃ and i are the obvious inclusions, q̃ assigns
to (x, b) the class of x in b/u, and q is the affine adjoint quotient map.

Let grs ⊂ g denote the regular semisimple locus and let hr ⊂ h denote the W -regular locus.
The right-hand portion of the above diagram restricts to the following Cartesian diagram whose
vertical arrows are W -torsors.

g̃rs

q̃ //

µg

��

hr

s

��
grs

q // hr//W

Consider the constant perverse sheaves

Cg̃ [dimC g] ∈ Perv(g̃), CÑ [dimC N ] ∈ Perv(Ñ ),

and their pushforwards

Sg = µg!Cg̃ [dimC g], SN = µN !CÑ [dimC N ].

We refer to Sg as the global Springer sheaf and SN as the nilpotent Springer sheaf.

The map µg is small and the map µN is semismall. Thus, the complexes Sg, SN are in fact
perverse, and Sg is the middle extension of the local system

Lrs = µg!Cg̃rs
[dimC g] ∈ Perv(grs).

The Weyl group W acts on Lrs by deck transformations, and hence on Sg by the functoriality
of the middle extension. The action identifies the group algebra C[W ] with the (degree zero)
endomorphisms of Sg.
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There are two immediate ways in which Sg and SN are related. First, by proper base change,
restriction along the inclusion i :N ↪→ g induces an identification

i∗Sg [dimC h]' SN .

Second, if we identify g with its dual g∗ via the Killing form, then we can regard the shifted
Fourier transforms as endofunctors on perverse sheaves on g. With this understanding, the
shifted Fourier transforms exchange the two perverse sheaves:

(SN )∧[dimC g]' Sg , (Sg)∨[−dimC g]' SN .

It is also possible to construct SN as the nearby cycles of the constant perverse sheaf
Cgrs

[dimC g] in the (multi-dimensional) family defined by the adjoint quotient map q : g→ h//W .
Namely, we have an identification

Rψ(Cgrs
[dimC g])' SN ,

where Rψ can be taken to be the nearby cycles in the direction of any line A1 ↪→ h//W such that
A1\{0} ↪→ hr//W . In this realization, the braid group BW ' π1(hr//W, pt) acts on the nearby
cycles by monodromy transformations. This action factors through the projection BW →W
giving another realization of the W -action on SN .

5.2 Cotangent bundle of adjoint quotient
Our aim here is to explain how we will think about the cotangent bundle of the adjoint quotient
g/G. The discussion is included to elucidate what follows and is not needed in any technical
sense.

5.2.1 General formalism. Suppose that the group G acts on a smooth manifold X. Then
the induced action of G on the cotangent bundle T ∗X preserves the canonical one-form θ, and
hence the symplectic form ω = dθ as well.

Consider the moment map m : T ∗X → g∗ for the action of G. It is characterized by two
properties: (1) m is G-equivariant with respect to the coadjoint action on g∗and (2) its differential
dm satisfies the contraction formula

〈dm, x〉= ιx̃ω for x ∈ g,

where x̃ is the vector field on T ∗X corresponding to x ∈ g. Note that Lx̃θ = 0 and thus
ιx̃ω = d〈θ, x̃〉. Therefore, one can say that m= θ in the sense that 〈m, x〉= ιx̃θ.

Consider the quotient stack X/G. By the cotangent stack T ∗(X/G), we mean the result of
performing Hamiltonian reduction at the zero moment map value. Namely, we take the zero-fiber
of the moment map m−1(0)⊂ T ∗X and then pass to the quotient stack T ∗(X/G) =m−1(0)/G.

Two immediate comments are in order.
First, there is no reason that the zero-fiber m−1(0) or that T ∗(X/G) should be smooth, and

in our case of interest this is not so. This should not cause any consternation since we will always
be working in the ambient target T ∗X. To be precise, consider the correspondence

T ∗(X/G) T ∗(X/G)×X/G X`oo r // T ∗X,

where ` is the obvious smooth projection and r is the obvious inclusion. This is nothing more
than the Lagrangian correspondence associated to the smooth projection X →X/G. Note
that applying the correspondence to T ∗(X/G) itself recovers the zero-fiber of the moment

1667

https://doi.org/10.1112/S0010437X1100546X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100546X


D. Nadler

map m−1(0) = r(`−1(T ∗(X/G)). In short, all of our concrete geometric arguments will take place
in T ∗X, and we only keep track of T ∗(X/G) to help us understand what is going on. For example,
by a smooth Lagrangian L ↪→ T ∗(X/G), we will mean a substack such that

L= r(`−1(L)) ↪→ T ∗X
is a smooth Lagrangian.

Second, just as one uses the sophisticated technology of stacks to deal with quotients, one
should set the moment map m equal to zero in the appropriate homotopical sense. But, since
our aims are purely topological, we can safely ignore this issue and work naively with T ∗(X/G)
as a stack rather than as a derived stack. In other words, the reader unaccustomed to this kind
of enhancement can safely ignore the issue, and in particular this comment itself.

5.2.2 Case of adjoint quotient. Now let us apply the preceding to the case X = g with the
adjoint action of G.

Under the identification of g with its dual g∗ via the Killing form, the moment map becomes
the Lie bracket

m : g× g' T ∗g→ g∗ ' g, m(x, ξ) = [x, ξ].

Thus, the zero-fiber is the space of commuting pairs

m−1(0) = {(x, ξ) ∈ g× g | [x, ξ] = 0} ⊂ g× g

and the cotangent bundle is the diagonal adjoint quotient

T ∗(g/G) = {(x, ξ) ∈ g× g | [x, ξ] = 0}/G.

5.3 Quantization of regular Hitchin fibers
Choose an embedding h ↪→ g of the universal Cartan algebra and let H ↪→G be the corresponding
maximal torus.

Recall that q : g→ h//W denotes the affine adjoint quotient arising from Chevalley’s
identification C[g]G ' C[h]W .

We use the phrase Hitchin fibration to refer to the map

H : T ∗(g/G)→ h//W, H(x, ξ) = q(ξ).

The definition and nomenclature come from the observation that the stack g/G is isomorphic to
the stratum of semistable G-bundles on a cuspidal elliptic curve (or, equivalently, bundles whose
pullbacks to the normalization P1 are trivializable).

Recall that hr ⊂ h denotes the W -regular locus. For λ ∈ hr//W , we refer to the inverse image
Lλ =H−1(λ)⊂ T ∗(g/G) as a regular Hitchin fiber. In terms of our usual identifications, we have
the explicit description

Lλ = {(x, ξ) ∈ g× g | [x, ξ] = 0, q(ξ) = λ}/G.

Our immediate goal is to show that Lλ is an exact Lagrangian and carries a canonical brane
structure. (General formalism shows that it is Lagrangian, but we will give an explicit reason in
a moment.)

To clarify the discussion, let us denote the Lie algebra by gx and its dual by gξ. (We will
continue to identify them via the Killing form.) Now let us switch our perspective, and consider
T ∗(gx/G) as the cotangent to the coadjoint quotient gξ/G. Then, by construction, the Hitchin
fiber Lλ ↪→ T ∗(gx/G) is nothing more than the conormal to the coadjoint orbit Oλ/G ↪→ gξ/G.
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Thus, it is an exact Lagrangian and carries a canonical brane structure. By this, we mean that
the base change

Lλ = r(`−1(Lλ))⊂ gx × gξ

carries a canonical G-equivariant brane structure. Namely, as the conormal to a closed
submanifold, it comes equipped with a standard brane structure.

To keep with usual conventions, we will shift the standard brane structure of Lλ by the
amount dimC h = dimC g− dimC Oλ. We use the phrase Hitchin brane to refer to Lλ ↪→ gx × gξ
with this brane structure. Thus, by construction, the constructible complex πgξ(Lλ) ∈ Shc(gξ) is
simply the shifted constant sheaf COλ [−dimC h].

Now we will apply Theorem 4.4.2 to the Hitchin brane Lλ. Our aim is to identify the
constructible complex Fλ = πgx(Lλ) ∈ Shc(g). Observe that Lλ is conic along the factor gx, and
hence Fλ is conic as well. We refer to Fλ as the Hitchin sheaf.

Theorem 5.3.1. The Hitchin sheaf Fλ is isomorphic to the global Springer sheaf Sg.

Proof. By construction, the constructible complex shifted constant sheaf is COλ [−dimC h]. Note
that Lλ is a balanced brane since its corner consists of projectivized pairs of commuting nilpotent
elements. Thus, Theorem 4.4.2 provides an identification

Fλ ' (Υ(COλ [−dimC h]))∧.

To complete the proof, we use the well-known identities of Springer theory

Υ(COλ [dimC Oλ])'Rψ(COλ [dimC Oλ])' SN , (SN )∧[dimC g]' Sg . 2

The identification Fλ ' Sg is compatible with motions of the parameter λ ∈ hr//W as follows.
By construction, the identification πgξ(Lλ)' COλ [−dimC h] is compatible with parallel transport
with respect to λ ∈ hr//W . For this, recall that from the perspective of gξ, the brane Lλ ↪→ T ∗gξ
is nothing more than (a shift of) the standard brane with support the conormal to Oλ ↪→ gξ. Now,
under the Fourier transform, motions of COλ [−dimC h] induce the usual Weyl group action on Sg

of Springer theory. This is equivalent to the fact that the monodromy braid group action on the
nearby cycles Rψ(COλ [−dimC h]) descends to the usual Weyl group action. Thus, in conclusion,
the proof of the theorem shows that the braid group action on Fλ descends to the usual Weyl
group action as well.
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Basel, 1994), 271–321.

BD A. Beilinson and V. Drinfeld, Quantization of Hitchin Hamiltonians and Hecke eigensheaves,
Preprint.

BM88 E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Publ. Math. Inst. Hautes
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